| 1 | #include <iostream> | 
| 2 | #include <cstdlib> | 
| 3 | #include <cmath> | 
| 4 |  | 
| 5 | #ifdef IS_MPI | 
| 6 | #include "mpiSimulation.hpp" | 
| 7 | #include <unistd.h> | 
| 8 | #endif //is_mpi | 
| 9 |  | 
| 10 | #include "Integrator.hpp" | 
| 11 | #include "simError.h" | 
| 12 |  | 
| 13 |  | 
| 14 | template<typename T> Integrator<T>::Integrator(SimInfo* theInfo, | 
| 15 | ForceFields* the_ff){ | 
| 16 | info = theInfo; | 
| 17 | myFF = the_ff; | 
| 18 | isFirst = 1; | 
| 19 |  | 
| 20 | molecules = info->molecules; | 
| 21 | nMols = info->n_mol; | 
| 22 |  | 
| 23 | // give a little love back to the SimInfo object | 
| 24 |  | 
| 25 | if (info->the_integrator != NULL){ | 
| 26 | delete info->the_integrator; | 
| 27 | } | 
| 28 | info->the_integrator = this; | 
| 29 |  | 
| 30 | nAtoms = info->n_atoms; | 
| 31 |  | 
| 32 | // check for constraints | 
| 33 |  | 
| 34 | constrainedA = NULL; | 
| 35 | constrainedB = NULL; | 
| 36 | constrainedDsqr = NULL; | 
| 37 | moving = NULL; | 
| 38 | moved = NULL; | 
| 39 | oldPos = NULL; | 
| 40 |  | 
| 41 | nConstrained = 0; | 
| 42 |  | 
| 43 | checkConstraints(); | 
| 44 | } | 
| 45 |  | 
| 46 | template<typename T> Integrator<T>::~Integrator(){ | 
| 47 | if (nConstrained){ | 
| 48 | delete[] constrainedA; | 
| 49 | delete[] constrainedB; | 
| 50 | delete[] constrainedDsqr; | 
| 51 | delete[] moving; | 
| 52 | delete[] moved; | 
| 53 | delete[] oldPos; | 
| 54 | } | 
| 55 | } | 
| 56 |  | 
| 57 | template<typename T> void Integrator<T>::checkConstraints(void){ | 
| 58 | isConstrained = 0; | 
| 59 |  | 
| 60 | Constraint* temp_con; | 
| 61 | Constraint* dummy_plug; | 
| 62 | temp_con = new Constraint[info->n_SRI]; | 
| 63 | nConstrained = 0; | 
| 64 | int constrained = 0; | 
| 65 |  | 
| 66 | SRI** theArray; | 
| 67 | for (int i = 0; i < nMols; i++){ | 
| 68 | theArray = (SRI * *) molecules[i].getMyBonds(); | 
| 69 | for (int j = 0; j < molecules[i].getNBonds(); j++){ | 
| 70 | constrained = theArray[j]->is_constrained(); | 
| 71 |  | 
| 72 | if (constrained){ | 
| 73 | dummy_plug = theArray[j]->get_constraint(); | 
| 74 | temp_con[nConstrained].set_a(dummy_plug->get_a()); | 
| 75 | temp_con[nConstrained].set_b(dummy_plug->get_b()); | 
| 76 | temp_con[nConstrained].set_dsqr(dummy_plug->get_dsqr()); | 
| 77 |  | 
| 78 | nConstrained++; | 
| 79 | constrained = 0; | 
| 80 | } | 
| 81 | } | 
| 82 |  | 
| 83 | theArray = (SRI * *) molecules[i].getMyBends(); | 
| 84 | for (int j = 0; j < molecules[i].getNBends(); j++){ | 
| 85 | constrained = theArray[j]->is_constrained(); | 
| 86 |  | 
| 87 | if (constrained){ | 
| 88 | dummy_plug = theArray[j]->get_constraint(); | 
| 89 | temp_con[nConstrained].set_a(dummy_plug->get_a()); | 
| 90 | temp_con[nConstrained].set_b(dummy_plug->get_b()); | 
| 91 | temp_con[nConstrained].set_dsqr(dummy_plug->get_dsqr()); | 
| 92 |  | 
| 93 | nConstrained++; | 
| 94 | constrained = 0; | 
| 95 | } | 
| 96 | } | 
| 97 |  | 
| 98 | theArray = (SRI * *) molecules[i].getMyTorsions(); | 
| 99 | for (int j = 0; j < molecules[i].getNTorsions(); j++){ | 
| 100 | constrained = theArray[j]->is_constrained(); | 
| 101 |  | 
| 102 | if (constrained){ | 
| 103 | dummy_plug = theArray[j]->get_constraint(); | 
| 104 | temp_con[nConstrained].set_a(dummy_plug->get_a()); | 
| 105 | temp_con[nConstrained].set_b(dummy_plug->get_b()); | 
| 106 | temp_con[nConstrained].set_dsqr(dummy_plug->get_dsqr()); | 
| 107 |  | 
| 108 | nConstrained++; | 
| 109 | constrained = 0; | 
| 110 | } | 
| 111 | } | 
| 112 | } | 
| 113 |  | 
| 114 | if (nConstrained > 0){ | 
| 115 | isConstrained = 1; | 
| 116 |  | 
| 117 | if (constrainedA != NULL) | 
| 118 | delete[] constrainedA; | 
| 119 | if (constrainedB != NULL) | 
| 120 | delete[] constrainedB; | 
| 121 | if (constrainedDsqr != NULL) | 
| 122 | delete[] constrainedDsqr; | 
| 123 |  | 
| 124 | constrainedA = new int[nConstrained]; | 
| 125 | constrainedB = new int[nConstrained]; | 
| 126 | constrainedDsqr = new double[nConstrained]; | 
| 127 |  | 
| 128 | for (int i = 0; i < nConstrained; i++){ | 
| 129 | constrainedA[i] = temp_con[i].get_a(); | 
| 130 | constrainedB[i] = temp_con[i].get_b(); | 
| 131 | constrainedDsqr[i] = temp_con[i].get_dsqr(); | 
| 132 | } | 
| 133 |  | 
| 134 |  | 
| 135 | // save oldAtoms to check for lode balanceing later on. | 
| 136 |  | 
| 137 | oldAtoms = nAtoms; | 
| 138 |  | 
| 139 | moving = new int[nAtoms]; | 
| 140 | moved = new int[nAtoms]; | 
| 141 |  | 
| 142 | oldPos = new double[nAtoms * 3]; | 
| 143 | } | 
| 144 |  | 
| 145 | delete[] temp_con; | 
| 146 | } | 
| 147 |  | 
| 148 |  | 
| 149 | template<typename T> void Integrator<T>::integrate(void){ | 
| 150 | int i, j;                         // loop counters | 
| 151 |  | 
| 152 | double runTime = info->run_time; | 
| 153 | double sampleTime = info->sampleTime; | 
| 154 | double statusTime = info->statusTime; | 
| 155 | double thermalTime = info->thermalTime; | 
| 156 | double resetTime = info->resetTime; | 
| 157 |  | 
| 158 |  | 
| 159 | double currSample; | 
| 160 | double currThermal; | 
| 161 | double currStatus; | 
| 162 | double currReset; | 
| 163 |  | 
| 164 | int calcPot, calcStress; | 
| 165 | int isError; | 
| 166 |  | 
| 167 | tStats = new Thermo(info); | 
| 168 | statOut = new StatWriter(info); | 
| 169 | dumpOut = new DumpWriter(info); | 
| 170 |  | 
| 171 | atoms = info->atoms; | 
| 172 | DirectionalAtom* dAtom; | 
| 173 |  | 
| 174 | dt = info->dt; | 
| 175 | dt2 = 0.5 * dt; | 
| 176 |  | 
| 177 | // initialize the forces before the first step | 
| 178 |  | 
| 179 | calcForce(1, 1); | 
| 180 |  | 
| 181 | if (info->setTemp){ | 
| 182 | thermalize(); | 
| 183 | } | 
| 184 |  | 
| 185 | calcPot     = 0; | 
| 186 | calcStress  = 0; | 
| 187 | currSample  = sampleTime + info->getTime(); | 
| 188 | currThermal = thermalTime+ info->getTime(); | 
| 189 | currStatus  = statusTime + info->getTime(); | 
| 190 | currReset   = resetTime  + info->getTime(); | 
| 191 |  | 
| 192 | dumpOut->writeDump(info->getTime()); | 
| 193 | statOut->writeStat(info->getTime()); | 
| 194 |  | 
| 195 | readyCheck(); | 
| 196 |  | 
| 197 | #ifdef IS_MPI | 
| 198 | strcpy(checkPointMsg, "The integrator is ready to go."); | 
| 199 | MPIcheckPoint(); | 
| 200 | #endif // is_mpi | 
| 201 |  | 
| 202 | while (info->getTime() < runTime){ | 
| 203 | if ((info->getTime() + dt) >= currStatus){ | 
| 204 | calcPot = 1; | 
| 205 | calcStress = 1; | 
| 206 | } | 
| 207 |  | 
| 208 | integrateStep(calcPot, calcStress); | 
| 209 |  | 
| 210 | info->incrTime(dt); | 
| 211 |  | 
| 212 | if (info->setTemp){ | 
| 213 | if (info->getTime() >= currThermal){ | 
| 214 | thermalize(); | 
| 215 | currThermal += thermalTime; | 
| 216 | } | 
| 217 | } | 
| 218 |  | 
| 219 | if (info->getTime() >= currSample){ | 
| 220 | dumpOut->writeDump(info->getTime()); | 
| 221 | currSample += sampleTime; | 
| 222 | } | 
| 223 |  | 
| 224 | if (info->getTime() >= currStatus){ | 
| 225 | statOut->writeStat(info->getTime()); | 
| 226 | calcPot = 0; | 
| 227 | calcStress = 0; | 
| 228 | currStatus += statusTime; | 
| 229 | } | 
| 230 |  | 
| 231 | if (info->resetIntegrator){ | 
| 232 | if (info->getTime() >= currReset){ | 
| 233 | this->resetIntegrator(); | 
| 234 | currReset += resetTime; | 
| 235 | } | 
| 236 | } | 
| 237 |  | 
| 238 | #ifdef IS_MPI | 
| 239 | strcpy(checkPointMsg, "successfully took a time step."); | 
| 240 | MPIcheckPoint(); | 
| 241 | #endif // is_mpi | 
| 242 | } | 
| 243 |  | 
| 244 | dumpOut->writeFinal(info->getTime()); | 
| 245 |  | 
| 246 | delete dumpOut; | 
| 247 | delete statOut; | 
| 248 | } | 
| 249 |  | 
| 250 | template<typename T> void Integrator<T>::integrateStep(int calcPot, | 
| 251 | int calcStress){ | 
| 252 | // Position full step, and velocity half step | 
| 253 | preMove(); | 
| 254 |  | 
| 255 | moveA(); | 
| 256 |  | 
| 257 | if (nConstrained){ | 
| 258 | constrainA(); | 
| 259 | } | 
| 260 |  | 
| 261 |  | 
| 262 | #ifdef IS_MPI | 
| 263 | strcpy(checkPointMsg, "Succesful moveA\n"); | 
| 264 | MPIcheckPoint(); | 
| 265 | #endif // is_mpi | 
| 266 |  | 
| 267 |  | 
| 268 | // calc forces | 
| 269 |  | 
| 270 | calcForce(calcPot, calcStress); | 
| 271 |  | 
| 272 | #ifdef IS_MPI | 
| 273 | strcpy(checkPointMsg, "Succesful doForces\n"); | 
| 274 | MPIcheckPoint(); | 
| 275 | #endif // is_mpi | 
| 276 |  | 
| 277 |  | 
| 278 | // finish the velocity  half step | 
| 279 |  | 
| 280 | moveB(); | 
| 281 |  | 
| 282 | if (nConstrained){ | 
| 283 | constrainB(); | 
| 284 | } | 
| 285 |  | 
| 286 | #ifdef IS_MPI | 
| 287 | strcpy(checkPointMsg, "Succesful moveB\n"); | 
| 288 | MPIcheckPoint(); | 
| 289 | #endif // is_mpi | 
| 290 | } | 
| 291 |  | 
| 292 |  | 
| 293 | template<typename T> void Integrator<T>::moveA(void){ | 
| 294 | int i, j; | 
| 295 | DirectionalAtom* dAtom; | 
| 296 | double Tb[3], ji[3]; | 
| 297 | double A[3][3], I[3][3]; | 
| 298 | double angle; | 
| 299 | double vel[3], pos[3], frc[3]; | 
| 300 | double mass; | 
| 301 |  | 
| 302 | for (i = 0; i < nAtoms; i++){ | 
| 303 | atoms[i]->getVel(vel); | 
| 304 | atoms[i]->getPos(pos); | 
| 305 | atoms[i]->getFrc(frc); | 
| 306 |  | 
| 307 | mass = atoms[i]->getMass(); | 
| 308 |  | 
| 309 | for (j = 0; j < 3; j++){ | 
| 310 | // velocity half step | 
| 311 | vel[j] += (dt2 * frc[j] / mass) * eConvert; | 
| 312 | // position whole step | 
| 313 | pos[j] += dt * vel[j]; | 
| 314 | } | 
| 315 |  | 
| 316 | atoms[i]->setVel(vel); | 
| 317 | atoms[i]->setPos(pos); | 
| 318 |  | 
| 319 | if (atoms[i]->isDirectional()){ | 
| 320 | dAtom = (DirectionalAtom *) atoms[i]; | 
| 321 |  | 
| 322 | // get and convert the torque to body frame | 
| 323 |  | 
| 324 | dAtom->getTrq(Tb); | 
| 325 | dAtom->lab2Body(Tb); | 
| 326 |  | 
| 327 | // get the angular momentum, and propagate a half step | 
| 328 |  | 
| 329 | dAtom->getJ(ji); | 
| 330 |  | 
| 331 | for (j = 0; j < 3; j++) | 
| 332 | ji[j] += (dt2 * Tb[j]) * eConvert; | 
| 333 |  | 
| 334 | // use the angular velocities to propagate the rotation matrix a | 
| 335 | // full time step | 
| 336 |  | 
| 337 | dAtom->getA(A); | 
| 338 | dAtom->getI(I); | 
| 339 |  | 
| 340 | // rotate about the x-axis | 
| 341 | angle = dt2 * ji[0] / I[0][0]; | 
| 342 | this->rotate(1, 2, angle, ji, A); | 
| 343 |  | 
| 344 | // rotate about the y-axis | 
| 345 | angle = dt2 * ji[1] / I[1][1]; | 
| 346 | this->rotate(2, 0, angle, ji, A); | 
| 347 |  | 
| 348 | // rotate about the z-axis | 
| 349 | angle = dt * ji[2] / I[2][2]; | 
| 350 | this->rotate(0, 1, angle, ji, A); | 
| 351 |  | 
| 352 | // rotate about the y-axis | 
| 353 | angle = dt2 * ji[1] / I[1][1]; | 
| 354 | this->rotate(2, 0, angle, ji, A); | 
| 355 |  | 
| 356 | // rotate about the x-axis | 
| 357 | angle = dt2 * ji[0] / I[0][0]; | 
| 358 | this->rotate(1, 2, angle, ji, A); | 
| 359 |  | 
| 360 |  | 
| 361 | dAtom->setJ(ji); | 
| 362 | dAtom->setA(A); | 
| 363 | } | 
| 364 | } | 
| 365 | } | 
| 366 |  | 
| 367 |  | 
| 368 | template<typename T> void Integrator<T>::moveB(void){ | 
| 369 | int i, j; | 
| 370 | DirectionalAtom* dAtom; | 
| 371 | double Tb[3], ji[3]; | 
| 372 | double vel[3], frc[3]; | 
| 373 | double mass; | 
| 374 |  | 
| 375 | for (i = 0; i < nAtoms; i++){ | 
| 376 | atoms[i]->getVel(vel); | 
| 377 | atoms[i]->getFrc(frc); | 
| 378 |  | 
| 379 | mass = atoms[i]->getMass(); | 
| 380 |  | 
| 381 | // velocity half step | 
| 382 | for (j = 0; j < 3; j++) | 
| 383 | vel[j] += (dt2 * frc[j] / mass) * eConvert; | 
| 384 |  | 
| 385 | atoms[i]->setVel(vel); | 
| 386 |  | 
| 387 | if (atoms[i]->isDirectional()){ | 
| 388 | dAtom = (DirectionalAtom *) atoms[i]; | 
| 389 |  | 
| 390 | // get and convert the torque to body frame | 
| 391 |  | 
| 392 | dAtom->getTrq(Tb); | 
| 393 | dAtom->lab2Body(Tb); | 
| 394 |  | 
| 395 | // get the angular momentum, and propagate a half step | 
| 396 |  | 
| 397 | dAtom->getJ(ji); | 
| 398 |  | 
| 399 | for (j = 0; j < 3; j++) | 
| 400 | ji[j] += (dt2 * Tb[j]) * eConvert; | 
| 401 |  | 
| 402 |  | 
| 403 | dAtom->setJ(ji); | 
| 404 | } | 
| 405 | } | 
| 406 | } | 
| 407 |  | 
| 408 | template<typename T> void Integrator<T>::preMove(void){ | 
| 409 | int i, j; | 
| 410 | double pos[3]; | 
| 411 |  | 
| 412 | if (nConstrained){ | 
| 413 | for (i = 0; i < nAtoms; i++){ | 
| 414 | atoms[i]->getPos(pos); | 
| 415 |  | 
| 416 | for (j = 0; j < 3; j++){ | 
| 417 | oldPos[3 * i + j] = pos[j]; | 
| 418 | } | 
| 419 | } | 
| 420 | } | 
| 421 | } | 
| 422 |  | 
| 423 | template<typename T> void Integrator<T>::constrainA(){ | 
| 424 | int i, j, k; | 
| 425 | int done; | 
| 426 | double posA[3], posB[3]; | 
| 427 | double velA[3], velB[3]; | 
| 428 | double pab[3]; | 
| 429 | double rab[3]; | 
| 430 | int a, b, ax, ay, az, bx, by, bz; | 
| 431 | double rma, rmb; | 
| 432 | double dx, dy, dz; | 
| 433 | double rpab; | 
| 434 | double rabsq, pabsq, rpabsq; | 
| 435 | double diffsq; | 
| 436 | double gab; | 
| 437 | int iteration; | 
| 438 |  | 
| 439 | for (i = 0; i < nAtoms; i++){ | 
| 440 | moving[i] = 0; | 
| 441 | moved[i] = 1; | 
| 442 | } | 
| 443 |  | 
| 444 | iteration = 0; | 
| 445 | done = 0; | 
| 446 | while (!done && (iteration < maxIteration)){ | 
| 447 | done = 1; | 
| 448 | for (i = 0; i < nConstrained; i++){ | 
| 449 | a = constrainedA[i]; | 
| 450 | b = constrainedB[i]; | 
| 451 |  | 
| 452 | ax = (a * 3) + 0; | 
| 453 | ay = (a * 3) + 1; | 
| 454 | az = (a * 3) + 2; | 
| 455 |  | 
| 456 | bx = (b * 3) + 0; | 
| 457 | by = (b * 3) + 1; | 
| 458 | bz = (b * 3) + 2; | 
| 459 |  | 
| 460 | if (moved[a] || moved[b]){ | 
| 461 | atoms[a]->getPos(posA); | 
| 462 | atoms[b]->getPos(posB); | 
| 463 |  | 
| 464 | for (j = 0; j < 3; j++) | 
| 465 | pab[j] = posA[j] - posB[j]; | 
| 466 |  | 
| 467 | //periodic boundary condition | 
| 468 |  | 
| 469 | info->wrapVector(pab); | 
| 470 |  | 
| 471 | pabsq = pab[0] * pab[0] + pab[1] * pab[1] + pab[2] * pab[2]; | 
| 472 |  | 
| 473 | rabsq = constrainedDsqr[i]; | 
| 474 | diffsq = rabsq - pabsq; | 
| 475 |  | 
| 476 | // the original rattle code from alan tidesley | 
| 477 | if (fabs(diffsq) > (tol * rabsq * 2)){ | 
| 478 | rab[0] = oldPos[ax] - oldPos[bx]; | 
| 479 | rab[1] = oldPos[ay] - oldPos[by]; | 
| 480 | rab[2] = oldPos[az] - oldPos[bz]; | 
| 481 |  | 
| 482 | info->wrapVector(rab); | 
| 483 |  | 
| 484 | rpab = rab[0] * pab[0] + rab[1] * pab[1] + rab[2] * pab[2]; | 
| 485 |  | 
| 486 | rpabsq = rpab * rpab; | 
| 487 |  | 
| 488 |  | 
| 489 | if (rpabsq < (rabsq * -diffsq)){ | 
| 490 | #ifdef IS_MPI | 
| 491 | a = atoms[a]->getGlobalIndex(); | 
| 492 | b = atoms[b]->getGlobalIndex(); | 
| 493 | #endif //is_mpi | 
| 494 | sprintf(painCave.errMsg, | 
| 495 | "Constraint failure in constrainA at atom %d and %d.\n", a, | 
| 496 | b); | 
| 497 | painCave.isFatal = 1; | 
| 498 | simError(); | 
| 499 | } | 
| 500 |  | 
| 501 | rma = 1.0 / atoms[a]->getMass(); | 
| 502 | rmb = 1.0 / atoms[b]->getMass(); | 
| 503 |  | 
| 504 | gab = diffsq / (2.0 * (rma + rmb) * rpab); | 
| 505 |  | 
| 506 | dx = rab[0] * gab; | 
| 507 | dy = rab[1] * gab; | 
| 508 | dz = rab[2] * gab; | 
| 509 |  | 
| 510 | posA[0] += rma * dx; | 
| 511 | posA[1] += rma * dy; | 
| 512 | posA[2] += rma * dz; | 
| 513 |  | 
| 514 | atoms[a]->setPos(posA); | 
| 515 |  | 
| 516 | posB[0] -= rmb * dx; | 
| 517 | posB[1] -= rmb * dy; | 
| 518 | posB[2] -= rmb * dz; | 
| 519 |  | 
| 520 | atoms[b]->setPos(posB); | 
| 521 |  | 
| 522 | dx = dx / dt; | 
| 523 | dy = dy / dt; | 
| 524 | dz = dz / dt; | 
| 525 |  | 
| 526 | atoms[a]->getVel(velA); | 
| 527 |  | 
| 528 | velA[0] += rma * dx; | 
| 529 | velA[1] += rma * dy; | 
| 530 | velA[2] += rma * dz; | 
| 531 |  | 
| 532 | atoms[a]->setVel(velA); | 
| 533 |  | 
| 534 | atoms[b]->getVel(velB); | 
| 535 |  | 
| 536 | velB[0] -= rmb * dx; | 
| 537 | velB[1] -= rmb * dy; | 
| 538 | velB[2] -= rmb * dz; | 
| 539 |  | 
| 540 | atoms[b]->setVel(velB); | 
| 541 |  | 
| 542 | moving[a] = 1; | 
| 543 | moving[b] = 1; | 
| 544 | done = 0; | 
| 545 | } | 
| 546 | } | 
| 547 | } | 
| 548 |  | 
| 549 | for (i = 0; i < nAtoms; i++){ | 
| 550 | moved[i] = moving[i]; | 
| 551 | moving[i] = 0; | 
| 552 | } | 
| 553 |  | 
| 554 | iteration++; | 
| 555 | } | 
| 556 |  | 
| 557 | if (!done){ | 
| 558 | sprintf(painCave.errMsg, | 
| 559 | "Constraint failure in constrainA, too many iterations: %d\n", | 
| 560 | iteration); | 
| 561 | painCave.isFatal = 1; | 
| 562 | simError(); | 
| 563 | } | 
| 564 | } | 
| 565 |  | 
| 566 | template<typename T> void Integrator<T>::constrainB(void){ | 
| 567 | int i, j, k; | 
| 568 | int done; | 
| 569 | double posA[3], posB[3]; | 
| 570 | double velA[3], velB[3]; | 
| 571 | double vxab, vyab, vzab; | 
| 572 | double rab[3]; | 
| 573 | int a, b, ax, ay, az, bx, by, bz; | 
| 574 | double rma, rmb; | 
| 575 | double dx, dy, dz; | 
| 576 | double rabsq, pabsq, rvab; | 
| 577 | double diffsq; | 
| 578 | double gab; | 
| 579 | int iteration; | 
| 580 |  | 
| 581 | for (i = 0; i < nAtoms; i++){ | 
| 582 | moving[i] = 0; | 
| 583 | moved[i] = 1; | 
| 584 | } | 
| 585 |  | 
| 586 | done = 0; | 
| 587 | iteration = 0; | 
| 588 | while (!done && (iteration < maxIteration)){ | 
| 589 | done = 1; | 
| 590 |  | 
| 591 | for (i = 0; i < nConstrained; i++){ | 
| 592 | a = constrainedA[i]; | 
| 593 | b = constrainedB[i]; | 
| 594 |  | 
| 595 | ax = (a * 3) + 0; | 
| 596 | ay = (a * 3) + 1; | 
| 597 | az = (a * 3) + 2; | 
| 598 |  | 
| 599 | bx = (b * 3) + 0; | 
| 600 | by = (b * 3) + 1; | 
| 601 | bz = (b * 3) + 2; | 
| 602 |  | 
| 603 | if (moved[a] || moved[b]){ | 
| 604 | atoms[a]->getVel(velA); | 
| 605 | atoms[b]->getVel(velB); | 
| 606 |  | 
| 607 | vxab = velA[0] - velB[0]; | 
| 608 | vyab = velA[1] - velB[1]; | 
| 609 | vzab = velA[2] - velB[2]; | 
| 610 |  | 
| 611 | atoms[a]->getPos(posA); | 
| 612 | atoms[b]->getPos(posB); | 
| 613 |  | 
| 614 | for (j = 0; j < 3; j++) | 
| 615 | rab[j] = posA[j] - posB[j]; | 
| 616 |  | 
| 617 | info->wrapVector(rab); | 
| 618 |  | 
| 619 | rma = 1.0 / atoms[a]->getMass(); | 
| 620 | rmb = 1.0 / atoms[b]->getMass(); | 
| 621 |  | 
| 622 | rvab = rab[0] * vxab + rab[1] * vyab + rab[2] * vzab; | 
| 623 |  | 
| 624 | gab = -rvab / ((rma + rmb) * constrainedDsqr[i]); | 
| 625 |  | 
| 626 | if (fabs(gab) > tol){ | 
| 627 | dx = rab[0] * gab; | 
| 628 | dy = rab[1] * gab; | 
| 629 | dz = rab[2] * gab; | 
| 630 |  | 
| 631 | velA[0] += rma * dx; | 
| 632 | velA[1] += rma * dy; | 
| 633 | velA[2] += rma * dz; | 
| 634 |  | 
| 635 | atoms[a]->setVel(velA); | 
| 636 |  | 
| 637 | velB[0] -= rmb * dx; | 
| 638 | velB[1] -= rmb * dy; | 
| 639 | velB[2] -= rmb * dz; | 
| 640 |  | 
| 641 | atoms[b]->setVel(velB); | 
| 642 |  | 
| 643 | moving[a] = 1; | 
| 644 | moving[b] = 1; | 
| 645 | done = 0; | 
| 646 | } | 
| 647 | } | 
| 648 | } | 
| 649 |  | 
| 650 | for (i = 0; i < nAtoms; i++){ | 
| 651 | moved[i] = moving[i]; | 
| 652 | moving[i] = 0; | 
| 653 | } | 
| 654 |  | 
| 655 | iteration++; | 
| 656 | } | 
| 657 |  | 
| 658 | if (!done){ | 
| 659 | sprintf(painCave.errMsg, | 
| 660 | "Constraint failure in constrainB, too many iterations: %d\n", | 
| 661 | iteration); | 
| 662 | painCave.isFatal = 1; | 
| 663 | simError(); | 
| 664 | } | 
| 665 | } | 
| 666 |  | 
| 667 | template<typename T> void Integrator<T>::rotate(int axes1, int axes2, | 
| 668 | double angle, double ji[3], | 
| 669 | double A[3][3]){ | 
| 670 | int i, j, k; | 
| 671 | double sinAngle; | 
| 672 | double cosAngle; | 
| 673 | double angleSqr; | 
| 674 | double angleSqrOver4; | 
| 675 | double top, bottom; | 
| 676 | double rot[3][3]; | 
| 677 | double tempA[3][3]; | 
| 678 | double tempJ[3]; | 
| 679 |  | 
| 680 | // initialize the tempA | 
| 681 |  | 
| 682 | for (i = 0; i < 3; i++){ | 
| 683 | for (j = 0; j < 3; j++){ | 
| 684 | tempA[j][i] = A[i][j]; | 
| 685 | } | 
| 686 | } | 
| 687 |  | 
| 688 | // initialize the tempJ | 
| 689 |  | 
| 690 | for (i = 0; i < 3; i++) | 
| 691 | tempJ[i] = ji[i]; | 
| 692 |  | 
| 693 | // initalize rot as a unit matrix | 
| 694 |  | 
| 695 | rot[0][0] = 1.0; | 
| 696 | rot[0][1] = 0.0; | 
| 697 | rot[0][2] = 0.0; | 
| 698 |  | 
| 699 | rot[1][0] = 0.0; | 
| 700 | rot[1][1] = 1.0; | 
| 701 | rot[1][2] = 0.0; | 
| 702 |  | 
| 703 | rot[2][0] = 0.0; | 
| 704 | rot[2][1] = 0.0; | 
| 705 | rot[2][2] = 1.0; | 
| 706 |  | 
| 707 | // use a small angle aproximation for sin and cosine | 
| 708 |  | 
| 709 | angleSqr = angle * angle; | 
| 710 | angleSqrOver4 = angleSqr / 4.0; | 
| 711 | top = 1.0 - angleSqrOver4; | 
| 712 | bottom = 1.0 + angleSqrOver4; | 
| 713 |  | 
| 714 | cosAngle = top / bottom; | 
| 715 | sinAngle = angle / bottom; | 
| 716 |  | 
| 717 | rot[axes1][axes1] = cosAngle; | 
| 718 | rot[axes2][axes2] = cosAngle; | 
| 719 |  | 
| 720 | rot[axes1][axes2] = sinAngle; | 
| 721 | rot[axes2][axes1] = -sinAngle; | 
| 722 |  | 
| 723 | // rotate the momentum acoording to: ji[] = rot[][] * ji[] | 
| 724 |  | 
| 725 | for (i = 0; i < 3; i++){ | 
| 726 | ji[i] = 0.0; | 
| 727 | for (k = 0; k < 3; k++){ | 
| 728 | ji[i] += rot[i][k] * tempJ[k]; | 
| 729 | } | 
| 730 | } | 
| 731 |  | 
| 732 | // rotate the Rotation matrix acording to: | 
| 733 | //            A[][] = A[][] * transpose(rot[][]) | 
| 734 |  | 
| 735 |  | 
| 736 | // NOte for as yet unknown reason, we are performing the | 
| 737 | // calculation as: | 
| 738 | //                transpose(A[][]) = transpose(A[][]) * transpose(rot[][]) | 
| 739 |  | 
| 740 | for (i = 0; i < 3; i++){ | 
| 741 | for (j = 0; j < 3; j++){ | 
| 742 | A[j][i] = 0.0; | 
| 743 | for (k = 0; k < 3; k++){ | 
| 744 | A[j][i] += tempA[i][k] * rot[j][k]; | 
| 745 | } | 
| 746 | } | 
| 747 | } | 
| 748 | } | 
| 749 |  | 
| 750 | template<typename T> void Integrator<T>::calcForce(int calcPot, int calcStress){ | 
| 751 | myFF->doForces(calcPot, calcStress); | 
| 752 | } | 
| 753 |  | 
| 754 | template<typename T> void Integrator<T>::thermalize(){ | 
| 755 | tStats->velocitize(); | 
| 756 | } |