1 |
|
#include <iostream> |
2 |
< |
#include <cstdlib> |
3 |
< |
#include <cmath> |
2 |
> |
#include <stdlib.h> |
3 |
> |
#include <math.h> |
4 |
|
|
5 |
|
#ifdef IS_MPI |
6 |
|
#include "mpiSimulation.hpp" |
7 |
|
#include <unistd.h> |
8 |
|
#endif //is_mpi |
9 |
|
|
10 |
+ |
#ifdef PROFILE |
11 |
+ |
#include "mdProfile.hpp" |
12 |
+ |
#endif // profile |
13 |
+ |
|
14 |
|
#include "Integrator.hpp" |
15 |
|
#include "simError.h" |
16 |
|
|
17 |
|
|
18 |
< |
Integrator::Integrator( SimInfo *theInfo, ForceFields* the_ff ){ |
19 |
< |
|
18 |
> |
template<typename T> Integrator<T>::Integrator(SimInfo* theInfo, |
19 |
> |
ForceFields* the_ff){ |
20 |
|
info = theInfo; |
21 |
|
myFF = the_ff; |
22 |
|
isFirst = 1; |
25 |
|
nMols = info->n_mol; |
26 |
|
|
27 |
|
// give a little love back to the SimInfo object |
24 |
– |
|
25 |
– |
if( info->the_integrator != NULL ) delete info->the_integrator; |
26 |
– |
info->the_integrator = this; |
28 |
|
|
29 |
< |
nAtoms = info->n_atoms; |
29 |
> |
if (info->the_integrator != NULL){ |
30 |
> |
delete info->the_integrator; |
31 |
> |
} |
32 |
|
|
33 |
+ |
nAtoms = info->n_atoms; |
34 |
+ |
integrableObjects = info->integrableObjects; |
35 |
+ |
|
36 |
|
// check for constraints |
37 |
< |
|
38 |
< |
constrainedA = NULL; |
39 |
< |
constrainedB = NULL; |
37 |
> |
|
38 |
> |
constrainedA = NULL; |
39 |
> |
constrainedB = NULL; |
40 |
|
constrainedDsqr = NULL; |
41 |
< |
moving = NULL; |
42 |
< |
moved = NULL; |
43 |
< |
oldPos = NULL; |
44 |
< |
|
41 |
> |
moving = NULL; |
42 |
> |
moved = NULL; |
43 |
> |
oldPos = NULL; |
44 |
> |
|
45 |
|
nConstrained = 0; |
46 |
|
|
47 |
|
checkConstraints(); |
48 |
+ |
|
49 |
|
} |
50 |
|
|
51 |
< |
Integrator::~Integrator() { |
52 |
< |
|
46 |
< |
if( nConstrained ){ |
51 |
> |
template<typename T> Integrator<T>::~Integrator(){ |
52 |
> |
if (nConstrained){ |
53 |
|
delete[] constrainedA; |
54 |
|
delete[] constrainedB; |
55 |
|
delete[] constrainedDsqr; |
57 |
|
delete[] moved; |
58 |
|
delete[] oldPos; |
59 |
|
} |
54 |
– |
|
60 |
|
} |
61 |
|
|
62 |
< |
void Integrator::checkConstraints( void ){ |
58 |
< |
|
59 |
< |
|
62 |
> |
template<typename T> void Integrator<T>::checkConstraints(void){ |
63 |
|
isConstrained = 0; |
64 |
|
|
65 |
< |
Constraint *temp_con; |
66 |
< |
Constraint *dummy_plug; |
65 |
> |
Constraint* temp_con; |
66 |
> |
Constraint* dummy_plug; |
67 |
|
temp_con = new Constraint[info->n_SRI]; |
68 |
|
nConstrained = 0; |
69 |
|
int constrained = 0; |
70 |
< |
|
70 |
> |
|
71 |
|
SRI** theArray; |
72 |
< |
for(int i = 0; i < nMols; i++){ |
73 |
< |
|
74 |
< |
theArray = (SRI**) molecules[i].getMyBonds(); |
75 |
< |
for(int j=0; j<molecules[i].getNBonds(); j++){ |
73 |
< |
|
72 |
> |
for (int i = 0; i < nMols; i++){ |
73 |
> |
|
74 |
> |
theArray = (SRI * *) molecules[i].getMyBonds(); |
75 |
> |
for (int j = 0; j < molecules[i].getNBonds(); j++){ |
76 |
|
constrained = theArray[j]->is_constrained(); |
77 |
|
|
78 |
< |
std::cerr << "Is the folowing bond constrained \n"; |
79 |
< |
theArray[j]->printMe(); |
80 |
< |
|
81 |
< |
if(constrained){ |
82 |
< |
|
81 |
< |
std::cerr << "Yes\n"; |
78 |
> |
if (constrained){ |
79 |
> |
dummy_plug = theArray[j]->get_constraint(); |
80 |
> |
temp_con[nConstrained].set_a(dummy_plug->get_a()); |
81 |
> |
temp_con[nConstrained].set_b(dummy_plug->get_b()); |
82 |
> |
temp_con[nConstrained].set_dsqr(dummy_plug->get_dsqr()); |
83 |
|
|
84 |
< |
dummy_plug = theArray[j]->get_constraint(); |
85 |
< |
temp_con[nConstrained].set_a( dummy_plug->get_a() ); |
86 |
< |
temp_con[nConstrained].set_b( dummy_plug->get_b() ); |
86 |
< |
temp_con[nConstrained].set_dsqr( dummy_plug->get_dsqr() ); |
87 |
< |
|
88 |
< |
nConstrained++; |
89 |
< |
constrained = 0; |
90 |
< |
} |
91 |
< |
else std::cerr << "No.\n"; |
84 |
> |
nConstrained++; |
85 |
> |
constrained = 0; |
86 |
> |
} |
87 |
|
} |
88 |
|
|
89 |
< |
theArray = (SRI**) molecules[i].getMyBends(); |
90 |
< |
for(int j=0; j<molecules[i].getNBends(); j++){ |
96 |
< |
|
89 |
> |
theArray = (SRI * *) molecules[i].getMyBends(); |
90 |
> |
for (int j = 0; j < molecules[i].getNBends(); j++){ |
91 |
|
constrained = theArray[j]->is_constrained(); |
92 |
< |
|
93 |
< |
if(constrained){ |
94 |
< |
|
95 |
< |
dummy_plug = theArray[j]->get_constraint(); |
96 |
< |
temp_con[nConstrained].set_a( dummy_plug->get_a() ); |
97 |
< |
temp_con[nConstrained].set_b( dummy_plug->get_b() ); |
98 |
< |
temp_con[nConstrained].set_dsqr( dummy_plug->get_dsqr() ); |
99 |
< |
|
100 |
< |
nConstrained++; |
107 |
< |
constrained = 0; |
92 |
> |
|
93 |
> |
if (constrained){ |
94 |
> |
dummy_plug = theArray[j]->get_constraint(); |
95 |
> |
temp_con[nConstrained].set_a(dummy_plug->get_a()); |
96 |
> |
temp_con[nConstrained].set_b(dummy_plug->get_b()); |
97 |
> |
temp_con[nConstrained].set_dsqr(dummy_plug->get_dsqr()); |
98 |
> |
|
99 |
> |
nConstrained++; |
100 |
> |
constrained = 0; |
101 |
|
} |
102 |
|
} |
103 |
|
|
104 |
< |
theArray = (SRI**) molecules[i].getMyTorsions(); |
105 |
< |
for(int j=0; j<molecules[i].getNTorsions(); j++){ |
113 |
< |
|
104 |
> |
theArray = (SRI * *) molecules[i].getMyTorsions(); |
105 |
> |
for (int j = 0; j < molecules[i].getNTorsions(); j++){ |
106 |
|
constrained = theArray[j]->is_constrained(); |
107 |
< |
|
108 |
< |
if(constrained){ |
109 |
< |
|
110 |
< |
dummy_plug = theArray[j]->get_constraint(); |
111 |
< |
temp_con[nConstrained].set_a( dummy_plug->get_a() ); |
112 |
< |
temp_con[nConstrained].set_b( dummy_plug->get_b() ); |
113 |
< |
temp_con[nConstrained].set_dsqr( dummy_plug->get_dsqr() ); |
114 |
< |
|
115 |
< |
nConstrained++; |
124 |
< |
constrained = 0; |
107 |
> |
|
108 |
> |
if (constrained){ |
109 |
> |
dummy_plug = theArray[j]->get_constraint(); |
110 |
> |
temp_con[nConstrained].set_a(dummy_plug->get_a()); |
111 |
> |
temp_con[nConstrained].set_b(dummy_plug->get_b()); |
112 |
> |
temp_con[nConstrained].set_dsqr(dummy_plug->get_dsqr()); |
113 |
> |
|
114 |
> |
nConstrained++; |
115 |
> |
constrained = 0; |
116 |
|
} |
117 |
|
} |
118 |
|
} |
119 |
|
|
120 |
< |
if(nConstrained > 0){ |
121 |
< |
|
120 |
> |
|
121 |
> |
if (nConstrained > 0){ |
122 |
|
isConstrained = 1; |
123 |
|
|
124 |
< |
if(constrainedA != NULL ) delete[] constrainedA; |
125 |
< |
if(constrainedB != NULL ) delete[] constrainedB; |
126 |
< |
if(constrainedDsqr != NULL ) delete[] constrainedDsqr; |
124 |
> |
if (constrainedA != NULL) |
125 |
> |
delete[] constrainedA; |
126 |
> |
if (constrainedB != NULL) |
127 |
> |
delete[] constrainedB; |
128 |
> |
if (constrainedDsqr != NULL) |
129 |
> |
delete[] constrainedDsqr; |
130 |
|
|
131 |
< |
constrainedA = new int[nConstrained]; |
132 |
< |
constrainedB = new int[nConstrained]; |
131 |
> |
constrainedA = new int[nConstrained]; |
132 |
> |
constrainedB = new int[nConstrained]; |
133 |
|
constrainedDsqr = new double[nConstrained]; |
134 |
< |
|
135 |
< |
for( int i = 0; i < nConstrained; i++){ |
142 |
< |
|
134 |
> |
|
135 |
> |
for (int i = 0; i < nConstrained; i++){ |
136 |
|
constrainedA[i] = temp_con[i].get_a(); |
137 |
|
constrainedB[i] = temp_con[i].get_b(); |
138 |
|
constrainedDsqr[i] = temp_con[i].get_dsqr(); |
146 |
– |
|
139 |
|
} |
140 |
|
|
141 |
< |
|
142 |
< |
// save oldAtoms to check for lode balanceing later on. |
143 |
< |
|
141 |
> |
|
142 |
> |
// save oldAtoms to check for lode balancing later on. |
143 |
> |
|
144 |
|
oldAtoms = nAtoms; |
145 |
< |
|
145 |
> |
|
146 |
|
moving = new int[nAtoms]; |
147 |
< |
moved = new int[nAtoms]; |
147 |
> |
moved = new int[nAtoms]; |
148 |
|
|
149 |
< |
oldPos = new double[nAtoms*3]; |
149 |
> |
oldPos = new double[nAtoms * 3]; |
150 |
|
} |
151 |
< |
|
151 |
> |
|
152 |
|
delete[] temp_con; |
153 |
|
} |
154 |
|
|
155 |
|
|
156 |
< |
void Integrator::integrate( void ){ |
156 |
> |
template<typename T> void Integrator<T>::integrate(void){ |
157 |
|
|
158 |
< |
int i, j; // loop counters |
159 |
< |
|
160 |
< |
double runTime = info->run_time; |
169 |
< |
double sampleTime = info->sampleTime; |
170 |
< |
double statusTime = info->statusTime; |
158 |
> |
double runTime = info->run_time; |
159 |
> |
double sampleTime = info->sampleTime; |
160 |
> |
double statusTime = info->statusTime; |
161 |
|
double thermalTime = info->thermalTime; |
162 |
+ |
double resetTime = info->resetTime; |
163 |
|
|
164 |
+ |
double difference; |
165 |
|
double currSample; |
166 |
|
double currThermal; |
167 |
|
double currStatus; |
168 |
< |
double currTime; |
168 |
> |
double currReset; |
169 |
|
|
170 |
|
int calcPot, calcStress; |
179 |
– |
int isError; |
171 |
|
|
172 |
< |
tStats = new Thermo( info ); |
173 |
< |
statOut = new StatWriter( info ); |
174 |
< |
dumpOut = new DumpWriter( info ); |
172 |
> |
tStats = new Thermo(info); |
173 |
> |
statOut = new StatWriter(info); |
174 |
> |
dumpOut = new DumpWriter(info); |
175 |
|
|
176 |
|
atoms = info->atoms; |
186 |
– |
DirectionalAtom* dAtom; |
177 |
|
|
178 |
|
dt = info->dt; |
179 |
|
dt2 = 0.5 * dt; |
180 |
|
|
181 |
+ |
readyCheck(); |
182 |
+ |
|
183 |
+ |
// remove center of mass drift velocity (in case we passed in a configuration |
184 |
+ |
// that was drifting |
185 |
+ |
tStats->removeCOMdrift(); |
186 |
+ |
|
187 |
+ |
// initialize the retraints if necessary |
188 |
+ |
if (info->useSolidThermInt && !info->useLiquidThermInt) { |
189 |
+ |
myFF->initRestraints(); |
190 |
+ |
} |
191 |
+ |
|
192 |
|
// initialize the forces before the first step |
193 |
|
|
194 |
< |
myFF->doForces(1,1); |
194 |
> |
calcForce(1, 1); |
195 |
|
|
196 |
< |
if( info->setTemp ){ |
197 |
< |
|
198 |
< |
tStats->velocitize(); |
196 |
> |
if (nConstrained){ |
197 |
> |
preMove(); |
198 |
> |
constrainA(); |
199 |
> |
calcForce(1, 1); |
200 |
> |
constrainB(); |
201 |
|
} |
202 |
|
|
203 |
< |
dumpOut->writeDump( 0.0 ); |
204 |
< |
statOut->writeStat( 0.0 ); |
205 |
< |
|
203 |
> |
if (info->setTemp){ |
204 |
> |
thermalize(); |
205 |
> |
} |
206 |
> |
|
207 |
|
calcPot = 0; |
208 |
|
calcStress = 0; |
209 |
< |
currSample = sampleTime; |
210 |
< |
currThermal = thermalTime; |
211 |
< |
currStatus = statusTime; |
212 |
< |
currTime = 0.0;; |
209 |
> |
currSample = sampleTime + info->getTime(); |
210 |
> |
currThermal = thermalTime+ info->getTime(); |
211 |
> |
currStatus = statusTime + info->getTime(); |
212 |
> |
currReset = resetTime + info->getTime(); |
213 |
|
|
214 |
+ |
dumpOut->writeDump(info->getTime()); |
215 |
+ |
statOut->writeStat(info->getTime()); |
216 |
|
|
211 |
– |
readyCheck(); |
217 |
|
|
218 |
|
#ifdef IS_MPI |
219 |
< |
strcpy( checkPointMsg, |
215 |
< |
"The integrator is ready to go." ); |
219 |
> |
strcpy(checkPointMsg, "The integrator is ready to go."); |
220 |
|
MPIcheckPoint(); |
221 |
|
#endif // is_mpi |
222 |
|
|
223 |
< |
while( currTime < runTime ){ |
224 |
< |
|
225 |
< |
if( (currTime+dt) >= currStatus ){ |
223 |
> |
while (info->getTime() < runTime && !stopIntegrator()){ |
224 |
> |
difference = info->getTime() + dt - currStatus; |
225 |
> |
if (difference > 0 || fabs(difference) < 1e-4 ){ |
226 |
|
calcPot = 1; |
227 |
|
calcStress = 1; |
228 |
|
} |
229 |
|
|
230 |
< |
integrateStep( calcPot, calcStress ); |
231 |
< |
|
232 |
< |
currTime += dt; |
230 |
> |
#ifdef PROFILE |
231 |
> |
startProfile( pro1 ); |
232 |
> |
#endif |
233 |
> |
|
234 |
> |
integrateStep(calcPot, calcStress); |
235 |
|
|
236 |
< |
if( info->setTemp ){ |
237 |
< |
if( currTime >= currThermal ){ |
238 |
< |
tStats->velocitize(); |
239 |
< |
currThermal += thermalTime; |
236 |
> |
#ifdef PROFILE |
237 |
> |
endProfile( pro1 ); |
238 |
> |
|
239 |
> |
startProfile( pro2 ); |
240 |
> |
#endif // profile |
241 |
> |
|
242 |
> |
info->incrTime(dt); |
243 |
> |
|
244 |
> |
if (info->setTemp){ |
245 |
> |
if (info->getTime() >= currThermal){ |
246 |
> |
thermalize(); |
247 |
> |
currThermal += thermalTime; |
248 |
|
} |
249 |
|
} |
250 |
|
|
251 |
< |
if( currTime >= currSample ){ |
252 |
< |
dumpOut->writeDump( currTime ); |
251 |
> |
if (info->getTime() >= currSample){ |
252 |
> |
dumpOut->writeDump(info->getTime()); |
253 |
|
currSample += sampleTime; |
254 |
|
} |
255 |
|
|
256 |
< |
if( currTime >= currStatus ){ |
257 |
< |
statOut->writeStat( currTime ); |
258 |
< |
calcPot = 0; |
256 |
> |
if (info->getTime() >= currStatus){ |
257 |
> |
statOut->writeStat(info->getTime()); |
258 |
> |
if (info->useSolidThermInt || info->useLiquidThermInt) |
259 |
> |
statOut->writeRaw(info->getTime()); |
260 |
> |
calcPot = 0; |
261 |
|
calcStress = 0; |
262 |
|
currStatus += statusTime; |
263 |
< |
} |
263 |
> |
} |
264 |
|
|
265 |
+ |
if (info->resetIntegrator){ |
266 |
+ |
if (info->getTime() >= currReset){ |
267 |
+ |
this->resetIntegrator(); |
268 |
+ |
currReset += resetTime; |
269 |
+ |
} |
270 |
+ |
} |
271 |
+ |
|
272 |
+ |
#ifdef PROFILE |
273 |
+ |
endProfile( pro2 ); |
274 |
+ |
#endif //profile |
275 |
+ |
|
276 |
|
#ifdef IS_MPI |
277 |
< |
strcpy( checkPointMsg, |
251 |
< |
"successfully took a time step." ); |
277 |
> |
strcpy(checkPointMsg, "successfully took a time step."); |
278 |
|
MPIcheckPoint(); |
279 |
|
#endif // is_mpi |
254 |
– |
|
280 |
|
} |
281 |
|
|
282 |
< |
dumpOut->writeFinal(currTime); |
282 |
> |
// dump out a file containing the omega values for the final configuration |
283 |
> |
if (info->useSolidThermInt && !info->useLiquidThermInt) |
284 |
> |
myFF->dumpzAngle(); |
285 |
> |
|
286 |
|
|
287 |
|
delete dumpOut; |
288 |
|
delete statOut; |
289 |
|
} |
290 |
|
|
291 |
< |
void Integrator::integrateStep( int calcPot, int calcStress ){ |
292 |
< |
|
265 |
< |
|
266 |
< |
|
291 |
> |
template<typename T> void Integrator<T>::integrateStep(int calcPot, |
292 |
> |
int calcStress){ |
293 |
|
// Position full step, and velocity half step |
294 |
|
|
295 |
+ |
#ifdef PROFILE |
296 |
+ |
startProfile(pro3); |
297 |
+ |
#endif //profile |
298 |
+ |
|
299 |
|
preMove(); |
300 |
+ |
|
301 |
+ |
#ifdef PROFILE |
302 |
+ |
endProfile(pro3); |
303 |
+ |
|
304 |
+ |
startProfile(pro4); |
305 |
+ |
#endif // profile |
306 |
+ |
|
307 |
|
moveA(); |
271 |
– |
if( nConstrained ) constrainA(); |
308 |
|
|
309 |
+ |
#ifdef PROFILE |
310 |
+ |
endProfile(pro4); |
311 |
+ |
|
312 |
+ |
startProfile(pro5); |
313 |
+ |
#endif//profile |
314 |
+ |
|
315 |
+ |
|
316 |
+ |
#ifdef IS_MPI |
317 |
+ |
strcpy(checkPointMsg, "Succesful moveA\n"); |
318 |
+ |
MPIcheckPoint(); |
319 |
+ |
#endif // is_mpi |
320 |
+ |
|
321 |
|
// calc forces |
322 |
+ |
calcForce(calcPot, calcStress); |
323 |
|
|
324 |
< |
myFF->doForces(calcPot,calcStress); |
324 |
> |
#ifdef IS_MPI |
325 |
> |
strcpy(checkPointMsg, "Succesful doForces\n"); |
326 |
> |
MPIcheckPoint(); |
327 |
> |
#endif // is_mpi |
328 |
|
|
329 |
+ |
#ifdef PROFILE |
330 |
+ |
endProfile( pro5 ); |
331 |
+ |
|
332 |
+ |
startProfile( pro6 ); |
333 |
+ |
#endif //profile |
334 |
+ |
|
335 |
|
// finish the velocity half step |
336 |
< |
|
336 |
> |
|
337 |
|
moveB(); |
338 |
< |
if( nConstrained ) constrainB(); |
339 |
< |
|
338 |
> |
|
339 |
> |
#ifdef PROFILE |
340 |
> |
endProfile(pro6); |
341 |
> |
#endif // profile |
342 |
> |
|
343 |
> |
#ifdef IS_MPI |
344 |
> |
strcpy(checkPointMsg, "Succesful moveB\n"); |
345 |
> |
MPIcheckPoint(); |
346 |
> |
#endif // is_mpi |
347 |
|
} |
348 |
|
|
349 |
|
|
350 |
< |
void Integrator::moveA( void ){ |
351 |
< |
|
287 |
< |
int i, j; |
350 |
> |
template<typename T> void Integrator<T>::moveA(void){ |
351 |
> |
size_t i, j; |
352 |
|
DirectionalAtom* dAtom; |
353 |
|
double Tb[3], ji[3]; |
290 |
– |
double A[3][3], I[3][3]; |
291 |
– |
double angle; |
354 |
|
double vel[3], pos[3], frc[3]; |
355 |
|
double mass; |
356 |
+ |
double omega; |
357 |
+ |
|
358 |
+ |
for (i = 0; i < integrableObjects.size() ; i++){ |
359 |
+ |
integrableObjects[i]->getVel(vel); |
360 |
+ |
integrableObjects[i]->getPos(pos); |
361 |
+ |
integrableObjects[i]->getFrc(frc); |
362 |
+ |
|
363 |
+ |
mass = integrableObjects[i]->getMass(); |
364 |
|
|
365 |
< |
for( i=0; i<nAtoms; i++ ){ |
296 |
< |
|
297 |
< |
atoms[i]->getVel( vel ); |
298 |
< |
atoms[i]->getPos( pos ); |
299 |
< |
atoms[i]->getFrc( frc ); |
300 |
< |
|
301 |
< |
mass = atoms[i]->getMass(); |
302 |
< |
|
303 |
< |
for (j=0; j < 3; j++) { |
365 |
> |
for (j = 0; j < 3; j++){ |
366 |
|
// velocity half step |
367 |
< |
vel[j] += ( dt2 * frc[j] / mass ) * eConvert; |
367 |
> |
vel[j] += (dt2 * frc[j] / mass) * eConvert; |
368 |
|
// position whole step |
369 |
|
pos[j] += dt * vel[j]; |
370 |
|
} |
371 |
|
|
372 |
< |
atoms[i]->setVel( vel ); |
373 |
< |
atoms[i]->setPos( pos ); |
372 |
> |
integrableObjects[i]->setVel(vel); |
373 |
> |
integrableObjects[i]->setPos(pos); |
374 |
|
|
375 |
< |
if( atoms[i]->isDirectional() ){ |
375 |
> |
if (integrableObjects[i]->isDirectional()){ |
376 |
|
|
315 |
– |
dAtom = (DirectionalAtom *)atoms[i]; |
316 |
– |
|
377 |
|
// get and convert the torque to body frame |
318 |
– |
|
319 |
– |
dAtom->getTrq( Tb ); |
320 |
– |
dAtom->lab2Body( Tb ); |
378 |
|
|
379 |
+ |
integrableObjects[i]->getTrq(Tb); |
380 |
+ |
integrableObjects[i]->lab2Body(Tb); |
381 |
+ |
|
382 |
|
// get the angular momentum, and propagate a half step |
383 |
|
|
384 |
< |
dAtom->getJ( ji ); |
384 |
> |
integrableObjects[i]->getJ(ji); |
385 |
|
|
386 |
< |
for (j=0; j < 3; j++) |
386 |
> |
for (j = 0; j < 3; j++) |
387 |
|
ji[j] += (dt2 * Tb[j]) * eConvert; |
328 |
– |
|
329 |
– |
// use the angular velocities to propagate the rotation matrix a |
330 |
– |
// full time step |
388 |
|
|
389 |
< |
dAtom->getA(A); |
333 |
< |
dAtom->getI(I); |
334 |
< |
|
335 |
< |
// rotate about the x-axis |
336 |
< |
angle = dt2 * ji[0] / I[0][0]; |
337 |
< |
this->rotate( 1, 2, angle, ji, A ); |
389 |
> |
this->rotationPropagation( integrableObjects[i], ji ); |
390 |
|
|
391 |
< |
// rotate about the y-axis |
392 |
< |
angle = dt2 * ji[1] / I[1][1]; |
393 |
< |
this->rotate( 2, 0, angle, ji, A ); |
342 |
< |
|
343 |
< |
// rotate about the z-axis |
344 |
< |
angle = dt * ji[2] / I[2][2]; |
345 |
< |
this->rotate( 0, 1, angle, ji, A); |
346 |
< |
|
347 |
< |
// rotate about the y-axis |
348 |
< |
angle = dt2 * ji[1] / I[1][1]; |
349 |
< |
this->rotate( 2, 0, angle, ji, A ); |
350 |
< |
|
351 |
< |
// rotate about the x-axis |
352 |
< |
angle = dt2 * ji[0] / I[0][0]; |
353 |
< |
this->rotate( 1, 2, angle, ji, A ); |
354 |
< |
|
391 |
> |
integrableObjects[i]->setJ(ji); |
392 |
> |
} |
393 |
> |
} |
394 |
|
|
395 |
< |
dAtom->setJ( ji ); |
396 |
< |
dAtom->setA( A ); |
358 |
< |
|
359 |
< |
} |
395 |
> |
if (nConstrained){ |
396 |
> |
constrainA(); |
397 |
|
} |
398 |
|
} |
399 |
|
|
400 |
|
|
401 |
< |
void Integrator::moveB( void ){ |
401 |
> |
template<typename T> void Integrator<T>::moveB(void){ |
402 |
|
int i, j; |
366 |
– |
DirectionalAtom* dAtom; |
403 |
|
double Tb[3], ji[3]; |
404 |
|
double vel[3], frc[3]; |
405 |
|
double mass; |
406 |
|
|
407 |
< |
for( i=0; i<nAtoms; i++ ){ |
408 |
< |
|
409 |
< |
atoms[i]->getVel( vel ); |
374 |
< |
atoms[i]->getFrc( frc ); |
407 |
> |
for (i = 0; i < integrableObjects.size(); i++){ |
408 |
> |
integrableObjects[i]->getVel(vel); |
409 |
> |
integrableObjects[i]->getFrc(frc); |
410 |
|
|
411 |
< |
mass = atoms[i]->getMass(); |
411 |
> |
mass = integrableObjects[i]->getMass(); |
412 |
|
|
413 |
|
// velocity half step |
414 |
< |
for (j=0; j < 3; j++) |
415 |
< |
vel[j] += ( dt2 * frc[j] / mass ) * eConvert; |
381 |
< |
|
382 |
< |
atoms[i]->setVel( vel ); |
383 |
< |
|
384 |
< |
if( atoms[i]->isDirectional() ){ |
414 |
> |
for (j = 0; j < 3; j++) |
415 |
> |
vel[j] += (dt2 * frc[j] / mass) * eConvert; |
416 |
|
|
417 |
< |
dAtom = (DirectionalAtom *)atoms[i]; |
417 |
> |
integrableObjects[i]->setVel(vel); |
418 |
|
|
419 |
< |
// get and convert the torque to body frame |
419 |
> |
if (integrableObjects[i]->isDirectional()){ |
420 |
|
|
421 |
< |
dAtom->getTrq( Tb ); |
391 |
< |
dAtom->lab2Body( Tb ); |
421 |
> |
// get and convert the torque to body frame |
422 |
|
|
423 |
+ |
integrableObjects[i]->getTrq(Tb); |
424 |
+ |
integrableObjects[i]->lab2Body(Tb); |
425 |
+ |
|
426 |
|
// get the angular momentum, and propagate a half step |
427 |
|
|
428 |
< |
dAtom->getJ( ji ); |
428 |
> |
integrableObjects[i]->getJ(ji); |
429 |
|
|
430 |
< |
for (j=0; j < 3; j++) |
430 |
> |
for (j = 0; j < 3; j++) |
431 |
|
ji[j] += (dt2 * Tb[j]) * eConvert; |
399 |
– |
|
432 |
|
|
433 |
< |
dAtom->setJ( ji ); |
433 |
> |
|
434 |
> |
integrableObjects[i]->setJ(ji); |
435 |
|
} |
436 |
|
} |
437 |
+ |
|
438 |
+ |
if (nConstrained){ |
439 |
+ |
constrainB(); |
440 |
+ |
} |
441 |
|
} |
442 |
|
|
443 |
< |
void Integrator::preMove( void ){ |
443 |
> |
template<typename T> void Integrator<T>::preMove(void){ |
444 |
|
int i, j; |
445 |
|
double pos[3]; |
446 |
|
|
447 |
< |
if( nConstrained ){ |
448 |
< |
|
449 |
< |
for(i=0; i < nAtoms; i++) { |
413 |
< |
|
414 |
< |
atoms[i]->getPos( pos ); |
415 |
< |
|
416 |
< |
for (j = 0; j < 3; j++) { |
417 |
< |
oldPos[3*i + j] = pos[j]; |
418 |
< |
} |
447 |
> |
if (nConstrained){ |
448 |
> |
for (i = 0; i < nAtoms; i++){ |
449 |
> |
atoms[i]->getPos(pos); |
450 |
|
|
451 |
+ |
for (j = 0; j < 3; j++){ |
452 |
+ |
oldPos[3 * i + j] = pos[j]; |
453 |
+ |
} |
454 |
|
} |
455 |
< |
} |
455 |
> |
} |
456 |
|
} |
457 |
|
|
458 |
< |
void Integrator::constrainA(){ |
459 |
< |
|
426 |
< |
int i,j,k; |
458 |
> |
template<typename T> void Integrator<T>::constrainA(){ |
459 |
> |
int i, j; |
460 |
|
int done; |
461 |
|
double posA[3], posB[3]; |
462 |
|
double velA[3], velB[3]; |
471 |
|
double gab; |
472 |
|
int iteration; |
473 |
|
|
474 |
< |
for( i=0; i<nAtoms; i++){ |
474 |
> |
for (i = 0; i < nAtoms; i++){ |
475 |
|
moving[i] = 0; |
476 |
< |
moved[i] = 1; |
476 |
> |
moved[i] = 1; |
477 |
|
} |
478 |
|
|
479 |
|
iteration = 0; |
480 |
|
done = 0; |
481 |
< |
while( !done && (iteration < maxIteration )){ |
449 |
< |
|
481 |
> |
while (!done && (iteration < maxIteration)){ |
482 |
|
done = 1; |
483 |
< |
for(i=0; i<nConstrained; i++){ |
452 |
< |
|
483 |
> |
for (i = 0; i < nConstrained; i++){ |
484 |
|
a = constrainedA[i]; |
485 |
|
b = constrainedB[i]; |
455 |
– |
|
456 |
– |
ax = (a*3) + 0; |
457 |
– |
ay = (a*3) + 1; |
458 |
– |
az = (a*3) + 2; |
486 |
|
|
487 |
< |
bx = (b*3) + 0; |
488 |
< |
by = (b*3) + 1; |
489 |
< |
bz = (b*3) + 2; |
487 |
> |
ax = (a * 3) + 0; |
488 |
> |
ay = (a * 3) + 1; |
489 |
> |
az = (a * 3) + 2; |
490 |
|
|
491 |
< |
if( moved[a] || moved[b] ){ |
492 |
< |
|
493 |
< |
atoms[a]->getPos( posA ); |
494 |
< |
atoms[b]->getPos( posB ); |
495 |
< |
|
496 |
< |
for (j = 0; j < 3; j++ ) |
491 |
> |
bx = (b * 3) + 0; |
492 |
> |
by = (b * 3) + 1; |
493 |
> |
bz = (b * 3) + 2; |
494 |
> |
|
495 |
> |
if (moved[a] || moved[b]){ |
496 |
> |
atoms[a]->getPos(posA); |
497 |
> |
atoms[b]->getPos(posB); |
498 |
> |
|
499 |
> |
for (j = 0; j < 3; j++) |
500 |
|
pab[j] = posA[j] - posB[j]; |
471 |
– |
|
472 |
– |
//periodic boundary condition |
501 |
|
|
502 |
< |
info->wrapVector( pab ); |
502 |
> |
//periodic boundary condition |
503 |
|
|
504 |
< |
pabsq = pab[0] * pab[0] + pab[1] * pab[1] + pab[2] * pab[2]; |
504 |
> |
info->wrapVector(pab); |
505 |
|
|
506 |
< |
rabsq = constrainedDsqr[i]; |
479 |
< |
diffsq = rabsq - pabsq; |
506 |
> |
pabsq = pab[0] * pab[0] + pab[1] * pab[1] + pab[2] * pab[2]; |
507 |
|
|
508 |
< |
// the original rattle code from alan tidesley |
509 |
< |
if (fabs(diffsq) > (tol*rabsq*2)) { |
483 |
< |
rab[0] = oldPos[ax] - oldPos[bx]; |
484 |
< |
rab[1] = oldPos[ay] - oldPos[by]; |
485 |
< |
rab[2] = oldPos[az] - oldPos[bz]; |
508 |
> |
rabsq = constrainedDsqr[i]; |
509 |
> |
diffsq = rabsq - pabsq; |
510 |
|
|
511 |
< |
info->wrapVector( rab ); |
511 |
> |
// the original rattle code from alan tidesley |
512 |
> |
if (fabs(diffsq) > (tol * rabsq * 2)){ |
513 |
> |
rab[0] = oldPos[ax] - oldPos[bx]; |
514 |
> |
rab[1] = oldPos[ay] - oldPos[by]; |
515 |
> |
rab[2] = oldPos[az] - oldPos[bz]; |
516 |
|
|
517 |
< |
rpab = rab[0] * pab[0] + rab[1] * pab[1] + rab[2] * pab[2]; |
517 |
> |
info->wrapVector(rab); |
518 |
|
|
519 |
< |
rpabsq = rpab * rpab; |
519 |
> |
rpab = rab[0] * pab[0] + rab[1] * pab[1] + rab[2] * pab[2]; |
520 |
|
|
521 |
+ |
rpabsq = rpab * rpab; |
522 |
|
|
494 |
– |
if (rpabsq < (rabsq * -diffsq)){ |
523 |
|
|
524 |
+ |
if (rpabsq < (rabsq * -diffsq)){ |
525 |
|
#ifdef IS_MPI |
526 |
< |
a = atoms[a]->getGlobalIndex(); |
527 |
< |
b = atoms[b]->getGlobalIndex(); |
526 |
> |
a = atoms[a]->getGlobalIndex(); |
527 |
> |
b = atoms[b]->getGlobalIndex(); |
528 |
|
#endif //is_mpi |
529 |
< |
sprintf( painCave.errMsg, |
530 |
< |
"Constraint failure in constrainA at atom %d and %d.\n", |
531 |
< |
a, b ); |
532 |
< |
painCave.isFatal = 1; |
533 |
< |
simError(); |
534 |
< |
} |
529 |
> |
sprintf(painCave.errMsg, |
530 |
> |
"Constraint failure in constrainA at atom %d and %d.\n", a, |
531 |
> |
b); |
532 |
> |
painCave.isFatal = 1; |
533 |
> |
simError(); |
534 |
> |
} |
535 |
|
|
536 |
< |
rma = 1.0 / atoms[a]->getMass(); |
537 |
< |
rmb = 1.0 / atoms[b]->getMass(); |
536 |
> |
rma = 1.0 / atoms[a]->getMass(); |
537 |
> |
rmb = 1.0 / atoms[b]->getMass(); |
538 |
|
|
539 |
< |
gab = diffsq / ( 2.0 * ( rma + rmb ) * rpab ); |
539 |
> |
gab = diffsq / (2.0 * (rma + rmb) * rpab); |
540 |
|
|
541 |
|
dx = rab[0] * gab; |
542 |
|
dy = rab[1] * gab; |
543 |
|
dz = rab[2] * gab; |
544 |
|
|
545 |
< |
posA[0] += rma * dx; |
546 |
< |
posA[1] += rma * dy; |
547 |
< |
posA[2] += rma * dz; |
545 |
> |
posA[0] += rma * dx; |
546 |
> |
posA[1] += rma * dy; |
547 |
> |
posA[2] += rma * dz; |
548 |
|
|
549 |
< |
atoms[a]->setPos( posA ); |
549 |
> |
atoms[a]->setPos(posA); |
550 |
|
|
551 |
< |
posB[0] -= rmb * dx; |
552 |
< |
posB[1] -= rmb * dy; |
553 |
< |
posB[2] -= rmb * dz; |
551 |
> |
posB[0] -= rmb * dx; |
552 |
> |
posB[1] -= rmb * dy; |
553 |
> |
posB[2] -= rmb * dz; |
554 |
|
|
555 |
< |
atoms[b]->setPos( posB ); |
555 |
> |
atoms[b]->setPos(posB); |
556 |
|
|
557 |
|
dx = dx / dt; |
558 |
|
dy = dy / dt; |
559 |
|
dz = dz / dt; |
560 |
|
|
561 |
< |
atoms[a]->getVel( velA ); |
561 |
> |
atoms[a]->getVel(velA); |
562 |
|
|
563 |
< |
velA[0] += rma * dx; |
564 |
< |
velA[1] += rma * dy; |
565 |
< |
velA[2] += rma * dz; |
563 |
> |
velA[0] += rma * dx; |
564 |
> |
velA[1] += rma * dy; |
565 |
> |
velA[2] += rma * dz; |
566 |
|
|
567 |
< |
atoms[a]->setVel( velA ); |
567 |
> |
atoms[a]->setVel(velA); |
568 |
|
|
569 |
< |
atoms[b]->getVel( velB ); |
569 |
> |
atoms[b]->getVel(velB); |
570 |
|
|
571 |
< |
velB[0] -= rmb * dx; |
572 |
< |
velB[1] -= rmb * dy; |
573 |
< |
velB[2] -= rmb * dz; |
571 |
> |
velB[0] -= rmb * dx; |
572 |
> |
velB[1] -= rmb * dy; |
573 |
> |
velB[2] -= rmb * dz; |
574 |
|
|
575 |
< |
atoms[b]->setVel( velB ); |
575 |
> |
atoms[b]->setVel(velB); |
576 |
|
|
577 |
< |
moving[a] = 1; |
578 |
< |
moving[b] = 1; |
579 |
< |
done = 0; |
580 |
< |
} |
577 |
> |
moving[a] = 1; |
578 |
> |
moving[b] = 1; |
579 |
> |
done = 0; |
580 |
> |
} |
581 |
|
} |
582 |
|
} |
583 |
< |
|
584 |
< |
for(i=0; i<nAtoms; i++){ |
556 |
< |
|
583 |
> |
|
584 |
> |
for (i = 0; i < nAtoms; i++){ |
585 |
|
moved[i] = moving[i]; |
586 |
|
moving[i] = 0; |
587 |
|
} |
589 |
|
iteration++; |
590 |
|
} |
591 |
|
|
592 |
< |
if( !done ){ |
593 |
< |
|
594 |
< |
sprintf( painCave.errMsg, |
595 |
< |
"Constraint failure in constrainA, too many iterations: %d\n", |
568 |
< |
iteration ); |
592 |
> |
if (!done){ |
593 |
> |
sprintf(painCave.errMsg, |
594 |
> |
"Constraint failure in constrainA, too many iterations: %d\n", |
595 |
> |
iteration); |
596 |
|
painCave.isFatal = 1; |
597 |
|
simError(); |
598 |
|
} |
599 |
|
|
600 |
|
} |
601 |
|
|
602 |
< |
void Integrator::constrainB( void ){ |
603 |
< |
|
577 |
< |
int i,j,k; |
602 |
> |
template<typename T> void Integrator<T>::constrainB(void){ |
603 |
> |
int i, j; |
604 |
|
int done; |
605 |
|
double posA[3], posB[3]; |
606 |
|
double velA[3], velB[3]; |
609 |
|
int a, b, ax, ay, az, bx, by, bz; |
610 |
|
double rma, rmb; |
611 |
|
double dx, dy, dz; |
612 |
< |
double rabsq, pabsq, rvab; |
587 |
< |
double diffsq; |
612 |
> |
double rvab; |
613 |
|
double gab; |
614 |
|
int iteration; |
615 |
|
|
616 |
< |
for(i=0; i<nAtoms; i++){ |
616 |
> |
for (i = 0; i < nAtoms; i++){ |
617 |
|
moving[i] = 0; |
618 |
|
moved[i] = 1; |
619 |
|
} |
620 |
|
|
621 |
|
done = 0; |
622 |
|
iteration = 0; |
623 |
< |
while( !done && (iteration < maxIteration ) ){ |
599 |
< |
|
623 |
> |
while (!done && (iteration < maxIteration)){ |
624 |
|
done = 1; |
625 |
|
|
626 |
< |
for(i=0; i<nConstrained; i++){ |
603 |
< |
|
626 |
> |
for (i = 0; i < nConstrained; i++){ |
627 |
|
a = constrainedA[i]; |
628 |
|
b = constrainedB[i]; |
629 |
|
|
630 |
< |
ax = (a*3) + 0; |
631 |
< |
ay = (a*3) + 1; |
632 |
< |
az = (a*3) + 2; |
630 |
> |
ax = (a * 3) + 0; |
631 |
> |
ay = (a * 3) + 1; |
632 |
> |
az = (a * 3) + 2; |
633 |
|
|
634 |
< |
bx = (b*3) + 0; |
635 |
< |
by = (b*3) + 1; |
636 |
< |
bz = (b*3) + 2; |
634 |
> |
bx = (b * 3) + 0; |
635 |
> |
by = (b * 3) + 1; |
636 |
> |
bz = (b * 3) + 2; |
637 |
|
|
638 |
< |
if( moved[a] || moved[b] ){ |
638 |
> |
if (moved[a] || moved[b]){ |
639 |
> |
atoms[a]->getVel(velA); |
640 |
> |
atoms[b]->getVel(velB); |
641 |
|
|
642 |
< |
atoms[a]->getVel( velA ); |
643 |
< |
atoms[b]->getVel( velB ); |
644 |
< |
|
620 |
< |
vxab = velA[0] - velB[0]; |
621 |
< |
vyab = velA[1] - velB[1]; |
622 |
< |
vzab = velA[2] - velB[2]; |
642 |
> |
vxab = velA[0] - velB[0]; |
643 |
> |
vyab = velA[1] - velB[1]; |
644 |
> |
vzab = velA[2] - velB[2]; |
645 |
|
|
646 |
< |
atoms[a]->getPos( posA ); |
647 |
< |
atoms[b]->getPos( posB ); |
646 |
> |
atoms[a]->getPos(posA); |
647 |
> |
atoms[b]->getPos(posB); |
648 |
|
|
649 |
< |
for (j = 0; j < 3; j++) |
649 |
> |
for (j = 0; j < 3; j++) |
650 |
|
rab[j] = posA[j] - posB[j]; |
629 |
– |
|
630 |
– |
info->wrapVector( rab ); |
631 |
– |
|
632 |
– |
rma = 1.0 / atoms[a]->getMass(); |
633 |
– |
rmb = 1.0 / atoms[b]->getMass(); |
651 |
|
|
652 |
< |
rvab = rab[0] * vxab + rab[1] * vyab + rab[2] * vzab; |
636 |
< |
|
637 |
< |
gab = -rvab / ( ( rma + rmb ) * constrainedDsqr[i] ); |
652 |
> |
info->wrapVector(rab); |
653 |
|
|
654 |
< |
if (fabs(gab) > tol) { |
655 |
< |
|
641 |
< |
dx = rab[0] * gab; |
642 |
< |
dy = rab[1] * gab; |
643 |
< |
dz = rab[2] * gab; |
644 |
< |
|
645 |
< |
velA[0] += rma * dx; |
646 |
< |
velA[1] += rma * dy; |
647 |
< |
velA[2] += rma * dz; |
654 |
> |
rma = 1.0 / atoms[a]->getMass(); |
655 |
> |
rmb = 1.0 / atoms[b]->getMass(); |
656 |
|
|
657 |
< |
atoms[a]->setVel( velA ); |
657 |
> |
rvab = rab[0] * vxab + rab[1] * vyab + rab[2] * vzab; |
658 |
|
|
659 |
< |
velB[0] -= rmb * dx; |
652 |
< |
velB[1] -= rmb * dy; |
653 |
< |
velB[2] -= rmb * dz; |
659 |
> |
gab = -rvab / ((rma + rmb) * constrainedDsqr[i]); |
660 |
|
|
661 |
< |
atoms[b]->setVel( velB ); |
662 |
< |
|
663 |
< |
moving[a] = 1; |
664 |
< |
moving[b] = 1; |
665 |
< |
done = 0; |
666 |
< |
} |
661 |
> |
if (fabs(gab) > tol){ |
662 |
> |
dx = rab[0] * gab; |
663 |
> |
dy = rab[1] * gab; |
664 |
> |
dz = rab[2] * gab; |
665 |
> |
|
666 |
> |
velA[0] += rma * dx; |
667 |
> |
velA[1] += rma * dy; |
668 |
> |
velA[2] += rma * dz; |
669 |
> |
|
670 |
> |
atoms[a]->setVel(velA); |
671 |
> |
|
672 |
> |
velB[0] -= rmb * dx; |
673 |
> |
velB[1] -= rmb * dy; |
674 |
> |
velB[2] -= rmb * dz; |
675 |
> |
|
676 |
> |
atoms[b]->setVel(velB); |
677 |
> |
|
678 |
> |
moving[a] = 1; |
679 |
> |
moving[b] = 1; |
680 |
> |
done = 0; |
681 |
> |
} |
682 |
|
} |
683 |
|
} |
684 |
|
|
685 |
< |
for(i=0; i<nAtoms; i++){ |
685 |
> |
for (i = 0; i < nAtoms; i++){ |
686 |
|
moved[i] = moving[i]; |
687 |
|
moving[i] = 0; |
688 |
|
} |
689 |
< |
|
689 |
> |
|
690 |
|
iteration++; |
691 |
|
} |
671 |
– |
|
672 |
– |
if( !done ){ |
692 |
|
|
693 |
< |
|
694 |
< |
sprintf( painCave.errMsg, |
695 |
< |
"Constraint failure in constrainB, too many iterations: %d\n", |
696 |
< |
iteration ); |
693 |
> |
if (!done){ |
694 |
> |
sprintf(painCave.errMsg, |
695 |
> |
"Constraint failure in constrainB, too many iterations: %d\n", |
696 |
> |
iteration); |
697 |
|
painCave.isFatal = 1; |
698 |
|
simError(); |
699 |
< |
} |
681 |
< |
|
699 |
> |
} |
700 |
|
} |
701 |
|
|
702 |
< |
void Integrator::rotate( int axes1, int axes2, double angle, double ji[3], |
703 |
< |
double A[3][3] ){ |
702 |
> |
template<typename T> void Integrator<T>::rotationPropagation |
703 |
> |
( StuntDouble* sd, double ji[3] ){ |
704 |
|
|
705 |
< |
int i,j,k; |
705 |
> |
double angle; |
706 |
> |
double A[3][3], I[3][3]; |
707 |
> |
int i, j, k; |
708 |
> |
|
709 |
> |
// use the angular velocities to propagate the rotation matrix a |
710 |
> |
// full time step |
711 |
> |
|
712 |
> |
sd->getA(A); |
713 |
> |
sd->getI(I); |
714 |
> |
|
715 |
> |
if (sd->isLinear()) { |
716 |
> |
i = sd->linearAxis(); |
717 |
> |
j = (i+1)%3; |
718 |
> |
k = (i+2)%3; |
719 |
> |
|
720 |
> |
angle = dt2 * ji[j] / I[j][j]; |
721 |
> |
this->rotate( k, i, angle, ji, A ); |
722 |
> |
|
723 |
> |
angle = dt * ji[k] / I[k][k]; |
724 |
> |
this->rotate( i, j, angle, ji, A); |
725 |
> |
|
726 |
> |
angle = dt2 * ji[j] / I[j][j]; |
727 |
> |
this->rotate( k, i, angle, ji, A ); |
728 |
> |
|
729 |
> |
} else { |
730 |
> |
// rotate about the x-axis |
731 |
> |
angle = dt2 * ji[0] / I[0][0]; |
732 |
> |
this->rotate( 1, 2, angle, ji, A ); |
733 |
> |
|
734 |
> |
// rotate about the y-axis |
735 |
> |
angle = dt2 * ji[1] / I[1][1]; |
736 |
> |
this->rotate( 2, 0, angle, ji, A ); |
737 |
> |
|
738 |
> |
// rotate about the z-axis |
739 |
> |
angle = dt * ji[2] / I[2][2]; |
740 |
> |
sd->addZangle(angle); |
741 |
> |
this->rotate( 0, 1, angle, ji, A); |
742 |
> |
|
743 |
> |
// rotate about the y-axis |
744 |
> |
angle = dt2 * ji[1] / I[1][1]; |
745 |
> |
this->rotate( 2, 0, angle, ji, A ); |
746 |
> |
|
747 |
> |
// rotate about the x-axis |
748 |
> |
angle = dt2 * ji[0] / I[0][0]; |
749 |
> |
this->rotate( 1, 2, angle, ji, A ); |
750 |
> |
|
751 |
> |
} |
752 |
> |
sd->setA( A ); |
753 |
> |
} |
754 |
> |
|
755 |
> |
template<typename T> void Integrator<T>::rotate(int axes1, int axes2, |
756 |
> |
double angle, double ji[3], |
757 |
> |
double A[3][3]){ |
758 |
> |
int i, j, k; |
759 |
|
double sinAngle; |
760 |
|
double cosAngle; |
761 |
|
double angleSqr; |
767 |
|
|
768 |
|
// initialize the tempA |
769 |
|
|
770 |
< |
for(i=0; i<3; i++){ |
771 |
< |
for(j=0; j<3; j++){ |
770 |
> |
for (i = 0; i < 3; i++){ |
771 |
> |
for (j = 0; j < 3; j++){ |
772 |
|
tempA[j][i] = A[i][j]; |
773 |
|
} |
774 |
|
} |
775 |
|
|
776 |
|
// initialize the tempJ |
777 |
|
|
778 |
< |
for( i=0; i<3; i++) tempJ[i] = ji[i]; |
779 |
< |
|
778 |
> |
for (i = 0; i < 3; i++) |
779 |
> |
tempJ[i] = ji[i]; |
780 |
> |
|
781 |
|
// initalize rot as a unit matrix |
782 |
|
|
783 |
|
rot[0][0] = 1.0; |
787 |
|
rot[1][0] = 0.0; |
788 |
|
rot[1][1] = 1.0; |
789 |
|
rot[1][2] = 0.0; |
790 |
< |
|
790 |
> |
|
791 |
|
rot[2][0] = 0.0; |
792 |
|
rot[2][1] = 0.0; |
793 |
|
rot[2][2] = 1.0; |
794 |
< |
|
794 |
> |
|
795 |
|
// use a small angle aproximation for sin and cosine |
796 |
|
|
797 |
< |
angleSqr = angle * angle; |
797 |
> |
angleSqr = angle * angle; |
798 |
|
angleSqrOver4 = angleSqr / 4.0; |
799 |
|
top = 1.0 - angleSqrOver4; |
800 |
|
bottom = 1.0 + angleSqrOver4; |
807 |
|
|
808 |
|
rot[axes1][axes2] = sinAngle; |
809 |
|
rot[axes2][axes1] = -sinAngle; |
810 |
< |
|
810 |
> |
|
811 |
|
// rotate the momentum acoording to: ji[] = rot[][] * ji[] |
812 |
< |
|
813 |
< |
for(i=0; i<3; i++){ |
812 |
> |
|
813 |
> |
for (i = 0; i < 3; i++){ |
814 |
|
ji[i] = 0.0; |
815 |
< |
for(k=0; k<3; k++){ |
815 |
> |
for (k = 0; k < 3; k++){ |
816 |
|
ji[i] += rot[i][k] * tempJ[k]; |
817 |
|
} |
818 |
|
} |
819 |
|
|
820 |
< |
// rotate the Rotation matrix acording to: |
820 |
> |
// rotate the Rotation matrix acording to: |
821 |
|
// A[][] = A[][] * transpose(rot[][]) |
822 |
|
|
823 |
|
|
825 |
|
// calculation as: |
826 |
|
// transpose(A[][]) = transpose(A[][]) * transpose(rot[][]) |
827 |
|
|
828 |
< |
for(i=0; i<3; i++){ |
829 |
< |
for(j=0; j<3; j++){ |
828 |
> |
for (i = 0; i < 3; i++){ |
829 |
> |
for (j = 0; j < 3; j++){ |
830 |
|
A[j][i] = 0.0; |
831 |
< |
for(k=0; k<3; k++){ |
832 |
< |
A[j][i] += tempA[i][k] * rot[j][k]; |
831 |
> |
for (k = 0; k < 3; k++){ |
832 |
> |
A[j][i] += tempA[i][k] * rot[j][k]; |
833 |
|
} |
834 |
|
} |
835 |
|
} |
836 |
|
} |
837 |
+ |
|
838 |
+ |
template<typename T> void Integrator<T>::calcForce(int calcPot, int calcStress){ |
839 |
+ |
myFF->doForces(calcPot, calcStress); |
840 |
+ |
} |
841 |
+ |
|
842 |
+ |
template<typename T> void Integrator<T>::thermalize(){ |
843 |
+ |
tStats->velocitize(); |
844 |
+ |
} |
845 |
+ |
|
846 |
+ |
template<typename T> double Integrator<T>::getConservedQuantity(void){ |
847 |
+ |
return tStats->getTotalE(); |
848 |
+ |
} |
849 |
+ |
template<typename T> string Integrator<T>::getAdditionalParameters(void){ |
850 |
+ |
//By default, return a null string |
851 |
+ |
//The reason we use string instead of char* is that if we use char*, we will |
852 |
+ |
//return a pointer point to local variable which might cause problem |
853 |
+ |
return string(); |
854 |
+ |
} |