1 |
|
#include <iostream> |
2 |
|
#include <stdlib.h> |
3 |
|
#include <math.h> |
4 |
< |
|
4 |
> |
#include "Rattle.hpp" |
5 |
> |
#include "Roll.hpp" |
6 |
|
#ifdef IS_MPI |
7 |
|
#include "mpiSimulation.hpp" |
8 |
|
#include <unistd.h> |
32 |
|
} |
33 |
|
|
34 |
|
nAtoms = info->n_atoms; |
35 |
+ |
integrableObjects = info->integrableObjects; |
36 |
|
|
37 |
+ |
consFramework = new RollFramework(info); |
38 |
+ |
|
39 |
+ |
if(consFramework == NULL){ |
40 |
+ |
sprintf(painCave.errMsg, |
41 |
+ |
"Integrator::Intergrator() Error: Memory allocation error for RattleFramework" ); |
42 |
+ |
painCave.isFatal = 1; |
43 |
+ |
simError(); |
44 |
+ |
} |
45 |
+ |
|
46 |
+ |
/* |
47 |
|
// check for constraints |
48 |
|
|
49 |
|
constrainedA = NULL; |
56 |
|
nConstrained = 0; |
57 |
|
|
58 |
|
checkConstraints(); |
59 |
+ |
*/ |
60 |
|
} |
61 |
|
|
62 |
|
template<typename T> Integrator<T>::~Integrator(){ |
63 |
+ |
if (consFramework != NULL) |
64 |
+ |
delete consFramework; |
65 |
+ |
/* |
66 |
|
if (nConstrained){ |
67 |
|
delete[] constrainedA; |
68 |
|
delete[] constrainedB; |
71 |
|
delete[] moved; |
72 |
|
delete[] oldPos; |
73 |
|
} |
74 |
+ |
*/ |
75 |
|
} |
76 |
|
|
77 |
+ |
/* |
78 |
|
template<typename T> void Integrator<T>::checkConstraints(void){ |
79 |
|
isConstrained = 0; |
80 |
|
|
86 |
|
|
87 |
|
SRI** theArray; |
88 |
|
for (int i = 0; i < nMols; i++){ |
89 |
< |
theArray = (SRI * *) molecules[i].getMyBonds(); |
89 |
> |
|
90 |
> |
theArray = (SRI * *) molecules[i].getMyBonds(); |
91 |
|
for (int j = 0; j < molecules[i].getNBonds(); j++){ |
92 |
|
constrained = theArray[j]->is_constrained(); |
93 |
|
|
109 |
|
if (constrained){ |
110 |
|
dummy_plug = theArray[j]->get_constraint(); |
111 |
|
temp_con[nConstrained].set_a(dummy_plug->get_a()); |
112 |
< |
temp_con[nConstrained].set_b(dummy_plug->get_b()); |
112 |
> |
temp_con[nConstrained].set_b(Dummy_plug->get_b()); |
113 |
|
temp_con[nConstrained].set_dsqr(dummy_plug->get_dsqr()); |
114 |
|
|
115 |
|
nConstrained++; |
133 |
|
} |
134 |
|
} |
135 |
|
|
136 |
+ |
|
137 |
|
if (nConstrained > 0){ |
138 |
|
isConstrained = 1; |
139 |
|
|
155 |
|
} |
156 |
|
|
157 |
|
|
158 |
< |
// save oldAtoms to check for lode balanceing later on. |
158 |
> |
// save oldAtoms to check for lode balancing later on. |
159 |
|
|
160 |
|
oldAtoms = nAtoms; |
161 |
|
|
167 |
|
|
168 |
|
delete[] temp_con; |
169 |
|
} |
170 |
+ |
*/ |
171 |
|
|
151 |
– |
|
172 |
|
template<typename T> void Integrator<T>::integrate(void){ |
173 |
|
|
174 |
|
double runTime = info->run_time; |
177 |
|
double thermalTime = info->thermalTime; |
178 |
|
double resetTime = info->resetTime; |
179 |
|
|
180 |
< |
|
180 |
> |
double difference; |
181 |
|
double currSample; |
182 |
|
double currThermal; |
183 |
|
double currStatus; |
195 |
|
dt2 = 0.5 * dt; |
196 |
|
|
197 |
|
readyCheck(); |
198 |
+ |
|
199 |
+ |
// remove center of mass drift velocity (in case we passed in a configuration |
200 |
+ |
// that was drifting |
201 |
+ |
tStats->removeCOMdrift(); |
202 |
+ |
//tStats->removeAngularMomentum(); |
203 |
+ |
|
204 |
+ |
// initialize the retraints if necessary |
205 |
+ |
if (info->useSolidThermInt && !info->useLiquidThermInt) { |
206 |
+ |
myFF->initRestraints(); |
207 |
+ |
} |
208 |
|
|
209 |
|
// initialize the forces before the first step |
210 |
|
|
211 |
|
calcForce(1, 1); |
212 |
|
|
213 |
< |
if (nConstrained){ |
214 |
< |
preMove(); |
215 |
< |
constrainA(); |
216 |
< |
calcForce(1, 1); |
217 |
< |
constrainB(); |
188 |
< |
} |
213 |
> |
//execute constraint algorithm to make sure at the very beginning the system is constrained |
214 |
> |
//consFramework->doPreConstraint(); |
215 |
> |
//consFramework->doConstrainA(); |
216 |
> |
//calcForce(1, 1); |
217 |
> |
//consFramework->doConstrainB(); |
218 |
|
|
219 |
|
if (info->setTemp){ |
220 |
|
thermalize(); |
236 |
|
MPIcheckPoint(); |
237 |
|
#endif // is_mpi |
238 |
|
|
239 |
< |
while (info->getTime() < runTime){ |
240 |
< |
if ((info->getTime() + dt) >= currStatus){ |
239 |
> |
while (info->getTime() < runTime && !stopIntegrator()){ |
240 |
> |
difference = info->getTime() + dt - currStatus; |
241 |
> |
if (difference > 0 || fabs(difference) < 1e-4 ){ |
242 |
|
calcPot = 1; |
243 |
|
calcStress = 1; |
244 |
|
} |
293 |
|
#endif // is_mpi |
294 |
|
} |
295 |
|
|
296 |
+ |
// dump out a file containing the omega values for the final configuration |
297 |
+ |
if (info->useSolidThermInt && !info->useLiquidThermInt) |
298 |
+ |
myFF->dumpzAngle(); |
299 |
+ |
|
300 |
+ |
|
301 |
|
delete dumpOut; |
302 |
|
delete statOut; |
303 |
|
} |
310 |
|
startProfile(pro3); |
311 |
|
#endif //profile |
312 |
|
|
313 |
< |
preMove(); |
313 |
> |
//save old state (position, velocity etc) |
314 |
> |
consFramework->doPreConstraint(); |
315 |
|
|
316 |
|
#ifdef PROFILE |
317 |
|
endProfile(pro3); |
333 |
|
MPIcheckPoint(); |
334 |
|
#endif // is_mpi |
335 |
|
|
300 |
– |
|
336 |
|
// calc forces |
302 |
– |
|
337 |
|
calcForce(calcPot, calcStress); |
338 |
|
|
339 |
|
#ifdef IS_MPI |
347 |
|
startProfile( pro6 ); |
348 |
|
#endif //profile |
349 |
|
|
350 |
+ |
consFramework->doPreConstraint(); |
351 |
+ |
|
352 |
|
// finish the velocity half step |
353 |
|
|
354 |
|
moveB(); |
365 |
|
|
366 |
|
|
367 |
|
template<typename T> void Integrator<T>::moveA(void){ |
368 |
< |
int i, j; |
368 |
> |
size_t i, j; |
369 |
|
DirectionalAtom* dAtom; |
370 |
|
double Tb[3], ji[3]; |
371 |
|
double vel[3], pos[3], frc[3]; |
372 |
|
double mass; |
373 |
< |
|
374 |
< |
for (i = 0; i < nAtoms; i++){ |
375 |
< |
atoms[i]->getVel(vel); |
376 |
< |
atoms[i]->getPos(pos); |
377 |
< |
atoms[i]->getFrc(frc); |
373 |
> |
double omega; |
374 |
> |
|
375 |
> |
for (i = 0; i < integrableObjects.size() ; i++){ |
376 |
> |
integrableObjects[i]->getVel(vel); |
377 |
> |
integrableObjects[i]->getPos(pos); |
378 |
> |
integrableObjects[i]->getFrc(frc); |
379 |
> |
|
380 |
> |
mass = integrableObjects[i]->getMass(); |
381 |
|
|
343 |
– |
mass = atoms[i]->getMass(); |
344 |
– |
|
382 |
|
for (j = 0; j < 3; j++){ |
383 |
|
// velocity half step |
384 |
|
vel[j] += (dt2 * frc[j] / mass) * eConvert; |
386 |
|
pos[j] += dt * vel[j]; |
387 |
|
} |
388 |
|
|
389 |
< |
atoms[i]->setVel(vel); |
390 |
< |
atoms[i]->setPos(pos); |
389 |
> |
integrableObjects[i]->setVel(vel); |
390 |
> |
integrableObjects[i]->setPos(pos); |
391 |
|
|
392 |
< |
if (atoms[i]->isDirectional()){ |
356 |
< |
dAtom = (DirectionalAtom *) atoms[i]; |
392 |
> |
if (integrableObjects[i]->isDirectional()){ |
393 |
|
|
394 |
|
// get and convert the torque to body frame |
395 |
|
|
396 |
< |
dAtom->getTrq(Tb); |
397 |
< |
dAtom->lab2Body(Tb); |
396 |
> |
integrableObjects[i]->getTrq(Tb); |
397 |
> |
integrableObjects[i]->lab2Body(Tb); |
398 |
|
|
399 |
|
// get the angular momentum, and propagate a half step |
400 |
|
|
401 |
< |
dAtom->getJ(ji); |
401 |
> |
integrableObjects[i]->getJ(ji); |
402 |
|
|
403 |
|
for (j = 0; j < 3; j++) |
404 |
|
ji[j] += (dt2 * Tb[j]) * eConvert; |
405 |
|
|
406 |
< |
this->rotationPropagation( dAtom, ji ); |
406 |
> |
this->rotationPropagation( integrableObjects[i], ji ); |
407 |
|
|
408 |
< |
dAtom->setJ(ji); |
408 |
> |
integrableObjects[i]->setJ(ji); |
409 |
> |
|
410 |
|
} |
411 |
|
} |
412 |
|
|
413 |
< |
if (nConstrained){ |
377 |
< |
constrainA(); |
378 |
< |
} |
413 |
> |
consFramework->doConstrainA(); |
414 |
|
} |
415 |
|
|
416 |
|
|
417 |
|
template<typename T> void Integrator<T>::moveB(void){ |
418 |
|
int i, j; |
384 |
– |
DirectionalAtom* dAtom; |
419 |
|
double Tb[3], ji[3]; |
420 |
|
double vel[3], frc[3]; |
421 |
|
double mass; |
422 |
|
|
423 |
< |
for (i = 0; i < nAtoms; i++){ |
424 |
< |
atoms[i]->getVel(vel); |
425 |
< |
atoms[i]->getFrc(frc); |
423 |
> |
for (i = 0; i < integrableObjects.size(); i++){ |
424 |
> |
integrableObjects[i]->getVel(vel); |
425 |
> |
integrableObjects[i]->getFrc(frc); |
426 |
|
|
427 |
< |
mass = atoms[i]->getMass(); |
427 |
> |
mass = integrableObjects[i]->getMass(); |
428 |
|
|
429 |
|
// velocity half step |
430 |
|
for (j = 0; j < 3; j++) |
431 |
|
vel[j] += (dt2 * frc[j] / mass) * eConvert; |
432 |
|
|
433 |
< |
atoms[i]->setVel(vel); |
433 |
> |
integrableObjects[i]->setVel(vel); |
434 |
|
|
435 |
< |
if (atoms[i]->isDirectional()){ |
402 |
< |
dAtom = (DirectionalAtom *) atoms[i]; |
435 |
> |
if (integrableObjects[i]->isDirectional()){ |
436 |
|
|
437 |
|
// get and convert the torque to body frame |
438 |
|
|
439 |
< |
dAtom->getTrq(Tb); |
440 |
< |
dAtom->lab2Body(Tb); |
439 |
> |
integrableObjects[i]->getTrq(Tb); |
440 |
> |
integrableObjects[i]->lab2Body(Tb); |
441 |
|
|
442 |
|
// get the angular momentum, and propagate a half step |
443 |
|
|
444 |
< |
dAtom->getJ(ji); |
444 |
> |
integrableObjects[i]->getJ(ji); |
445 |
|
|
446 |
|
for (j = 0; j < 3; j++) |
447 |
|
ji[j] += (dt2 * Tb[j]) * eConvert; |
448 |
|
|
449 |
|
|
450 |
< |
dAtom->setJ(ji); |
450 |
> |
integrableObjects[i]->setJ(ji); |
451 |
|
} |
419 |
– |
} |
452 |
|
|
421 |
– |
if (nConstrained){ |
422 |
– |
constrainB(); |
453 |
|
} |
454 |
+ |
|
455 |
+ |
consFramework->doConstrainB(); |
456 |
|
} |
457 |
|
|
458 |
+ |
/* |
459 |
|
template<typename T> void Integrator<T>::preMove(void){ |
460 |
|
int i, j; |
461 |
|
double pos[3]; |
714 |
|
simError(); |
715 |
|
} |
716 |
|
} |
717 |
< |
|
717 |
> |
*/ |
718 |
|
template<typename T> void Integrator<T>::rotationPropagation |
719 |
< |
( DirectionalAtom* dAtom, double ji[3] ){ |
719 |
> |
( StuntDouble* sd, double ji[3] ){ |
720 |
|
|
721 |
|
double angle; |
722 |
|
double A[3][3], I[3][3]; |
723 |
+ |
int i, j, k; |
724 |
|
|
725 |
|
// use the angular velocities to propagate the rotation matrix a |
726 |
|
// full time step |
727 |
|
|
728 |
< |
dAtom->getA(A); |
729 |
< |
dAtom->getI(I); |
728 |
> |
sd->getA(A); |
729 |
> |
sd->getI(I); |
730 |
|
|
731 |
< |
// rotate about the x-axis |
732 |
< |
angle = dt2 * ji[0] / I[0][0]; |
733 |
< |
this->rotate( 1, 2, angle, ji, A ); |
731 |
> |
if (sd->isLinear()) { |
732 |
> |
i = sd->linearAxis(); |
733 |
> |
j = (i+1)%3; |
734 |
> |
k = (i+2)%3; |
735 |
> |
|
736 |
> |
angle = dt2 * ji[j] / I[j][j]; |
737 |
> |
this->rotate( k, i, angle, ji, A ); |
738 |
|
|
739 |
< |
// rotate about the y-axis |
740 |
< |
angle = dt2 * ji[1] / I[1][1]; |
703 |
< |
this->rotate( 2, 0, angle, ji, A ); |
739 |
> |
angle = dt * ji[k] / I[k][k]; |
740 |
> |
this->rotate( i, j, angle, ji, A); |
741 |
|
|
742 |
< |
// rotate about the z-axis |
743 |
< |
angle = dt * ji[2] / I[2][2]; |
707 |
< |
this->rotate( 0, 1, angle, ji, A); |
742 |
> |
angle = dt2 * ji[j] / I[j][j]; |
743 |
> |
this->rotate( k, i, angle, ji, A ); |
744 |
|
|
745 |
< |
// rotate about the y-axis |
746 |
< |
angle = dt2 * ji[1] / I[1][1]; |
747 |
< |
this->rotate( 2, 0, angle, ji, A ); |
748 |
< |
|
749 |
< |
// rotate about the x-axis |
750 |
< |
angle = dt2 * ji[0] / I[0][0]; |
751 |
< |
this->rotate( 1, 2, angle, ji, A ); |
752 |
< |
|
753 |
< |
dAtom->setA( A ); |
745 |
> |
} else { |
746 |
> |
// rotate about the x-axis |
747 |
> |
angle = dt2 * ji[0] / I[0][0]; |
748 |
> |
this->rotate( 1, 2, angle, ji, A ); |
749 |
> |
|
750 |
> |
// rotate about the y-axis |
751 |
> |
angle = dt2 * ji[1] / I[1][1]; |
752 |
> |
this->rotate( 2, 0, angle, ji, A ); |
753 |
> |
|
754 |
> |
// rotate about the z-axis |
755 |
> |
angle = dt * ji[2] / I[2][2]; |
756 |
> |
sd->addZangle(angle); |
757 |
> |
this->rotate( 0, 1, angle, ji, A); |
758 |
> |
|
759 |
> |
// rotate about the y-axis |
760 |
> |
angle = dt2 * ji[1] / I[1][1]; |
761 |
> |
this->rotate( 2, 0, angle, ji, A ); |
762 |
> |
|
763 |
> |
// rotate about the x-axis |
764 |
> |
angle = dt2 * ji[0] / I[0][0]; |
765 |
> |
this->rotate( 1, 2, angle, ji, A ); |
766 |
> |
|
767 |
> |
} |
768 |
> |
sd->setA( A ); |
769 |
|
} |
770 |
|
|
771 |
|
template<typename T> void Integrator<T>::rotate(int axes1, int axes2, |
868 |
|
//return a pointer point to local variable which might cause problem |
869 |
|
return string(); |
870 |
|
} |
871 |
+ |
|
872 |
+ |
|
873 |
+ |
template<typename T> void Integrator<T>::printQuaternion(StuntDouble* sd){ |
874 |
+ |
Mat4x4d S; |
875 |
+ |
double I[3][3]; |
876 |
+ |
Vector4d j4; |
877 |
+ |
Vector3d j; |
878 |
+ |
Vector3d tempJ; |
879 |
+ |
Vector4d qdot; |
880 |
+ |
Vector4d omega4; |
881 |
+ |
Mat4x4d I4; |
882 |
+ |
Quaternion q; |
883 |
+ |
double I0; |
884 |
+ |
Vector4d p_qua; |
885 |
+ |
|
886 |
+ |
if (sd->isDirectional()){ |
887 |
+ |
sd->getQ(q.vec); |
888 |
+ |
sd->getI(I); |
889 |
+ |
sd->getJ(j.vec); |
890 |
+ |
|
891 |
+ |
//omega4[0] = 0.0; |
892 |
+ |
//omega4[1] = j[0]/I[0][0]; |
893 |
+ |
//omega4[2] = j[1]/I[1][1]; |
894 |
+ |
//omega4[3] = j[2]/I[2][2]; |
895 |
+ |
|
896 |
+ |
//S = getS(q); |
897 |
+ |
//qdot = 0.5 * S * omega4; |
898 |
+ |
|
899 |
+ |
//I0 = (qdot[1] * q[1] * I[0][0] + qdot[2] * q[2] * I[1][1] + qdot[3] * q[3] * I[2][2])/(qdot[1] * q[1]+ qdot[2] * q[2] + qdot[3] * q[3]); |
900 |
+ |
|
901 |
+ |
//I4.element[0][0] = I0; |
902 |
+ |
//I4.element[1][1] = I[0][0]; |
903 |
+ |
//I4.element[2][2] = I[1][1]; |
904 |
+ |
//I4.element[3][3] = I[2][2]; |
905 |
+ |
|
906 |
+ |
S = getS(q); |
907 |
+ |
j4[0] = 0.0; |
908 |
+ |
j4[1] = j[0]; |
909 |
+ |
j4[2] = j[1]; |
910 |
+ |
j4[3] = j[2]; |
911 |
+ |
|
912 |
+ |
p_qua = 2 * S * j4; |
913 |
+ |
|
914 |
+ |
j4 = 0.5 * S.transpose() * p_qua; |
915 |
+ |
//cout << "q0^2 + q1^2 + q2^2 + q3^2 = " << q[0]*q[0] + q[1]*q[1] + q[2]*q[2] + q[3]*q[3] << endl; |
916 |
+ |
//cout << "q0*q0dot + q1*q1dot + q2 *q2dot + q3*q3dot = " <<q[0]*qdot[0] + q[1]*qdot[1] + q[2]*qdot[2] + q[3]*qdot[3] << endl; |
917 |
+ |
//cout << "q1*q1dot* Ixx + q2*q2dot* Iyy + q3 *q3dot* Izz = " << qdot[1] * q[1] * I[0][0] + qdot[2] * q[2] * I[1][1] + qdot[3] * q[3] * I[2][2] << endl; |
918 |
+ |
//cout << "q1*q1dot + q2 *q2dot + q3*q3dot = " << qdot[1] * q[1]+ qdot[2] * q[2] + qdot[3] * q[3] << endl; |
919 |
+ |
//cout << "I0 = " << I0 << endl; |
920 |
+ |
cout << "p_qua[0] = " << p_qua[0] << endl; |
921 |
+ |
} |
922 |
+ |
} |
923 |
+ |
|
924 |
+ |
template<typename T> Mat4x4d Integrator<T>::getS(const Quaternion& q){ |
925 |
+ |
Mat4x4d result; |
926 |
+ |
|
927 |
+ |
result.element[0][0] = q.x; |
928 |
+ |
result.element[0][1] = -q.y; |
929 |
+ |
result.element[0][2] = -q.z; |
930 |
+ |
result.element[0][3] = -q.w; |
931 |
+ |
|
932 |
+ |
result.element[1][0] = q.y; |
933 |
+ |
result.element[1][1] = q.x; |
934 |
+ |
result.element[1][2] = -q.w; |
935 |
+ |
result.element[1][3] = q.z; |
936 |
+ |
|
937 |
+ |
result.element[2][0] = q.z; |
938 |
+ |
result.element[2][1] = q.w; |
939 |
+ |
result.element[2][2] = q.x; |
940 |
+ |
result.element[2][3] = -q.y; |
941 |
+ |
|
942 |
+ |
result.element[3][0] = q.w; |
943 |
+ |
result.element[3][1] = -q.z; |
944 |
+ |
result.element[3][2] = q.y; |
945 |
+ |
result.element[3][3] = q.x; |
946 |
+ |
|
947 |
+ |
return result; |
948 |
+ |
} |
949 |
+ |
|