1 |
|
#include <iostream> |
2 |
|
#include <stdlib.h> |
3 |
|
#include <math.h> |
4 |
< |
|
4 |
> |
#include "Rattle.hpp" |
5 |
|
#ifdef IS_MPI |
6 |
|
#include "mpiSimulation.hpp" |
7 |
|
#include <unistd.h> |
31 |
|
} |
32 |
|
|
33 |
|
nAtoms = info->n_atoms; |
34 |
+ |
integrableObjects = info->integrableObjects; |
35 |
|
|
36 |
+ |
rattle = new RattleFramework(info); |
37 |
+ |
|
38 |
+ |
if(rattle == NULL){ |
39 |
+ |
sprintf(painCave.errMsg, |
40 |
+ |
"Integrator::Intergrator() Error: Memory allocation error for RattleFramework" ); |
41 |
+ |
painCave.isFatal = 1; |
42 |
+ |
simError(); |
43 |
+ |
} |
44 |
+ |
|
45 |
+ |
/* |
46 |
|
// check for constraints |
47 |
|
|
48 |
|
constrainedA = NULL; |
55 |
|
nConstrained = 0; |
56 |
|
|
57 |
|
checkConstraints(); |
58 |
+ |
*/ |
59 |
|
} |
60 |
|
|
61 |
|
template<typename T> Integrator<T>::~Integrator(){ |
62 |
+ |
if (rattle != NULL) |
63 |
+ |
delete rattle; |
64 |
+ |
/* |
65 |
|
if (nConstrained){ |
66 |
|
delete[] constrainedA; |
67 |
|
delete[] constrainedB; |
70 |
|
delete[] moved; |
71 |
|
delete[] oldPos; |
72 |
|
} |
73 |
+ |
*/ |
74 |
|
} |
75 |
|
|
76 |
+ |
/* |
77 |
|
template<typename T> void Integrator<T>::checkConstraints(void){ |
78 |
|
isConstrained = 0; |
79 |
|
|
85 |
|
|
86 |
|
SRI** theArray; |
87 |
|
for (int i = 0; i < nMols; i++){ |
88 |
< |
theArray = (SRI * *) molecules[i].getMyBonds(); |
88 |
> |
|
89 |
> |
theArray = (SRI * *) molecules[i].getMyBonds(); |
90 |
|
for (int j = 0; j < molecules[i].getNBonds(); j++){ |
91 |
|
constrained = theArray[j]->is_constrained(); |
92 |
|
|
132 |
|
} |
133 |
|
} |
134 |
|
|
135 |
+ |
|
136 |
|
if (nConstrained > 0){ |
137 |
|
isConstrained = 1; |
138 |
|
|
154 |
|
} |
155 |
|
|
156 |
|
|
157 |
< |
// save oldAtoms to check for lode balanceing later on. |
157 |
> |
// save oldAtoms to check for lode balancing later on. |
158 |
|
|
159 |
|
oldAtoms = nAtoms; |
160 |
|
|
166 |
|
|
167 |
|
delete[] temp_con; |
168 |
|
} |
169 |
+ |
*/ |
170 |
|
|
151 |
– |
|
171 |
|
template<typename T> void Integrator<T>::integrate(void){ |
172 |
|
|
173 |
|
double runTime = info->run_time; |
176 |
|
double thermalTime = info->thermalTime; |
177 |
|
double resetTime = info->resetTime; |
178 |
|
|
179 |
< |
|
179 |
> |
double difference; |
180 |
|
double currSample; |
181 |
|
double currThermal; |
182 |
|
double currStatus; |
195 |
|
|
196 |
|
readyCheck(); |
197 |
|
|
198 |
+ |
// remove center of mass drift velocity (in case we passed in a configuration |
199 |
+ |
// that was drifting |
200 |
+ |
tStats->removeCOMdrift(); |
201 |
+ |
|
202 |
+ |
// initialize the retraints if necessary |
203 |
+ |
if (info->useSolidThermInt && !info->useLiquidThermInt) { |
204 |
+ |
myFF->initRestraints(); |
205 |
+ |
} |
206 |
+ |
|
207 |
|
// initialize the forces before the first step |
208 |
|
|
209 |
|
calcForce(1, 1); |
210 |
|
|
211 |
< |
if (nConstrained){ |
212 |
< |
preMove(); |
213 |
< |
constrainA(); |
214 |
< |
calcForce(1, 1); |
215 |
< |
constrainB(); |
188 |
< |
} |
211 |
> |
//execute constraint algorithm to make sure at the very beginning the system is constrained |
212 |
> |
rattle->doPreConstraint(); |
213 |
> |
rattle->doRattleA(); |
214 |
> |
calcForce(1, 1); |
215 |
> |
rattle->doRattleB(); |
216 |
|
|
217 |
|
if (info->setTemp){ |
218 |
|
thermalize(); |
234 |
|
MPIcheckPoint(); |
235 |
|
#endif // is_mpi |
236 |
|
|
237 |
< |
while (info->getTime() < runTime){ |
238 |
< |
if ((info->getTime() + dt) >= currStatus){ |
237 |
> |
while (info->getTime() < runTime && !stopIntegrator()){ |
238 |
> |
difference = info->getTime() + dt - currStatus; |
239 |
> |
if (difference > 0 || fabs(difference) < 1e-4 ){ |
240 |
|
calcPot = 1; |
241 |
|
calcStress = 1; |
242 |
|
} |
291 |
|
#endif // is_mpi |
292 |
|
} |
293 |
|
|
294 |
+ |
// dump out a file containing the omega values for the final configuration |
295 |
+ |
if (info->useSolidThermInt && !info->useLiquidThermInt) |
296 |
+ |
myFF->dumpzAngle(); |
297 |
+ |
|
298 |
+ |
|
299 |
|
delete dumpOut; |
300 |
|
delete statOut; |
301 |
|
} |
308 |
|
startProfile(pro3); |
309 |
|
#endif //profile |
310 |
|
|
311 |
< |
preMove(); |
311 |
> |
//save old state (position, velocity etc) |
312 |
> |
rattle->doPreConstraint(); |
313 |
|
|
314 |
|
#ifdef PROFILE |
315 |
|
endProfile(pro3); |
331 |
|
MPIcheckPoint(); |
332 |
|
#endif // is_mpi |
333 |
|
|
300 |
– |
|
334 |
|
// calc forces |
302 |
– |
|
335 |
|
calcForce(calcPot, calcStress); |
336 |
|
|
337 |
|
#ifdef IS_MPI |
361 |
|
|
362 |
|
|
363 |
|
template<typename T> void Integrator<T>::moveA(void){ |
364 |
< |
int i, j; |
364 |
> |
size_t i, j; |
365 |
|
DirectionalAtom* dAtom; |
366 |
|
double Tb[3], ji[3]; |
367 |
|
double vel[3], pos[3], frc[3]; |
368 |
|
double mass; |
369 |
+ |
double omega; |
370 |
+ |
|
371 |
+ |
for (i = 0; i < integrableObjects.size() ; i++){ |
372 |
+ |
integrableObjects[i]->getVel(vel); |
373 |
+ |
integrableObjects[i]->getPos(pos); |
374 |
+ |
integrableObjects[i]->getFrc(frc); |
375 |
+ |
|
376 |
+ |
mass = integrableObjects[i]->getMass(); |
377 |
|
|
338 |
– |
for (i = 0; i < nAtoms; i++){ |
339 |
– |
atoms[i]->getVel(vel); |
340 |
– |
atoms[i]->getPos(pos); |
341 |
– |
atoms[i]->getFrc(frc); |
342 |
– |
|
343 |
– |
mass = atoms[i]->getMass(); |
344 |
– |
|
378 |
|
for (j = 0; j < 3; j++){ |
379 |
|
// velocity half step |
380 |
|
vel[j] += (dt2 * frc[j] / mass) * eConvert; |
382 |
|
pos[j] += dt * vel[j]; |
383 |
|
} |
384 |
|
|
385 |
< |
atoms[i]->setVel(vel); |
386 |
< |
atoms[i]->setPos(pos); |
385 |
> |
integrableObjects[i]->setVel(vel); |
386 |
> |
integrableObjects[i]->setPos(pos); |
387 |
|
|
388 |
< |
if (atoms[i]->isDirectional()){ |
356 |
< |
dAtom = (DirectionalAtom *) atoms[i]; |
388 |
> |
if (integrableObjects[i]->isDirectional()){ |
389 |
|
|
390 |
|
// get and convert the torque to body frame |
391 |
|
|
392 |
< |
dAtom->getTrq(Tb); |
393 |
< |
dAtom->lab2Body(Tb); |
392 |
> |
integrableObjects[i]->getTrq(Tb); |
393 |
> |
integrableObjects[i]->lab2Body(Tb); |
394 |
|
|
395 |
|
// get the angular momentum, and propagate a half step |
396 |
|
|
397 |
< |
dAtom->getJ(ji); |
397 |
> |
integrableObjects[i]->getJ(ji); |
398 |
|
|
399 |
|
for (j = 0; j < 3; j++) |
400 |
|
ji[j] += (dt2 * Tb[j]) * eConvert; |
401 |
|
|
402 |
< |
this->rotationPropagation( dAtom, ji ); |
402 |
> |
this->rotationPropagation( integrableObjects[i], ji ); |
403 |
|
|
404 |
< |
dAtom->setJ(ji); |
404 |
> |
integrableObjects[i]->setJ(ji); |
405 |
|
} |
406 |
|
} |
407 |
|
|
408 |
< |
if (nConstrained){ |
377 |
< |
constrainA(); |
378 |
< |
} |
408 |
> |
rattle->doRattleA(); |
409 |
|
} |
410 |
|
|
411 |
|
|
412 |
|
template<typename T> void Integrator<T>::moveB(void){ |
413 |
|
int i, j; |
384 |
– |
DirectionalAtom* dAtom; |
414 |
|
double Tb[3], ji[3]; |
415 |
|
double vel[3], frc[3]; |
416 |
|
double mass; |
417 |
|
|
418 |
< |
for (i = 0; i < nAtoms; i++){ |
419 |
< |
atoms[i]->getVel(vel); |
420 |
< |
atoms[i]->getFrc(frc); |
418 |
> |
for (i = 0; i < integrableObjects.size(); i++){ |
419 |
> |
integrableObjects[i]->getVel(vel); |
420 |
> |
integrableObjects[i]->getFrc(frc); |
421 |
|
|
422 |
< |
mass = atoms[i]->getMass(); |
422 |
> |
mass = integrableObjects[i]->getMass(); |
423 |
|
|
424 |
|
// velocity half step |
425 |
|
for (j = 0; j < 3; j++) |
426 |
|
vel[j] += (dt2 * frc[j] / mass) * eConvert; |
427 |
|
|
428 |
< |
atoms[i]->setVel(vel); |
428 |
> |
integrableObjects[i]->setVel(vel); |
429 |
|
|
430 |
< |
if (atoms[i]->isDirectional()){ |
402 |
< |
dAtom = (DirectionalAtom *) atoms[i]; |
430 |
> |
if (integrableObjects[i]->isDirectional()){ |
431 |
|
|
432 |
|
// get and convert the torque to body frame |
433 |
|
|
434 |
< |
dAtom->getTrq(Tb); |
435 |
< |
dAtom->lab2Body(Tb); |
434 |
> |
integrableObjects[i]->getTrq(Tb); |
435 |
> |
integrableObjects[i]->lab2Body(Tb); |
436 |
|
|
437 |
|
// get the angular momentum, and propagate a half step |
438 |
|
|
439 |
< |
dAtom->getJ(ji); |
439 |
> |
integrableObjects[i]->getJ(ji); |
440 |
|
|
441 |
|
for (j = 0; j < 3; j++) |
442 |
|
ji[j] += (dt2 * Tb[j]) * eConvert; |
443 |
|
|
444 |
|
|
445 |
< |
dAtom->setJ(ji); |
445 |
> |
integrableObjects[i]->setJ(ji); |
446 |
|
} |
447 |
|
} |
448 |
|
|
449 |
< |
if (nConstrained){ |
422 |
< |
constrainB(); |
423 |
< |
} |
449 |
> |
rattle->doRattleB(); |
450 |
|
} |
451 |
|
|
452 |
+ |
/* |
453 |
|
template<typename T> void Integrator<T>::preMove(void){ |
454 |
|
int i, j; |
455 |
|
double pos[3]; |
708 |
|
simError(); |
709 |
|
} |
710 |
|
} |
711 |
< |
|
711 |
> |
*/ |
712 |
|
template<typename T> void Integrator<T>::rotationPropagation |
713 |
< |
( DirectionalAtom* dAtom, double ji[3] ){ |
713 |
> |
( StuntDouble* sd, double ji[3] ){ |
714 |
|
|
715 |
|
double angle; |
716 |
|
double A[3][3], I[3][3]; |
717 |
+ |
int i, j, k; |
718 |
|
|
719 |
|
// use the angular velocities to propagate the rotation matrix a |
720 |
|
// full time step |
721 |
|
|
722 |
< |
dAtom->getA(A); |
723 |
< |
dAtom->getI(I); |
696 |
< |
|
697 |
< |
// rotate about the x-axis |
698 |
< |
angle = dt2 * ji[0] / I[0][0]; |
699 |
< |
this->rotate( 1, 2, angle, ji, A ); |
722 |
> |
sd->getA(A); |
723 |
> |
sd->getI(I); |
724 |
|
|
725 |
< |
// rotate about the y-axis |
726 |
< |
angle = dt2 * ji[1] / I[1][1]; |
727 |
< |
this->rotate( 2, 0, angle, ji, A ); |
728 |
< |
|
729 |
< |
// rotate about the z-axis |
730 |
< |
angle = dt * ji[2] / I[2][2]; |
731 |
< |
this->rotate( 0, 1, angle, ji, A); |
725 |
> |
if (sd->isLinear()) { |
726 |
> |
i = sd->linearAxis(); |
727 |
> |
j = (i+1)%3; |
728 |
> |
k = (i+2)%3; |
729 |
> |
|
730 |
> |
angle = dt2 * ji[j] / I[j][j]; |
731 |
> |
this->rotate( k, i, angle, ji, A ); |
732 |
|
|
733 |
< |
// rotate about the y-axis |
734 |
< |
angle = dt2 * ji[1] / I[1][1]; |
711 |
< |
this->rotate( 2, 0, angle, ji, A ); |
733 |
> |
angle = dt * ji[k] / I[k][k]; |
734 |
> |
this->rotate( i, j, angle, ji, A); |
735 |
|
|
736 |
< |
// rotate about the x-axis |
737 |
< |
angle = dt2 * ji[0] / I[0][0]; |
715 |
< |
this->rotate( 1, 2, angle, ji, A ); |
736 |
> |
angle = dt2 * ji[j] / I[j][j]; |
737 |
> |
this->rotate( k, i, angle, ji, A ); |
738 |
|
|
739 |
< |
dAtom->setA( A ); |
739 |
> |
} else { |
740 |
> |
// rotate about the x-axis |
741 |
> |
angle = dt2 * ji[0] / I[0][0]; |
742 |
> |
this->rotate( 1, 2, angle, ji, A ); |
743 |
> |
|
744 |
> |
// rotate about the y-axis |
745 |
> |
angle = dt2 * ji[1] / I[1][1]; |
746 |
> |
this->rotate( 2, 0, angle, ji, A ); |
747 |
> |
|
748 |
> |
// rotate about the z-axis |
749 |
> |
angle = dt * ji[2] / I[2][2]; |
750 |
> |
sd->addZangle(angle); |
751 |
> |
this->rotate( 0, 1, angle, ji, A); |
752 |
> |
|
753 |
> |
// rotate about the y-axis |
754 |
> |
angle = dt2 * ji[1] / I[1][1]; |
755 |
> |
this->rotate( 2, 0, angle, ji, A ); |
756 |
> |
|
757 |
> |
// rotate about the x-axis |
758 |
> |
angle = dt2 * ji[0] / I[0][0]; |
759 |
> |
this->rotate( 1, 2, angle, ji, A ); |
760 |
> |
|
761 |
> |
} |
762 |
> |
sd->setA( A ); |
763 |
|
} |
764 |
|
|
765 |
|
template<typename T> void Integrator<T>::rotate(int axes1, int axes2, |