1 |
|
#include <iostream> |
2 |
< |
#include <cstdlib> |
3 |
< |
#include <cmath> |
2 |
> |
#include <stdlib.h> |
3 |
> |
#include <math.h> |
4 |
|
|
5 |
|
#ifdef IS_MPI |
6 |
|
#include "mpiSimulation.hpp" |
7 |
|
#include <unistd.h> |
8 |
|
#endif //is_mpi |
9 |
|
|
10 |
+ |
#ifdef PROFILE |
11 |
+ |
#include "mdProfile.hpp" |
12 |
+ |
#endif // profile |
13 |
+ |
|
14 |
|
#include "Integrator.hpp" |
15 |
|
#include "simError.h" |
16 |
|
|
17 |
|
|
18 |
< |
template<typename T> Integrator<T>::Integrator( SimInfo *theInfo, ForceFields* the_ff ) { |
19 |
< |
|
18 |
> |
template<typename T> Integrator<T>::Integrator(SimInfo* theInfo, |
19 |
> |
ForceFields* the_ff){ |
20 |
|
info = theInfo; |
21 |
|
myFF = the_ff; |
22 |
|
isFirst = 1; |
25 |
|
nMols = info->n_mol; |
26 |
|
|
27 |
|
// give a little love back to the SimInfo object |
24 |
– |
|
25 |
– |
if( info->the_integrator != NULL ) delete info->the_integrator; |
26 |
– |
info->the_integrator = this; |
28 |
|
|
29 |
+ |
if (info->the_integrator != NULL){ |
30 |
+ |
delete info->the_integrator; |
31 |
+ |
} |
32 |
+ |
|
33 |
|
nAtoms = info->n_atoms; |
34 |
+ |
integrableObjects = info->integrableObjects; |
35 |
|
|
36 |
|
// check for constraints |
37 |
< |
|
38 |
< |
constrainedA = NULL; |
39 |
< |
constrainedB = NULL; |
37 |
> |
|
38 |
> |
constrainedA = NULL; |
39 |
> |
constrainedB = NULL; |
40 |
|
constrainedDsqr = NULL; |
41 |
< |
moving = NULL; |
42 |
< |
moved = NULL; |
43 |
< |
oldPos = NULL; |
44 |
< |
|
41 |
> |
moving = NULL; |
42 |
> |
moved = NULL; |
43 |
> |
oldPos = NULL; |
44 |
> |
|
45 |
|
nConstrained = 0; |
46 |
|
|
47 |
|
checkConstraints(); |
48 |
|
} |
49 |
|
|
50 |
< |
template<typename T> Integrator<T>::~Integrator() { |
51 |
< |
|
46 |
< |
if( nConstrained ){ |
50 |
> |
template<typename T> Integrator<T>::~Integrator(){ |
51 |
> |
if (nConstrained){ |
52 |
|
delete[] constrainedA; |
53 |
|
delete[] constrainedB; |
54 |
|
delete[] constrainedDsqr; |
56 |
|
delete[] moved; |
57 |
|
delete[] oldPos; |
58 |
|
} |
54 |
– |
|
59 |
|
} |
60 |
|
|
61 |
< |
template<typename T> void Integrator<T>::checkConstraints( void ){ |
58 |
< |
|
59 |
< |
|
61 |
> |
template<typename T> void Integrator<T>::checkConstraints(void){ |
62 |
|
isConstrained = 0; |
63 |
|
|
64 |
< |
Constraint *temp_con; |
65 |
< |
Constraint *dummy_plug; |
64 |
> |
Constraint* temp_con; |
65 |
> |
Constraint* dummy_plug; |
66 |
|
temp_con = new Constraint[info->n_SRI]; |
67 |
|
nConstrained = 0; |
68 |
|
int constrained = 0; |
69 |
< |
|
69 |
> |
|
70 |
|
SRI** theArray; |
71 |
< |
for(int i = 0; i < nMols; i++){ |
72 |
< |
|
73 |
< |
theArray = (SRI**) molecules[i].getMyBonds(); |
74 |
< |
for(int j=0; j<molecules[i].getNBonds(); j++){ |
73 |
< |
|
71 |
> |
for (int i = 0; i < nMols; i++){ |
72 |
> |
|
73 |
> |
theArray = (SRI * *) molecules[i].getMyBonds(); |
74 |
> |
for (int j = 0; j < molecules[i].getNBonds(); j++){ |
75 |
|
constrained = theArray[j]->is_constrained(); |
76 |
|
|
77 |
< |
if(constrained){ |
77 |
> |
if (constrained){ |
78 |
> |
dummy_plug = theArray[j]->get_constraint(); |
79 |
> |
temp_con[nConstrained].set_a(dummy_plug->get_a()); |
80 |
> |
temp_con[nConstrained].set_b(dummy_plug->get_b()); |
81 |
> |
temp_con[nConstrained].set_dsqr(dummy_plug->get_dsqr()); |
82 |
|
|
83 |
< |
dummy_plug = theArray[j]->get_constraint(); |
84 |
< |
temp_con[nConstrained].set_a( dummy_plug->get_a() ); |
85 |
< |
temp_con[nConstrained].set_b( dummy_plug->get_b() ); |
81 |
< |
temp_con[nConstrained].set_dsqr( dummy_plug->get_dsqr() ); |
82 |
< |
|
83 |
< |
nConstrained++; |
84 |
< |
constrained = 0; |
85 |
< |
} |
83 |
> |
nConstrained++; |
84 |
> |
constrained = 0; |
85 |
> |
} |
86 |
|
} |
87 |
|
|
88 |
< |
theArray = (SRI**) molecules[i].getMyBends(); |
89 |
< |
for(int j=0; j<molecules[i].getNBends(); j++){ |
90 |
< |
|
88 |
> |
theArray = (SRI * *) molecules[i].getMyBends(); |
89 |
> |
for (int j = 0; j < molecules[i].getNBends(); j++){ |
90 |
|
constrained = theArray[j]->is_constrained(); |
91 |
< |
|
92 |
< |
if(constrained){ |
93 |
< |
|
94 |
< |
dummy_plug = theArray[j]->get_constraint(); |
95 |
< |
temp_con[nConstrained].set_a( dummy_plug->get_a() ); |
96 |
< |
temp_con[nConstrained].set_b( dummy_plug->get_b() ); |
97 |
< |
temp_con[nConstrained].set_dsqr( dummy_plug->get_dsqr() ); |
98 |
< |
|
99 |
< |
nConstrained++; |
101 |
< |
constrained = 0; |
91 |
> |
|
92 |
> |
if (constrained){ |
93 |
> |
dummy_plug = theArray[j]->get_constraint(); |
94 |
> |
temp_con[nConstrained].set_a(dummy_plug->get_a()); |
95 |
> |
temp_con[nConstrained].set_b(dummy_plug->get_b()); |
96 |
> |
temp_con[nConstrained].set_dsqr(dummy_plug->get_dsqr()); |
97 |
> |
|
98 |
> |
nConstrained++; |
99 |
> |
constrained = 0; |
100 |
|
} |
101 |
|
} |
102 |
|
|
103 |
< |
theArray = (SRI**) molecules[i].getMyTorsions(); |
104 |
< |
for(int j=0; j<molecules[i].getNTorsions(); j++){ |
107 |
< |
|
103 |
> |
theArray = (SRI * *) molecules[i].getMyTorsions(); |
104 |
> |
for (int j = 0; j < molecules[i].getNTorsions(); j++){ |
105 |
|
constrained = theArray[j]->is_constrained(); |
106 |
< |
|
107 |
< |
if(constrained){ |
108 |
< |
|
109 |
< |
dummy_plug = theArray[j]->get_constraint(); |
110 |
< |
temp_con[nConstrained].set_a( dummy_plug->get_a() ); |
111 |
< |
temp_con[nConstrained].set_b( dummy_plug->get_b() ); |
112 |
< |
temp_con[nConstrained].set_dsqr( dummy_plug->get_dsqr() ); |
113 |
< |
|
114 |
< |
nConstrained++; |
118 |
< |
constrained = 0; |
106 |
> |
|
107 |
> |
if (constrained){ |
108 |
> |
dummy_plug = theArray[j]->get_constraint(); |
109 |
> |
temp_con[nConstrained].set_a(dummy_plug->get_a()); |
110 |
> |
temp_con[nConstrained].set_b(dummy_plug->get_b()); |
111 |
> |
temp_con[nConstrained].set_dsqr(dummy_plug->get_dsqr()); |
112 |
> |
|
113 |
> |
nConstrained++; |
114 |
> |
constrained = 0; |
115 |
|
} |
116 |
|
} |
117 |
|
} |
118 |
|
|
119 |
< |
if(nConstrained > 0){ |
120 |
< |
|
119 |
> |
|
120 |
> |
if (nConstrained > 0){ |
121 |
|
isConstrained = 1; |
122 |
|
|
123 |
< |
if(constrainedA != NULL ) delete[] constrainedA; |
124 |
< |
if(constrainedB != NULL ) delete[] constrainedB; |
125 |
< |
if(constrainedDsqr != NULL ) delete[] constrainedDsqr; |
123 |
> |
if (constrainedA != NULL) |
124 |
> |
delete[] constrainedA; |
125 |
> |
if (constrainedB != NULL) |
126 |
> |
delete[] constrainedB; |
127 |
> |
if (constrainedDsqr != NULL) |
128 |
> |
delete[] constrainedDsqr; |
129 |
|
|
130 |
< |
constrainedA = new int[nConstrained]; |
131 |
< |
constrainedB = new int[nConstrained]; |
130 |
> |
constrainedA = new int[nConstrained]; |
131 |
> |
constrainedB = new int[nConstrained]; |
132 |
|
constrainedDsqr = new double[nConstrained]; |
133 |
< |
|
134 |
< |
for( int i = 0; i < nConstrained; i++){ |
136 |
< |
|
133 |
> |
|
134 |
> |
for (int i = 0; i < nConstrained; i++){ |
135 |
|
constrainedA[i] = temp_con[i].get_a(); |
136 |
|
constrainedB[i] = temp_con[i].get_b(); |
137 |
|
constrainedDsqr[i] = temp_con[i].get_dsqr(); |
140 |
– |
|
138 |
|
} |
139 |
|
|
140 |
< |
|
141 |
< |
// save oldAtoms to check for lode balanceing later on. |
142 |
< |
|
140 |
> |
|
141 |
> |
// save oldAtoms to check for lode balancing later on. |
142 |
> |
|
143 |
|
oldAtoms = nAtoms; |
144 |
< |
|
144 |
> |
|
145 |
|
moving = new int[nAtoms]; |
146 |
< |
moved = new int[nAtoms]; |
146 |
> |
moved = new int[nAtoms]; |
147 |
|
|
148 |
< |
oldPos = new double[nAtoms*3]; |
148 |
> |
oldPos = new double[nAtoms * 3]; |
149 |
|
} |
150 |
< |
|
150 |
> |
|
151 |
|
delete[] temp_con; |
152 |
|
} |
153 |
|
|
154 |
|
|
155 |
< |
template<typename T> void Integrator<T>::integrate( void ){ |
155 |
> |
template<typename T> void Integrator<T>::integrate(void){ |
156 |
|
|
157 |
< |
int i, j; // loop counters |
158 |
< |
|
159 |
< |
double runTime = info->run_time; |
163 |
< |
double sampleTime = info->sampleTime; |
164 |
< |
double statusTime = info->statusTime; |
157 |
> |
double runTime = info->run_time; |
158 |
> |
double sampleTime = info->sampleTime; |
159 |
> |
double statusTime = info->statusTime; |
160 |
|
double thermalTime = info->thermalTime; |
161 |
+ |
double resetTime = info->resetTime; |
162 |
|
|
163 |
+ |
|
164 |
|
double currSample; |
165 |
|
double currThermal; |
166 |
|
double currStatus; |
167 |
+ |
double currReset; |
168 |
|
|
169 |
|
int calcPot, calcStress; |
172 |
– |
int isError; |
170 |
|
|
171 |
< |
tStats = new Thermo( info ); |
172 |
< |
statOut = new StatWriter( info ); |
173 |
< |
dumpOut = new DumpWriter( info ); |
171 |
> |
tStats = new Thermo(info); |
172 |
> |
statOut = new StatWriter(info); |
173 |
> |
dumpOut = new DumpWriter(info); |
174 |
|
|
175 |
|
atoms = info->atoms; |
179 |
– |
DirectionalAtom* dAtom; |
176 |
|
|
177 |
|
dt = info->dt; |
178 |
|
dt2 = 0.5 * dt; |
179 |
|
|
180 |
+ |
readyCheck(); |
181 |
+ |
|
182 |
+ |
// remove center of mass drift velocity (in case we passed in a configuration |
183 |
+ |
// that was drifting |
184 |
+ |
tStats->removeCOMdrift(); |
185 |
+ |
|
186 |
|
// initialize the forces before the first step |
187 |
|
|
188 |
|
calcForce(1, 1); |
189 |
< |
// myFF->doForces(1,1); |
190 |
< |
|
191 |
< |
if( info->setTemp ){ |
192 |
< |
|
193 |
< |
thermalize(); |
189 |
> |
|
190 |
> |
if (nConstrained){ |
191 |
> |
preMove(); |
192 |
> |
constrainA(); |
193 |
> |
calcForce(1, 1); |
194 |
> |
constrainB(); |
195 |
|
} |
196 |
|
|
197 |
+ |
if (info->setTemp){ |
198 |
+ |
thermalize(); |
199 |
+ |
} |
200 |
+ |
|
201 |
|
calcPot = 0; |
202 |
|
calcStress = 0; |
203 |
|
currSample = sampleTime + info->getTime(); |
204 |
|
currThermal = thermalTime+ info->getTime(); |
205 |
|
currStatus = statusTime + info->getTime(); |
206 |
+ |
currReset = resetTime + info->getTime(); |
207 |
|
|
208 |
< |
dumpOut->writeDump( info->getTime() ); |
209 |
< |
statOut->writeStat( info->getTime() ); |
208 |
> |
dumpOut->writeDump(info->getTime()); |
209 |
> |
statOut->writeStat(info->getTime()); |
210 |
|
|
203 |
– |
readyCheck(); |
211 |
|
|
212 |
|
#ifdef IS_MPI |
213 |
< |
strcpy( checkPointMsg, |
207 |
< |
"The integrator is ready to go." ); |
213 |
> |
strcpy(checkPointMsg, "The integrator is ready to go."); |
214 |
|
MPIcheckPoint(); |
215 |
|
#endif // is_mpi |
216 |
|
|
217 |
< |
while( info->getTime() < runTime ){ |
218 |
< |
|
213 |
< |
if( (info->getTime()+dt) >= currStatus ){ |
217 |
> |
while (info->getTime() < runTime && !stopIntegrator()){ |
218 |
> |
if ((info->getTime() + dt) >= currStatus){ |
219 |
|
calcPot = 1; |
220 |
|
calcStress = 1; |
221 |
|
} |
222 |
|
|
223 |
< |
integrateStep( calcPot, calcStress ); |
224 |
< |
|
223 |
> |
#ifdef PROFILE |
224 |
> |
startProfile( pro1 ); |
225 |
> |
#endif |
226 |
> |
|
227 |
> |
integrateStep(calcPot, calcStress); |
228 |
> |
|
229 |
> |
#ifdef PROFILE |
230 |
> |
endProfile( pro1 ); |
231 |
> |
|
232 |
> |
startProfile( pro2 ); |
233 |
> |
#endif // profile |
234 |
> |
|
235 |
|
info->incrTime(dt); |
236 |
|
|
237 |
< |
if( info->setTemp ){ |
238 |
< |
if( info->getTime() >= currThermal ){ |
239 |
< |
thermalize(); |
240 |
< |
currThermal += thermalTime; |
237 |
> |
if (info->setTemp){ |
238 |
> |
if (info->getTime() >= currThermal){ |
239 |
> |
thermalize(); |
240 |
> |
currThermal += thermalTime; |
241 |
|
} |
242 |
|
} |
243 |
|
|
244 |
< |
if( info->getTime() >= currSample ){ |
245 |
< |
dumpOut->writeDump( info->getTime() ); |
244 |
> |
if (info->getTime() >= currSample){ |
245 |
> |
dumpOut->writeDump(info->getTime()); |
246 |
|
currSample += sampleTime; |
247 |
|
} |
248 |
|
|
249 |
< |
if( info->getTime() >= currStatus ){ |
250 |
< |
statOut->writeStat( info->getTime() ); |
251 |
< |
calcPot = 0; |
249 |
> |
if (info->getTime() >= currStatus){ |
250 |
> |
statOut->writeStat(info->getTime()); |
251 |
> |
calcPot = 0; |
252 |
|
calcStress = 0; |
253 |
|
currStatus += statusTime; |
254 |
< |
} |
254 |
> |
} |
255 |
|
|
256 |
+ |
if (info->resetIntegrator){ |
257 |
+ |
if (info->getTime() >= currReset){ |
258 |
+ |
this->resetIntegrator(); |
259 |
+ |
currReset += resetTime; |
260 |
+ |
} |
261 |
+ |
} |
262 |
+ |
|
263 |
+ |
#ifdef PROFILE |
264 |
+ |
endProfile( pro2 ); |
265 |
+ |
#endif //profile |
266 |
+ |
|
267 |
|
#ifdef IS_MPI |
268 |
< |
strcpy( checkPointMsg, |
243 |
< |
"successfully took a time step." ); |
268 |
> |
strcpy(checkPointMsg, "successfully took a time step."); |
269 |
|
MPIcheckPoint(); |
270 |
|
#endif // is_mpi |
246 |
– |
|
271 |
|
} |
248 |
– |
|
249 |
– |
dumpOut->writeFinal(info->getTime()); |
272 |
|
|
273 |
|
delete dumpOut; |
274 |
|
delete statOut; |
275 |
|
} |
276 |
|
|
277 |
< |
template<typename T> void Integrator<T>::integrateStep( int calcPot, int calcStress ){ |
278 |
< |
|
257 |
< |
|
258 |
< |
|
277 |
> |
template<typename T> void Integrator<T>::integrateStep(int calcPot, |
278 |
> |
int calcStress){ |
279 |
|
// Position full step, and velocity half step |
280 |
|
|
281 |
+ |
#ifdef PROFILE |
282 |
+ |
startProfile(pro3); |
283 |
+ |
#endif //profile |
284 |
+ |
|
285 |
|
preMove(); |
286 |
+ |
|
287 |
+ |
#ifdef PROFILE |
288 |
+ |
endProfile(pro3); |
289 |
+ |
|
290 |
+ |
startProfile(pro4); |
291 |
+ |
#endif // profile |
292 |
+ |
|
293 |
|
moveA(); |
263 |
– |
if( nConstrained ) constrainA(); |
294 |
|
|
295 |
+ |
#ifdef PROFILE |
296 |
+ |
endProfile(pro4); |
297 |
|
|
298 |
+ |
startProfile(pro5); |
299 |
+ |
#endif//profile |
300 |
+ |
|
301 |
+ |
|
302 |
|
#ifdef IS_MPI |
303 |
< |
strcpy( checkPointMsg, "Succesful moveA\n" ); |
303 |
> |
strcpy(checkPointMsg, "Succesful moveA\n"); |
304 |
|
MPIcheckPoint(); |
305 |
|
#endif // is_mpi |
270 |
– |
|
306 |
|
|
307 |
+ |
|
308 |
|
// calc forces |
309 |
|
|
310 |
< |
calcForce(calcPot,calcStress); |
310 |
> |
calcForce(calcPot, calcStress); |
311 |
|
|
312 |
|
#ifdef IS_MPI |
313 |
< |
strcpy( checkPointMsg, "Succesful doForces\n" ); |
313 |
> |
strcpy(checkPointMsg, "Succesful doForces\n"); |
314 |
|
MPIcheckPoint(); |
315 |
|
#endif // is_mpi |
280 |
– |
|
316 |
|
|
317 |
+ |
#ifdef PROFILE |
318 |
+ |
endProfile( pro5 ); |
319 |
+ |
|
320 |
+ |
startProfile( pro6 ); |
321 |
+ |
#endif //profile |
322 |
+ |
|
323 |
|
// finish the velocity half step |
324 |
< |
|
324 |
> |
|
325 |
|
moveB(); |
326 |
< |
if( nConstrained ) constrainB(); |
327 |
< |
|
326 |
> |
|
327 |
> |
#ifdef PROFILE |
328 |
> |
endProfile(pro6); |
329 |
> |
#endif // profile |
330 |
> |
|
331 |
|
#ifdef IS_MPI |
332 |
< |
strcpy( checkPointMsg, "Succesful moveB\n" ); |
332 |
> |
strcpy(checkPointMsg, "Succesful moveB\n"); |
333 |
|
MPIcheckPoint(); |
334 |
|
#endif // is_mpi |
291 |
– |
|
292 |
– |
|
335 |
|
} |
336 |
|
|
337 |
|
|
338 |
< |
template<typename T> void Integrator<T>::moveA( void ){ |
339 |
< |
|
298 |
< |
int i, j; |
338 |
> |
template<typename T> void Integrator<T>::moveA(void){ |
339 |
> |
size_t i, j; |
340 |
|
DirectionalAtom* dAtom; |
341 |
|
double Tb[3], ji[3]; |
301 |
– |
double A[3][3], I[3][3]; |
302 |
– |
double angle; |
342 |
|
double vel[3], pos[3], frc[3]; |
343 |
|
double mass; |
344 |
+ |
|
345 |
+ |
for (i = 0; i < integrableObjects.size() ; i++){ |
346 |
+ |
integrableObjects[i]->getVel(vel); |
347 |
+ |
integrableObjects[i]->getPos(pos); |
348 |
+ |
integrableObjects[i]->getFrc(frc); |
349 |
|
|
350 |
< |
for( i=0; i<nAtoms; i++ ){ |
350 |
> |
std::cerr << "i =\t" << i << "\t" << frc[0] << "\t" << frc[1]<< "\t" << frc[2] << "\n"; |
351 |
> |
|
352 |
> |
mass = integrableObjects[i]->getMass(); |
353 |
|
|
354 |
< |
atoms[i]->getVel( vel ); |
309 |
< |
atoms[i]->getPos( pos ); |
310 |
< |
atoms[i]->getFrc( frc ); |
311 |
< |
|
312 |
< |
mass = atoms[i]->getMass(); |
313 |
< |
|
314 |
< |
for (j=0; j < 3; j++) { |
354 |
> |
for (j = 0; j < 3; j++){ |
355 |
|
// velocity half step |
356 |
< |
vel[j] += ( dt2 * frc[j] / mass ) * eConvert; |
356 |
> |
vel[j] += (dt2 * frc[j] / mass) * eConvert; |
357 |
|
// position whole step |
358 |
|
pos[j] += dt * vel[j]; |
359 |
|
} |
360 |
|
|
361 |
< |
atoms[i]->setVel( vel ); |
362 |
< |
atoms[i]->setPos( pos ); |
361 |
> |
integrableObjects[i]->setVel(vel); |
362 |
> |
integrableObjects[i]->setPos(pos); |
363 |
|
|
364 |
< |
if( atoms[i]->isDirectional() ){ |
364 |
> |
if (integrableObjects[i]->isDirectional()){ |
365 |
|
|
326 |
– |
dAtom = (DirectionalAtom *)atoms[i]; |
327 |
– |
|
366 |
|
// get and convert the torque to body frame |
329 |
– |
|
330 |
– |
dAtom->getTrq( Tb ); |
331 |
– |
dAtom->lab2Body( Tb ); |
367 |
|
|
368 |
+ |
integrableObjects[i]->getTrq(Tb); |
369 |
+ |
integrableObjects[i]->lab2Body(Tb); |
370 |
+ |
|
371 |
|
// get the angular momentum, and propagate a half step |
372 |
|
|
373 |
< |
dAtom->getJ( ji ); |
373 |
> |
integrableObjects[i]->getJ(ji); |
374 |
|
|
375 |
< |
for (j=0; j < 3; j++) |
375 |
> |
for (j = 0; j < 3; j++) |
376 |
|
ji[j] += (dt2 * Tb[j]) * eConvert; |
339 |
– |
|
340 |
– |
// use the angular velocities to propagate the rotation matrix a |
341 |
– |
// full time step |
377 |
|
|
378 |
< |
dAtom->getA(A); |
344 |
< |
dAtom->getI(I); |
345 |
< |
|
346 |
< |
// rotate about the x-axis |
347 |
< |
angle = dt2 * ji[0] / I[0][0]; |
348 |
< |
this->rotate( 1, 2, angle, ji, A ); |
378 |
> |
this->rotationPropagation( integrableObjects[i], ji ); |
379 |
|
|
380 |
< |
// rotate about the y-axis |
381 |
< |
angle = dt2 * ji[1] / I[1][1]; |
382 |
< |
this->rotate( 2, 0, angle, ji, A ); |
353 |
< |
|
354 |
< |
// rotate about the z-axis |
355 |
< |
angle = dt * ji[2] / I[2][2]; |
356 |
< |
this->rotate( 0, 1, angle, ji, A); |
357 |
< |
|
358 |
< |
// rotate about the y-axis |
359 |
< |
angle = dt2 * ji[1] / I[1][1]; |
360 |
< |
this->rotate( 2, 0, angle, ji, A ); |
361 |
< |
|
362 |
< |
// rotate about the x-axis |
363 |
< |
angle = dt2 * ji[0] / I[0][0]; |
364 |
< |
this->rotate( 1, 2, angle, ji, A ); |
365 |
< |
|
380 |
> |
integrableObjects[i]->setJ(ji); |
381 |
> |
} |
382 |
> |
} |
383 |
|
|
384 |
< |
dAtom->setJ( ji ); |
385 |
< |
dAtom->setA( A ); |
369 |
< |
|
370 |
< |
} |
384 |
> |
if (nConstrained){ |
385 |
> |
constrainA(); |
386 |
|
} |
387 |
|
} |
388 |
|
|
389 |
|
|
390 |
< |
template<typename T> void Integrator<T>::moveB( void ){ |
390 |
> |
template<typename T> void Integrator<T>::moveB(void){ |
391 |
|
int i, j; |
377 |
– |
DirectionalAtom* dAtom; |
392 |
|
double Tb[3], ji[3]; |
393 |
|
double vel[3], frc[3]; |
394 |
|
double mass; |
395 |
|
|
396 |
< |
for( i=0; i<nAtoms; i++ ){ |
397 |
< |
|
398 |
< |
atoms[i]->getVel( vel ); |
385 |
< |
atoms[i]->getFrc( frc ); |
396 |
> |
for (i = 0; i < integrableObjects.size(); i++){ |
397 |
> |
integrableObjects[i]->getVel(vel); |
398 |
> |
integrableObjects[i]->getFrc(frc); |
399 |
|
|
400 |
< |
mass = atoms[i]->getMass(); |
400 |
> |
mass = integrableObjects[i]->getMass(); |
401 |
|
|
402 |
|
// velocity half step |
403 |
< |
for (j=0; j < 3; j++) |
404 |
< |
vel[j] += ( dt2 * frc[j] / mass ) * eConvert; |
392 |
< |
|
393 |
< |
atoms[i]->setVel( vel ); |
394 |
< |
|
395 |
< |
if( atoms[i]->isDirectional() ){ |
403 |
> |
for (j = 0; j < 3; j++) |
404 |
> |
vel[j] += (dt2 * frc[j] / mass) * eConvert; |
405 |
|
|
406 |
< |
dAtom = (DirectionalAtom *)atoms[i]; |
406 |
> |
integrableObjects[i]->setVel(vel); |
407 |
|
|
408 |
< |
// get and convert the torque to body frame |
408 |
> |
if (integrableObjects[i]->isDirectional()){ |
409 |
|
|
410 |
< |
dAtom->getTrq( Tb ); |
402 |
< |
dAtom->lab2Body( Tb ); |
410 |
> |
// get and convert the torque to body frame |
411 |
|
|
412 |
+ |
integrableObjects[i]->getTrq(Tb); |
413 |
+ |
integrableObjects[i]->lab2Body(Tb); |
414 |
+ |
|
415 |
|
// get the angular momentum, and propagate a half step |
416 |
|
|
417 |
< |
dAtom->getJ( ji ); |
417 |
> |
integrableObjects[i]->getJ(ji); |
418 |
|
|
419 |
< |
for (j=0; j < 3; j++) |
419 |
> |
for (j = 0; j < 3; j++) |
420 |
|
ji[j] += (dt2 * Tb[j]) * eConvert; |
410 |
– |
|
421 |
|
|
422 |
< |
dAtom->setJ( ji ); |
422 |
> |
|
423 |
> |
integrableObjects[i]->setJ(ji); |
424 |
|
} |
425 |
|
} |
426 |
+ |
|
427 |
+ |
if (nConstrained){ |
428 |
+ |
constrainB(); |
429 |
+ |
} |
430 |
|
} |
431 |
|
|
432 |
< |
template<typename T> void Integrator<T>::preMove( void ){ |
432 |
> |
template<typename T> void Integrator<T>::preMove(void){ |
433 |
|
int i, j; |
434 |
|
double pos[3]; |
435 |
|
|
436 |
< |
if( nConstrained ){ |
436 |
> |
if (nConstrained){ |
437 |
> |
for (i = 0; i < nAtoms; i++){ |
438 |
> |
atoms[i]->getPos(pos); |
439 |
|
|
440 |
< |
for(i=0; i < nAtoms; i++) { |
441 |
< |
|
425 |
< |
atoms[i]->getPos( pos ); |
426 |
< |
|
427 |
< |
for (j = 0; j < 3; j++) { |
428 |
< |
oldPos[3*i + j] = pos[j]; |
440 |
> |
for (j = 0; j < 3; j++){ |
441 |
> |
oldPos[3 * i + j] = pos[j]; |
442 |
|
} |
430 |
– |
|
443 |
|
} |
444 |
< |
} |
444 |
> |
} |
445 |
|
} |
446 |
|
|
447 |
|
template<typename T> void Integrator<T>::constrainA(){ |
448 |
< |
|
437 |
< |
int i,j,k; |
448 |
> |
int i, j; |
449 |
|
int done; |
450 |
|
double posA[3], posB[3]; |
451 |
|
double velA[3], velB[3]; |
460 |
|
double gab; |
461 |
|
int iteration; |
462 |
|
|
463 |
< |
for( i=0; i<nAtoms; i++){ |
463 |
> |
for (i = 0; i < nAtoms; i++){ |
464 |
|
moving[i] = 0; |
465 |
< |
moved[i] = 1; |
465 |
> |
moved[i] = 1; |
466 |
|
} |
467 |
|
|
468 |
|
iteration = 0; |
469 |
|
done = 0; |
470 |
< |
while( !done && (iteration < maxIteration )){ |
460 |
< |
|
470 |
> |
while (!done && (iteration < maxIteration)){ |
471 |
|
done = 1; |
472 |
< |
for(i=0; i<nConstrained; i++){ |
463 |
< |
|
472 |
> |
for (i = 0; i < nConstrained; i++){ |
473 |
|
a = constrainedA[i]; |
474 |
|
b = constrainedB[i]; |
466 |
– |
|
467 |
– |
ax = (a*3) + 0; |
468 |
– |
ay = (a*3) + 1; |
469 |
– |
az = (a*3) + 2; |
475 |
|
|
476 |
< |
bx = (b*3) + 0; |
477 |
< |
by = (b*3) + 1; |
478 |
< |
bz = (b*3) + 2; |
476 |
> |
ax = (a * 3) + 0; |
477 |
> |
ay = (a * 3) + 1; |
478 |
> |
az = (a * 3) + 2; |
479 |
|
|
480 |
< |
if( moved[a] || moved[b] ){ |
481 |
< |
|
482 |
< |
atoms[a]->getPos( posA ); |
483 |
< |
atoms[b]->getPos( posB ); |
484 |
< |
|
485 |
< |
for (j = 0; j < 3; j++ ) |
480 |
> |
bx = (b * 3) + 0; |
481 |
> |
by = (b * 3) + 1; |
482 |
> |
bz = (b * 3) + 2; |
483 |
> |
|
484 |
> |
if (moved[a] || moved[b]){ |
485 |
> |
atoms[a]->getPos(posA); |
486 |
> |
atoms[b]->getPos(posB); |
487 |
> |
|
488 |
> |
for (j = 0; j < 3; j++) |
489 |
|
pab[j] = posA[j] - posB[j]; |
482 |
– |
|
483 |
– |
//periodic boundary condition |
490 |
|
|
491 |
< |
info->wrapVector( pab ); |
491 |
> |
//periodic boundary condition |
492 |
|
|
493 |
< |
pabsq = pab[0] * pab[0] + pab[1] * pab[1] + pab[2] * pab[2]; |
493 |
> |
info->wrapVector(pab); |
494 |
|
|
495 |
< |
rabsq = constrainedDsqr[i]; |
490 |
< |
diffsq = rabsq - pabsq; |
495 |
> |
pabsq = pab[0] * pab[0] + pab[1] * pab[1] + pab[2] * pab[2]; |
496 |
|
|
497 |
< |
// the original rattle code from alan tidesley |
498 |
< |
if (fabs(diffsq) > (tol*rabsq*2)) { |
494 |
< |
rab[0] = oldPos[ax] - oldPos[bx]; |
495 |
< |
rab[1] = oldPos[ay] - oldPos[by]; |
496 |
< |
rab[2] = oldPos[az] - oldPos[bz]; |
497 |
> |
rabsq = constrainedDsqr[i]; |
498 |
> |
diffsq = rabsq - pabsq; |
499 |
|
|
500 |
< |
info->wrapVector( rab ); |
500 |
> |
// the original rattle code from alan tidesley |
501 |
> |
if (fabs(diffsq) > (tol * rabsq * 2)){ |
502 |
> |
rab[0] = oldPos[ax] - oldPos[bx]; |
503 |
> |
rab[1] = oldPos[ay] - oldPos[by]; |
504 |
> |
rab[2] = oldPos[az] - oldPos[bz]; |
505 |
|
|
506 |
< |
rpab = rab[0] * pab[0] + rab[1] * pab[1] + rab[2] * pab[2]; |
506 |
> |
info->wrapVector(rab); |
507 |
|
|
508 |
< |
rpabsq = rpab * rpab; |
508 |
> |
rpab = rab[0] * pab[0] + rab[1] * pab[1] + rab[2] * pab[2]; |
509 |
|
|
510 |
+ |
rpabsq = rpab * rpab; |
511 |
|
|
505 |
– |
if (rpabsq < (rabsq * -diffsq)){ |
512 |
|
|
513 |
+ |
if (rpabsq < (rabsq * -diffsq)){ |
514 |
|
#ifdef IS_MPI |
515 |
< |
a = atoms[a]->getGlobalIndex(); |
516 |
< |
b = atoms[b]->getGlobalIndex(); |
515 |
> |
a = atoms[a]->getGlobalIndex(); |
516 |
> |
b = atoms[b]->getGlobalIndex(); |
517 |
|
#endif //is_mpi |
518 |
< |
sprintf( painCave.errMsg, |
519 |
< |
"Constraint failure in constrainA at atom %d and %d.\n", |
520 |
< |
a, b ); |
521 |
< |
painCave.isFatal = 1; |
522 |
< |
simError(); |
523 |
< |
} |
518 |
> |
sprintf(painCave.errMsg, |
519 |
> |
"Constraint failure in constrainA at atom %d and %d.\n", a, |
520 |
> |
b); |
521 |
> |
painCave.isFatal = 1; |
522 |
> |
simError(); |
523 |
> |
} |
524 |
|
|
525 |
< |
rma = 1.0 / atoms[a]->getMass(); |
526 |
< |
rmb = 1.0 / atoms[b]->getMass(); |
525 |
> |
rma = 1.0 / atoms[a]->getMass(); |
526 |
> |
rmb = 1.0 / atoms[b]->getMass(); |
527 |
|
|
528 |
< |
gab = diffsq / ( 2.0 * ( rma + rmb ) * rpab ); |
528 |
> |
gab = diffsq / (2.0 * (rma + rmb) * rpab); |
529 |
|
|
530 |
|
dx = rab[0] * gab; |
531 |
|
dy = rab[1] * gab; |
532 |
|
dz = rab[2] * gab; |
533 |
|
|
534 |
< |
posA[0] += rma * dx; |
535 |
< |
posA[1] += rma * dy; |
536 |
< |
posA[2] += rma * dz; |
534 |
> |
posA[0] += rma * dx; |
535 |
> |
posA[1] += rma * dy; |
536 |
> |
posA[2] += rma * dz; |
537 |
|
|
538 |
< |
atoms[a]->setPos( posA ); |
538 |
> |
atoms[a]->setPos(posA); |
539 |
|
|
540 |
< |
posB[0] -= rmb * dx; |
541 |
< |
posB[1] -= rmb * dy; |
542 |
< |
posB[2] -= rmb * dz; |
540 |
> |
posB[0] -= rmb * dx; |
541 |
> |
posB[1] -= rmb * dy; |
542 |
> |
posB[2] -= rmb * dz; |
543 |
|
|
544 |
< |
atoms[b]->setPos( posB ); |
544 |
> |
atoms[b]->setPos(posB); |
545 |
|
|
546 |
|
dx = dx / dt; |
547 |
|
dy = dy / dt; |
548 |
|
dz = dz / dt; |
549 |
|
|
550 |
< |
atoms[a]->getVel( velA ); |
550 |
> |
atoms[a]->getVel(velA); |
551 |
|
|
552 |
< |
velA[0] += rma * dx; |
553 |
< |
velA[1] += rma * dy; |
554 |
< |
velA[2] += rma * dz; |
552 |
> |
velA[0] += rma * dx; |
553 |
> |
velA[1] += rma * dy; |
554 |
> |
velA[2] += rma * dz; |
555 |
|
|
556 |
< |
atoms[a]->setVel( velA ); |
556 |
> |
atoms[a]->setVel(velA); |
557 |
|
|
558 |
< |
atoms[b]->getVel( velB ); |
558 |
> |
atoms[b]->getVel(velB); |
559 |
|
|
560 |
< |
velB[0] -= rmb * dx; |
561 |
< |
velB[1] -= rmb * dy; |
562 |
< |
velB[2] -= rmb * dz; |
560 |
> |
velB[0] -= rmb * dx; |
561 |
> |
velB[1] -= rmb * dy; |
562 |
> |
velB[2] -= rmb * dz; |
563 |
|
|
564 |
< |
atoms[b]->setVel( velB ); |
564 |
> |
atoms[b]->setVel(velB); |
565 |
|
|
566 |
< |
moving[a] = 1; |
567 |
< |
moving[b] = 1; |
568 |
< |
done = 0; |
569 |
< |
} |
566 |
> |
moving[a] = 1; |
567 |
> |
moving[b] = 1; |
568 |
> |
done = 0; |
569 |
> |
} |
570 |
|
} |
571 |
|
} |
572 |
< |
|
573 |
< |
for(i=0; i<nAtoms; i++){ |
567 |
< |
|
572 |
> |
|
573 |
> |
for (i = 0; i < nAtoms; i++){ |
574 |
|
moved[i] = moving[i]; |
575 |
|
moving[i] = 0; |
576 |
|
} |
578 |
|
iteration++; |
579 |
|
} |
580 |
|
|
581 |
< |
if( !done ){ |
582 |
< |
|
583 |
< |
sprintf( painCave.errMsg, |
584 |
< |
"Constraint failure in constrainA, too many iterations: %d\n", |
579 |
< |
iteration ); |
581 |
> |
if (!done){ |
582 |
> |
sprintf(painCave.errMsg, |
583 |
> |
"Constraint failure in constrainA, too many iterations: %d\n", |
584 |
> |
iteration); |
585 |
|
painCave.isFatal = 1; |
586 |
|
simError(); |
587 |
|
} |
588 |
|
|
589 |
|
} |
590 |
|
|
591 |
< |
template<typename T> void Integrator<T>::constrainB( void ){ |
592 |
< |
|
588 |
< |
int i,j,k; |
591 |
> |
template<typename T> void Integrator<T>::constrainB(void){ |
592 |
> |
int i, j; |
593 |
|
int done; |
594 |
|
double posA[3], posB[3]; |
595 |
|
double velA[3], velB[3]; |
598 |
|
int a, b, ax, ay, az, bx, by, bz; |
599 |
|
double rma, rmb; |
600 |
|
double dx, dy, dz; |
601 |
< |
double rabsq, pabsq, rvab; |
598 |
< |
double diffsq; |
601 |
> |
double rvab; |
602 |
|
double gab; |
603 |
|
int iteration; |
604 |
|
|
605 |
< |
for(i=0; i<nAtoms; i++){ |
605 |
> |
for (i = 0; i < nAtoms; i++){ |
606 |
|
moving[i] = 0; |
607 |
|
moved[i] = 1; |
608 |
|
} |
609 |
|
|
610 |
|
done = 0; |
611 |
|
iteration = 0; |
612 |
< |
while( !done && (iteration < maxIteration ) ){ |
610 |
< |
|
612 |
> |
while (!done && (iteration < maxIteration)){ |
613 |
|
done = 1; |
614 |
|
|
615 |
< |
for(i=0; i<nConstrained; i++){ |
614 |
< |
|
615 |
> |
for (i = 0; i < nConstrained; i++){ |
616 |
|
a = constrainedA[i]; |
617 |
|
b = constrainedB[i]; |
618 |
|
|
619 |
< |
ax = (a*3) + 0; |
620 |
< |
ay = (a*3) + 1; |
621 |
< |
az = (a*3) + 2; |
619 |
> |
ax = (a * 3) + 0; |
620 |
> |
ay = (a * 3) + 1; |
621 |
> |
az = (a * 3) + 2; |
622 |
|
|
623 |
< |
bx = (b*3) + 0; |
624 |
< |
by = (b*3) + 1; |
625 |
< |
bz = (b*3) + 2; |
623 |
> |
bx = (b * 3) + 0; |
624 |
> |
by = (b * 3) + 1; |
625 |
> |
bz = (b * 3) + 2; |
626 |
|
|
627 |
< |
if( moved[a] || moved[b] ){ |
627 |
> |
if (moved[a] || moved[b]){ |
628 |
> |
atoms[a]->getVel(velA); |
629 |
> |
atoms[b]->getVel(velB); |
630 |
|
|
631 |
< |
atoms[a]->getVel( velA ); |
632 |
< |
atoms[b]->getVel( velB ); |
633 |
< |
|
631 |
< |
vxab = velA[0] - velB[0]; |
632 |
< |
vyab = velA[1] - velB[1]; |
633 |
< |
vzab = velA[2] - velB[2]; |
631 |
> |
vxab = velA[0] - velB[0]; |
632 |
> |
vyab = velA[1] - velB[1]; |
633 |
> |
vzab = velA[2] - velB[2]; |
634 |
|
|
635 |
< |
atoms[a]->getPos( posA ); |
636 |
< |
atoms[b]->getPos( posB ); |
635 |
> |
atoms[a]->getPos(posA); |
636 |
> |
atoms[b]->getPos(posB); |
637 |
|
|
638 |
< |
for (j = 0; j < 3; j++) |
638 |
> |
for (j = 0; j < 3; j++) |
639 |
|
rab[j] = posA[j] - posB[j]; |
640 |
– |
|
641 |
– |
info->wrapVector( rab ); |
642 |
– |
|
643 |
– |
rma = 1.0 / atoms[a]->getMass(); |
644 |
– |
rmb = 1.0 / atoms[b]->getMass(); |
640 |
|
|
641 |
< |
rvab = rab[0] * vxab + rab[1] * vyab + rab[2] * vzab; |
647 |
< |
|
648 |
< |
gab = -rvab / ( ( rma + rmb ) * constrainedDsqr[i] ); |
641 |
> |
info->wrapVector(rab); |
642 |
|
|
643 |
< |
if (fabs(gab) > tol) { |
644 |
< |
|
652 |
< |
dx = rab[0] * gab; |
653 |
< |
dy = rab[1] * gab; |
654 |
< |
dz = rab[2] * gab; |
655 |
< |
|
656 |
< |
velA[0] += rma * dx; |
657 |
< |
velA[1] += rma * dy; |
658 |
< |
velA[2] += rma * dz; |
643 |
> |
rma = 1.0 / atoms[a]->getMass(); |
644 |
> |
rmb = 1.0 / atoms[b]->getMass(); |
645 |
|
|
646 |
< |
atoms[a]->setVel( velA ); |
646 |
> |
rvab = rab[0] * vxab + rab[1] * vyab + rab[2] * vzab; |
647 |
|
|
648 |
< |
velB[0] -= rmb * dx; |
663 |
< |
velB[1] -= rmb * dy; |
664 |
< |
velB[2] -= rmb * dz; |
648 |
> |
gab = -rvab / ((rma + rmb) * constrainedDsqr[i]); |
649 |
|
|
650 |
< |
atoms[b]->setVel( velB ); |
651 |
< |
|
652 |
< |
moving[a] = 1; |
653 |
< |
moving[b] = 1; |
654 |
< |
done = 0; |
655 |
< |
} |
650 |
> |
if (fabs(gab) > tol){ |
651 |
> |
dx = rab[0] * gab; |
652 |
> |
dy = rab[1] * gab; |
653 |
> |
dz = rab[2] * gab; |
654 |
> |
|
655 |
> |
velA[0] += rma * dx; |
656 |
> |
velA[1] += rma * dy; |
657 |
> |
velA[2] += rma * dz; |
658 |
> |
|
659 |
> |
atoms[a]->setVel(velA); |
660 |
> |
|
661 |
> |
velB[0] -= rmb * dx; |
662 |
> |
velB[1] -= rmb * dy; |
663 |
> |
velB[2] -= rmb * dz; |
664 |
> |
|
665 |
> |
atoms[b]->setVel(velB); |
666 |
> |
|
667 |
> |
moving[a] = 1; |
668 |
> |
moving[b] = 1; |
669 |
> |
done = 0; |
670 |
> |
} |
671 |
|
} |
672 |
|
} |
673 |
|
|
674 |
< |
for(i=0; i<nAtoms; i++){ |
674 |
> |
for (i = 0; i < nAtoms; i++){ |
675 |
|
moved[i] = moving[i]; |
676 |
|
moving[i] = 0; |
677 |
|
} |
678 |
< |
|
678 |
> |
|
679 |
|
iteration++; |
680 |
|
} |
682 |
– |
|
683 |
– |
if( !done ){ |
681 |
|
|
682 |
< |
|
683 |
< |
sprintf( painCave.errMsg, |
684 |
< |
"Constraint failure in constrainB, too many iterations: %d\n", |
685 |
< |
iteration ); |
682 |
> |
if (!done){ |
683 |
> |
sprintf(painCave.errMsg, |
684 |
> |
"Constraint failure in constrainB, too many iterations: %d\n", |
685 |
> |
iteration); |
686 |
|
painCave.isFatal = 1; |
687 |
|
simError(); |
688 |
< |
} |
692 |
< |
|
688 |
> |
} |
689 |
|
} |
690 |
|
|
691 |
< |
template<typename T> void Integrator<T>::rotate( int axes1, int axes2, double angle, double ji[3], |
692 |
< |
double A[3][3] ){ |
691 |
> |
template<typename T> void Integrator<T>::rotationPropagation |
692 |
> |
( StuntDouble* sd, double ji[3] ){ |
693 |
|
|
694 |
< |
int i,j,k; |
694 |
> |
double angle; |
695 |
> |
double A[3][3], I[3][3]; |
696 |
> |
int i, j, k; |
697 |
> |
|
698 |
> |
// use the angular velocities to propagate the rotation matrix a |
699 |
> |
// full time step |
700 |
> |
|
701 |
> |
sd->getA(A); |
702 |
> |
sd->getI(I); |
703 |
> |
|
704 |
> |
if (sd->isLinear()) { |
705 |
> |
i = sd->linearAxis(); |
706 |
> |
j = (i+1)%3; |
707 |
> |
k = (i+2)%3; |
708 |
> |
|
709 |
> |
angle = dt2 * ji[j] / I[j][j]; |
710 |
> |
this->rotate( k, i, angle, ji, A ); |
711 |
> |
|
712 |
> |
angle = dt * ji[k] / I[k][k]; |
713 |
> |
this->rotate( i, j, angle, ji, A); |
714 |
> |
|
715 |
> |
angle = dt2 * ji[j] / I[j][j]; |
716 |
> |
this->rotate( k, i, angle, ji, A ); |
717 |
> |
|
718 |
> |
} else { |
719 |
> |
// rotate about the x-axis |
720 |
> |
angle = dt2 * ji[0] / I[0][0]; |
721 |
> |
this->rotate( 1, 2, angle, ji, A ); |
722 |
> |
|
723 |
> |
// rotate about the y-axis |
724 |
> |
angle = dt2 * ji[1] / I[1][1]; |
725 |
> |
this->rotate( 2, 0, angle, ji, A ); |
726 |
> |
|
727 |
> |
// rotate about the z-axis |
728 |
> |
angle = dt * ji[2] / I[2][2]; |
729 |
> |
this->rotate( 0, 1, angle, ji, A); |
730 |
> |
|
731 |
> |
// rotate about the y-axis |
732 |
> |
angle = dt2 * ji[1] / I[1][1]; |
733 |
> |
this->rotate( 2, 0, angle, ji, A ); |
734 |
> |
|
735 |
> |
// rotate about the x-axis |
736 |
> |
angle = dt2 * ji[0] / I[0][0]; |
737 |
> |
this->rotate( 1, 2, angle, ji, A ); |
738 |
> |
|
739 |
> |
} |
740 |
> |
sd->setA( A ); |
741 |
> |
} |
742 |
> |
|
743 |
> |
template<typename T> void Integrator<T>::rotate(int axes1, int axes2, |
744 |
> |
double angle, double ji[3], |
745 |
> |
double A[3][3]){ |
746 |
> |
int i, j, k; |
747 |
|
double sinAngle; |
748 |
|
double cosAngle; |
749 |
|
double angleSqr; |
755 |
|
|
756 |
|
// initialize the tempA |
757 |
|
|
758 |
< |
for(i=0; i<3; i++){ |
759 |
< |
for(j=0; j<3; j++){ |
758 |
> |
for (i = 0; i < 3; i++){ |
759 |
> |
for (j = 0; j < 3; j++){ |
760 |
|
tempA[j][i] = A[i][j]; |
761 |
|
} |
762 |
|
} |
763 |
|
|
764 |
|
// initialize the tempJ |
765 |
|
|
766 |
< |
for( i=0; i<3; i++) tempJ[i] = ji[i]; |
767 |
< |
|
766 |
> |
for (i = 0; i < 3; i++) |
767 |
> |
tempJ[i] = ji[i]; |
768 |
> |
|
769 |
|
// initalize rot as a unit matrix |
770 |
|
|
771 |
|
rot[0][0] = 1.0; |
775 |
|
rot[1][0] = 0.0; |
776 |
|
rot[1][1] = 1.0; |
777 |
|
rot[1][2] = 0.0; |
778 |
< |
|
778 |
> |
|
779 |
|
rot[2][0] = 0.0; |
780 |
|
rot[2][1] = 0.0; |
781 |
|
rot[2][2] = 1.0; |
782 |
< |
|
782 |
> |
|
783 |
|
// use a small angle aproximation for sin and cosine |
784 |
|
|
785 |
< |
angleSqr = angle * angle; |
785 |
> |
angleSqr = angle * angle; |
786 |
|
angleSqrOver4 = angleSqr / 4.0; |
787 |
|
top = 1.0 - angleSqrOver4; |
788 |
|
bottom = 1.0 + angleSqrOver4; |
795 |
|
|
796 |
|
rot[axes1][axes2] = sinAngle; |
797 |
|
rot[axes2][axes1] = -sinAngle; |
798 |
< |
|
798 |
> |
|
799 |
|
// rotate the momentum acoording to: ji[] = rot[][] * ji[] |
800 |
< |
|
801 |
< |
for(i=0; i<3; i++){ |
800 |
> |
|
801 |
> |
for (i = 0; i < 3; i++){ |
802 |
|
ji[i] = 0.0; |
803 |
< |
for(k=0; k<3; k++){ |
803 |
> |
for (k = 0; k < 3; k++){ |
804 |
|
ji[i] += rot[i][k] * tempJ[k]; |
805 |
|
} |
806 |
|
} |
807 |
|
|
808 |
< |
// rotate the Rotation matrix acording to: |
808 |
> |
// rotate the Rotation matrix acording to: |
809 |
|
// A[][] = A[][] * transpose(rot[][]) |
810 |
|
|
811 |
|
|
813 |
|
// calculation as: |
814 |
|
// transpose(A[][]) = transpose(A[][]) * transpose(rot[][]) |
815 |
|
|
816 |
< |
for(i=0; i<3; i++){ |
817 |
< |
for(j=0; j<3; j++){ |
816 |
> |
for (i = 0; i < 3; i++){ |
817 |
> |
for (j = 0; j < 3; j++){ |
818 |
|
A[j][i] = 0.0; |
819 |
< |
for(k=0; k<3; k++){ |
820 |
< |
A[j][i] += tempA[i][k] * rot[j][k]; |
819 |
> |
for (k = 0; k < 3; k++){ |
820 |
> |
A[j][i] += tempA[i][k] * rot[j][k]; |
821 |
|
} |
822 |
|
} |
823 |
|
} |
824 |
|
} |
825 |
|
|
826 |
< |
template<typename T> void Integrator<T>::calcForce( int calcPot, int calcStress ){ |
827 |
< |
myFF->doForces(calcPot,calcStress); |
779 |
< |
|
826 |
> |
template<typename T> void Integrator<T>::calcForce(int calcPot, int calcStress){ |
827 |
> |
myFF->doForces(calcPot, calcStress); |
828 |
|
} |
829 |
|
|
830 |
|
template<typename T> void Integrator<T>::thermalize(){ |
831 |
< |
tStats->velocitize(); |
831 |
> |
tStats->velocitize(); |
832 |
|
} |
833 |
+ |
|
834 |
+ |
template<typename T> double Integrator<T>::getConservedQuantity(void){ |
835 |
+ |
return tStats->getTotalE(); |
836 |
+ |
} |
837 |
+ |
template<typename T> string Integrator<T>::getAdditionalParameters(void){ |
838 |
+ |
//By default, return a null string |
839 |
+ |
//The reason we use string instead of char* is that if we use char*, we will |
840 |
+ |
//return a pointer point to local variable which might cause problem |
841 |
+ |
return string(); |
842 |
+ |
} |