1 |
|
#include <iostream> |
2 |
< |
#include <cstdlib> |
3 |
< |
#include <cmath> |
2 |
> |
#include <stdlib.h> |
3 |
> |
#include <math.h> |
4 |
|
|
5 |
|
#ifdef IS_MPI |
6 |
|
#include "mpiSimulation.hpp" |
7 |
|
#include <unistd.h> |
8 |
|
#endif //is_mpi |
9 |
|
|
10 |
+ |
#ifdef PROFILE |
11 |
+ |
#include "mdProfile.hpp" |
12 |
+ |
#endif // profile |
13 |
+ |
|
14 |
|
#include "Integrator.hpp" |
15 |
|
#include "simError.h" |
16 |
|
|
29 |
|
if (info->the_integrator != NULL){ |
30 |
|
delete info->the_integrator; |
31 |
|
} |
28 |
– |
|
29 |
– |
nAtoms = info->n_atoms; |
32 |
|
|
33 |
+ |
nAtoms = info->n_atoms; |
34 |
+ |
integrableObjects = info->integrableObjects; |
35 |
+ |
|
36 |
|
// check for constraints |
37 |
|
|
38 |
|
constrainedA = NULL; |
45 |
|
nConstrained = 0; |
46 |
|
|
47 |
|
checkConstraints(); |
48 |
+ |
|
49 |
|
} |
50 |
|
|
51 |
|
template<typename T> Integrator<T>::~Integrator(){ |
70 |
|
|
71 |
|
SRI** theArray; |
72 |
|
for (int i = 0; i < nMols; i++){ |
73 |
< |
theArray = (SRI * *) molecules[i].getMyBonds(); |
73 |
> |
|
74 |
> |
theArray = (SRI * *) molecules[i].getMyBonds(); |
75 |
|
for (int j = 0; j < molecules[i].getNBonds(); j++){ |
76 |
|
constrained = theArray[j]->is_constrained(); |
77 |
|
|
117 |
|
} |
118 |
|
} |
119 |
|
|
120 |
+ |
|
121 |
|
if (nConstrained > 0){ |
122 |
|
isConstrained = 1; |
123 |
|
|
139 |
|
} |
140 |
|
|
141 |
|
|
142 |
< |
// save oldAtoms to check for lode balanceing later on. |
142 |
> |
// save oldAtoms to check for lode balancing later on. |
143 |
|
|
144 |
|
oldAtoms = nAtoms; |
145 |
|
|
154 |
|
|
155 |
|
|
156 |
|
template<typename T> void Integrator<T>::integrate(void){ |
149 |
– |
int i, j; // loop counters |
157 |
|
|
158 |
|
double runTime = info->run_time; |
159 |
|
double sampleTime = info->sampleTime; |
161 |
|
double thermalTime = info->thermalTime; |
162 |
|
double resetTime = info->resetTime; |
163 |
|
|
164 |
< |
|
164 |
> |
double difference; |
165 |
|
double currSample; |
166 |
|
double currThermal; |
167 |
|
double currStatus; |
168 |
|
double currReset; |
169 |
< |
|
169 |
> |
|
170 |
|
int calcPot, calcStress; |
164 |
– |
int isError; |
171 |
|
|
172 |
|
tStats = new Thermo(info); |
173 |
|
statOut = new StatWriter(info); |
174 |
|
dumpOut = new DumpWriter(info); |
175 |
|
|
176 |
|
atoms = info->atoms; |
171 |
– |
DirectionalAtom* dAtom; |
177 |
|
|
178 |
|
dt = info->dt; |
179 |
|
dt2 = 0.5 * dt; |
180 |
|
|
181 |
+ |
readyCheck(); |
182 |
+ |
|
183 |
+ |
// remove center of mass drift velocity (in case we passed in a configuration |
184 |
+ |
// that was drifting |
185 |
+ |
tStats->removeCOMdrift(); |
186 |
+ |
|
187 |
+ |
// initialize the retraints if necessary |
188 |
+ |
if (info->useThermInt) { |
189 |
+ |
myFF->initRestraints(); |
190 |
+ |
} |
191 |
+ |
|
192 |
|
// initialize the forces before the first step |
193 |
|
|
194 |
|
calcForce(1, 1); |
195 |
< |
|
195 |
> |
|
196 |
|
if (nConstrained){ |
197 |
|
preMove(); |
198 |
|
constrainA(); |
199 |
< |
calcForce(1, 1); |
199 |
> |
calcForce(1, 1); |
200 |
|
constrainB(); |
201 |
|
} |
202 |
|
|
214 |
|
dumpOut->writeDump(info->getTime()); |
215 |
|
statOut->writeStat(info->getTime()); |
216 |
|
|
201 |
– |
readyCheck(); |
217 |
|
|
218 |
|
#ifdef IS_MPI |
219 |
|
strcpy(checkPointMsg, "The integrator is ready to go."); |
220 |
|
MPIcheckPoint(); |
221 |
|
#endif // is_mpi |
222 |
|
|
223 |
< |
while (info->getTime() < runTime){ |
224 |
< |
if ((info->getTime() + dt) >= currStatus){ |
223 |
> |
while (info->getTime() < runTime && !stopIntegrator()){ |
224 |
> |
difference = info->getTime() + dt - currStatus; |
225 |
> |
if (difference > 0 || fabs(difference) < 1e-4 ){ |
226 |
|
calcPot = 1; |
227 |
|
calcStress = 1; |
228 |
|
} |
229 |
|
|
230 |
+ |
#ifdef PROFILE |
231 |
+ |
startProfile( pro1 ); |
232 |
+ |
#endif |
233 |
+ |
|
234 |
|
integrateStep(calcPot, calcStress); |
235 |
|
|
236 |
+ |
#ifdef PROFILE |
237 |
+ |
endProfile( pro1 ); |
238 |
+ |
|
239 |
+ |
startProfile( pro2 ); |
240 |
+ |
#endif // profile |
241 |
+ |
|
242 |
|
info->incrTime(dt); |
243 |
|
|
244 |
|
if (info->setTemp){ |
254 |
|
} |
255 |
|
|
256 |
|
if (info->getTime() >= currStatus){ |
257 |
< |
statOut->writeStat(info->getTime()); |
258 |
< |
calcPot = 0; |
257 |
> |
statOut->writeStat(info->getTime()); |
258 |
> |
if (info->useThermInt) |
259 |
> |
statOut->writeRaw(info->getTime()); |
260 |
> |
calcPot = 0; |
261 |
|
calcStress = 0; |
262 |
|
currStatus += statusTime; |
263 |
< |
} |
263 |
> |
} |
264 |
|
|
265 |
|
if (info->resetIntegrator){ |
266 |
|
if (info->getTime() >= currReset){ |
268 |
|
currReset += resetTime; |
269 |
|
} |
270 |
|
} |
271 |
+ |
|
272 |
+ |
#ifdef PROFILE |
273 |
+ |
endProfile( pro2 ); |
274 |
+ |
#endif //profile |
275 |
|
|
276 |
|
#ifdef IS_MPI |
277 |
|
strcpy(checkPointMsg, "successfully took a time step."); |
279 |
|
#endif // is_mpi |
280 |
|
} |
281 |
|
|
282 |
< |
dumpOut->writeFinal(info->getTime()); |
282 |
> |
// dump out a file containing the omega values for the final configuration |
283 |
> |
if (info->useThermInt) |
284 |
> |
myFF->dumpzAngle(); |
285 |
> |
|
286 |
|
|
287 |
|
delete dumpOut; |
288 |
|
delete statOut; |
291 |
|
template<typename T> void Integrator<T>::integrateStep(int calcPot, |
292 |
|
int calcStress){ |
293 |
|
// Position full step, and velocity half step |
294 |
+ |
|
295 |
+ |
#ifdef PROFILE |
296 |
+ |
startProfile(pro3); |
297 |
+ |
#endif //profile |
298 |
+ |
|
299 |
|
preMove(); |
300 |
|
|
301 |
< |
moveA(); |
301 |
> |
#ifdef PROFILE |
302 |
> |
endProfile(pro3); |
303 |
|
|
304 |
+ |
startProfile(pro4); |
305 |
+ |
#endif // profile |
306 |
|
|
307 |
+ |
moveA(); |
308 |
|
|
309 |
+ |
#ifdef PROFILE |
310 |
+ |
endProfile(pro4); |
311 |
+ |
|
312 |
+ |
startProfile(pro5); |
313 |
+ |
#endif//profile |
314 |
|
|
315 |
+ |
|
316 |
|
#ifdef IS_MPI |
317 |
|
strcpy(checkPointMsg, "Succesful moveA\n"); |
318 |
|
MPIcheckPoint(); |
319 |
|
#endif // is_mpi |
320 |
|
|
271 |
– |
|
321 |
|
// calc forces |
273 |
– |
|
322 |
|
calcForce(calcPot, calcStress); |
323 |
|
|
324 |
|
#ifdef IS_MPI |
326 |
|
MPIcheckPoint(); |
327 |
|
#endif // is_mpi |
328 |
|
|
329 |
+ |
#ifdef PROFILE |
330 |
+ |
endProfile( pro5 ); |
331 |
|
|
332 |
+ |
startProfile( pro6 ); |
333 |
+ |
#endif //profile |
334 |
+ |
|
335 |
|
// finish the velocity half step |
336 |
|
|
337 |
|
moveB(); |
338 |
|
|
339 |
+ |
#ifdef PROFILE |
340 |
+ |
endProfile(pro6); |
341 |
+ |
#endif // profile |
342 |
|
|
287 |
– |
|
343 |
|
#ifdef IS_MPI |
344 |
|
strcpy(checkPointMsg, "Succesful moveB\n"); |
345 |
|
MPIcheckPoint(); |
348 |
|
|
349 |
|
|
350 |
|
template<typename T> void Integrator<T>::moveA(void){ |
351 |
< |
int i, j; |
351 |
> |
size_t i, j; |
352 |
|
DirectionalAtom* dAtom; |
353 |
|
double Tb[3], ji[3]; |
354 |
|
double vel[3], pos[3], frc[3]; |
355 |
|
double mass; |
356 |
+ |
double omega; |
357 |
+ |
|
358 |
+ |
for (i = 0; i < integrableObjects.size() ; i++){ |
359 |
+ |
integrableObjects[i]->getVel(vel); |
360 |
+ |
integrableObjects[i]->getPos(pos); |
361 |
+ |
integrableObjects[i]->getFrc(frc); |
362 |
+ |
|
363 |
+ |
mass = integrableObjects[i]->getMass(); |
364 |
|
|
302 |
– |
for (i = 0; i < nAtoms; i++){ |
303 |
– |
atoms[i]->getVel(vel); |
304 |
– |
atoms[i]->getPos(pos); |
305 |
– |
atoms[i]->getFrc(frc); |
306 |
– |
|
307 |
– |
mass = atoms[i]->getMass(); |
308 |
– |
|
365 |
|
for (j = 0; j < 3; j++){ |
366 |
|
// velocity half step |
367 |
|
vel[j] += (dt2 * frc[j] / mass) * eConvert; |
369 |
|
pos[j] += dt * vel[j]; |
370 |
|
} |
371 |
|
|
372 |
< |
atoms[i]->setVel(vel); |
373 |
< |
atoms[i]->setPos(pos); |
372 |
> |
integrableObjects[i]->setVel(vel); |
373 |
> |
integrableObjects[i]->setPos(pos); |
374 |
|
|
375 |
< |
if (atoms[i]->isDirectional()){ |
320 |
< |
dAtom = (DirectionalAtom *) atoms[i]; |
375 |
> |
if (integrableObjects[i]->isDirectional()){ |
376 |
|
|
377 |
|
// get and convert the torque to body frame |
378 |
|
|
379 |
< |
dAtom->getTrq(Tb); |
380 |
< |
dAtom->lab2Body(Tb); |
379 |
> |
integrableObjects[i]->getTrq(Tb); |
380 |
> |
integrableObjects[i]->lab2Body(Tb); |
381 |
|
|
382 |
|
// get the angular momentum, and propagate a half step |
383 |
|
|
384 |
< |
dAtom->getJ(ji); |
384 |
> |
integrableObjects[i]->getJ(ji); |
385 |
|
|
386 |
|
for (j = 0; j < 3; j++) |
387 |
|
ji[j] += (dt2 * Tb[j]) * eConvert; |
388 |
|
|
389 |
< |
this->rotationPropagation( dAtom, ji ); |
389 |
> |
this->rotationPropagation( integrableObjects[i], ji ); |
390 |
|
|
391 |
< |
dAtom->setJ(ji); |
391 |
> |
integrableObjects[i]->setJ(ji); |
392 |
|
} |
393 |
|
} |
394 |
|
|
400 |
|
|
401 |
|
template<typename T> void Integrator<T>::moveB(void){ |
402 |
|
int i, j; |
348 |
– |
DirectionalAtom* dAtom; |
403 |
|
double Tb[3], ji[3]; |
404 |
|
double vel[3], frc[3]; |
405 |
|
double mass; |
406 |
|
|
407 |
< |
for (i = 0; i < nAtoms; i++){ |
408 |
< |
atoms[i]->getVel(vel); |
409 |
< |
atoms[i]->getFrc(frc); |
407 |
> |
for (i = 0; i < integrableObjects.size(); i++){ |
408 |
> |
integrableObjects[i]->getVel(vel); |
409 |
> |
integrableObjects[i]->getFrc(frc); |
410 |
|
|
411 |
< |
mass = atoms[i]->getMass(); |
411 |
> |
mass = integrableObjects[i]->getMass(); |
412 |
|
|
413 |
|
// velocity half step |
414 |
|
for (j = 0; j < 3; j++) |
415 |
|
vel[j] += (dt2 * frc[j] / mass) * eConvert; |
416 |
|
|
417 |
< |
atoms[i]->setVel(vel); |
417 |
> |
integrableObjects[i]->setVel(vel); |
418 |
|
|
419 |
< |
if (atoms[i]->isDirectional()){ |
366 |
< |
dAtom = (DirectionalAtom *) atoms[i]; |
419 |
> |
if (integrableObjects[i]->isDirectional()){ |
420 |
|
|
421 |
< |
// get and convert the torque to body frame |
421 |
> |
// get and convert the torque to body frame |
422 |
|
|
423 |
< |
dAtom->getTrq(Tb); |
424 |
< |
dAtom->lab2Body(Tb); |
423 |
> |
integrableObjects[i]->getTrq(Tb); |
424 |
> |
integrableObjects[i]->lab2Body(Tb); |
425 |
|
|
426 |
|
// get the angular momentum, and propagate a half step |
427 |
|
|
428 |
< |
dAtom->getJ(ji); |
428 |
> |
integrableObjects[i]->getJ(ji); |
429 |
|
|
430 |
|
for (j = 0; j < 3; j++) |
431 |
|
ji[j] += (dt2 * Tb[j]) * eConvert; |
432 |
|
|
433 |
|
|
434 |
< |
dAtom->setJ(ji); |
434 |
> |
integrableObjects[i]->setJ(ji); |
435 |
|
} |
436 |
|
} |
437 |
|
|
456 |
|
} |
457 |
|
|
458 |
|
template<typename T> void Integrator<T>::constrainA(){ |
459 |
< |
int i, j, k; |
459 |
> |
int i, j; |
460 |
|
int done; |
461 |
|
double posA[3], posB[3]; |
462 |
|
double velA[3], velB[3]; |
600 |
|
} |
601 |
|
|
602 |
|
template<typename T> void Integrator<T>::constrainB(void){ |
603 |
< |
int i, j, k; |
603 |
> |
int i, j; |
604 |
|
int done; |
605 |
|
double posA[3], posB[3]; |
606 |
|
double velA[3], velB[3]; |
609 |
|
int a, b, ax, ay, az, bx, by, bz; |
610 |
|
double rma, rmb; |
611 |
|
double dx, dy, dz; |
612 |
< |
double rabsq, pabsq, rvab; |
560 |
< |
double diffsq; |
612 |
> |
double rvab; |
613 |
|
double gab; |
614 |
|
int iteration; |
615 |
|
|
700 |
|
} |
701 |
|
|
702 |
|
template<typename T> void Integrator<T>::rotationPropagation |
703 |
< |
( DirectionalAtom* dAtom, double ji[3] ){ |
703 |
> |
( StuntDouble* sd, double ji[3] ){ |
704 |
|
|
705 |
|
double angle; |
706 |
|
double A[3][3], I[3][3]; |
707 |
+ |
int i, j, k; |
708 |
|
|
709 |
|
// use the angular velocities to propagate the rotation matrix a |
710 |
|
// full time step |
711 |
|
|
712 |
< |
dAtom->getA(A); |
713 |
< |
dAtom->getI(I); |
714 |
< |
|
715 |
< |
// rotate about the x-axis |
716 |
< |
angle = dt2 * ji[0] / I[0][0]; |
717 |
< |
this->rotate( 1, 2, angle, ji, A ); |
718 |
< |
|
719 |
< |
// rotate about the y-axis |
720 |
< |
angle = dt2 * ji[1] / I[1][1]; |
721 |
< |
this->rotate( 2, 0, angle, ji, A ); |
722 |
< |
|
723 |
< |
// rotate about the z-axis |
724 |
< |
angle = dt * ji[2] / I[2][2]; |
725 |
< |
this->rotate( 0, 1, angle, ji, A); |
726 |
< |
|
727 |
< |
// rotate about the y-axis |
728 |
< |
angle = dt2 * ji[1] / I[1][1]; |
729 |
< |
this->rotate( 2, 0, angle, ji, A ); |
730 |
< |
|
731 |
< |
// rotate about the x-axis |
732 |
< |
angle = dt2 * ji[0] / I[0][0]; |
733 |
< |
this->rotate( 1, 2, angle, ji, A ); |
734 |
< |
|
735 |
< |
dAtom->setA( A ); |
712 |
> |
sd->getA(A); |
713 |
> |
sd->getI(I); |
714 |
> |
|
715 |
> |
if (sd->isLinear()) { |
716 |
> |
i = sd->linearAxis(); |
717 |
> |
j = (i+1)%3; |
718 |
> |
k = (i+2)%3; |
719 |
> |
|
720 |
> |
angle = dt2 * ji[j] / I[j][j]; |
721 |
> |
this->rotate( k, i, angle, ji, A ); |
722 |
> |
|
723 |
> |
angle = dt * ji[k] / I[k][k]; |
724 |
> |
this->rotate( i, j, angle, ji, A); |
725 |
> |
|
726 |
> |
angle = dt2 * ji[j] / I[j][j]; |
727 |
> |
this->rotate( k, i, angle, ji, A ); |
728 |
> |
|
729 |
> |
} else { |
730 |
> |
// rotate about the x-axis |
731 |
> |
angle = dt2 * ji[0] / I[0][0]; |
732 |
> |
this->rotate( 1, 2, angle, ji, A ); |
733 |
> |
|
734 |
> |
// rotate about the y-axis |
735 |
> |
angle = dt2 * ji[1] / I[1][1]; |
736 |
> |
this->rotate( 2, 0, angle, ji, A ); |
737 |
> |
|
738 |
> |
// rotate about the z-axis |
739 |
> |
angle = dt * ji[2] / I[2][2]; |
740 |
> |
sd->addZangle(angle); |
741 |
> |
this->rotate( 0, 1, angle, ji, A); |
742 |
> |
|
743 |
> |
// rotate about the y-axis |
744 |
> |
angle = dt2 * ji[1] / I[1][1]; |
745 |
> |
this->rotate( 2, 0, angle, ji, A ); |
746 |
> |
|
747 |
> |
// rotate about the x-axis |
748 |
> |
angle = dt2 * ji[0] / I[0][0]; |
749 |
> |
this->rotate( 1, 2, angle, ji, A ); |
750 |
> |
|
751 |
> |
} |
752 |
> |
sd->setA( A ); |
753 |
|
} |
754 |
|
|
755 |
|
template<typename T> void Integrator<T>::rotate(int axes1, int axes2, |
817 |
|
} |
818 |
|
} |
819 |
|
|
820 |
< |
// rotate the Rotation matrix acording to: |
820 |
> |
// rotate the Rotation matrix acording to: |
821 |
|
// A[][] = A[][] * transpose(rot[][]) |
822 |
|
|
823 |
|
|
846 |
|
template<typename T> double Integrator<T>::getConservedQuantity(void){ |
847 |
|
return tStats->getTotalE(); |
848 |
|
} |
849 |
+ |
template<typename T> string Integrator<T>::getAdditionalParameters(void){ |
850 |
+ |
//By default, return a null string |
851 |
+ |
//The reason we use string instead of char* is that if we use char*, we will |
852 |
+ |
//return a pointer point to local variable which might cause problem |
853 |
+ |
return string(); |
854 |
+ |
} |