31 |
|
} |
32 |
|
|
33 |
|
nAtoms = info->n_atoms; |
34 |
+ |
integrableObjects = info->integrableObjects; |
35 |
|
|
36 |
|
// check for constraints |
37 |
|
|
69 |
|
|
70 |
|
SRI** theArray; |
71 |
|
for (int i = 0; i < nMols; i++){ |
72 |
< |
theArray = (SRI * *) molecules[i].getMyBonds(); |
72 |
> |
|
73 |
> |
theArray = (SRI * *) molecules[i].getMyBonds(); |
74 |
|
for (int j = 0; j < molecules[i].getNBonds(); j++){ |
75 |
|
constrained = theArray[j]->is_constrained(); |
76 |
|
|
116 |
|
} |
117 |
|
} |
118 |
|
|
119 |
+ |
|
120 |
|
if (nConstrained > 0){ |
121 |
|
isConstrained = 1; |
122 |
|
|
179 |
|
|
180 |
|
readyCheck(); |
181 |
|
|
182 |
+ |
// remove center of mass drift velocity (in case we passed in a configuration |
183 |
+ |
// that was drifting |
184 |
+ |
tStats->removeCOMdrift(); |
185 |
+ |
|
186 |
|
// initialize the forces before the first step |
187 |
|
|
188 |
|
calcForce(1, 1); |
189 |
< |
|
189 |
> |
|
190 |
|
if (nConstrained){ |
191 |
|
preMove(); |
192 |
|
constrainA(); |
214 |
|
MPIcheckPoint(); |
215 |
|
#endif // is_mpi |
216 |
|
|
217 |
< |
while (info->getTime() < runTime){ |
217 |
> |
while (info->getTime() < runTime && !stopIntegrator()){ |
218 |
|
if ((info->getTime() + dt) >= currStatus){ |
219 |
|
calcPot = 1; |
220 |
|
calcStress = 1; |
336 |
|
|
337 |
|
|
338 |
|
template<typename T> void Integrator<T>::moveA(void){ |
339 |
< |
int i, j; |
339 |
> |
size_t i, j; |
340 |
|
DirectionalAtom* dAtom; |
341 |
|
double Tb[3], ji[3]; |
342 |
|
double vel[3], pos[3], frc[3]; |
343 |
|
double mass; |
344 |
< |
|
345 |
< |
for (i = 0; i < nAtoms; i++){ |
346 |
< |
atoms[i]->getVel(vel); |
347 |
< |
atoms[i]->getPos(pos); |
348 |
< |
atoms[i]->getFrc(frc); |
344 |
> |
|
345 |
> |
for (i = 0; i < integrableObjects.size() ; i++){ |
346 |
> |
integrableObjects[i]->getVel(vel); |
347 |
> |
integrableObjects[i]->getPos(pos); |
348 |
> |
integrableObjects[i]->getFrc(frc); |
349 |
|
|
350 |
< |
mass = atoms[i]->getMass(); |
350 |
> |
std::cerr << "i =\t" << i << "\t" << frc[0] << "\t" << frc[1]<< "\t" << frc[2] << "\n"; |
351 |
> |
|
352 |
> |
mass = integrableObjects[i]->getMass(); |
353 |
|
|
354 |
|
for (j = 0; j < 3; j++){ |
355 |
|
// velocity half step |
358 |
|
pos[j] += dt * vel[j]; |
359 |
|
} |
360 |
|
|
361 |
< |
atoms[i]->setVel(vel); |
362 |
< |
atoms[i]->setPos(pos); |
361 |
> |
integrableObjects[i]->setVel(vel); |
362 |
> |
integrableObjects[i]->setPos(pos); |
363 |
|
|
364 |
< |
if (atoms[i]->isDirectional()){ |
356 |
< |
dAtom = (DirectionalAtom *) atoms[i]; |
364 |
> |
if (integrableObjects[i]->isDirectional()){ |
365 |
|
|
366 |
|
// get and convert the torque to body frame |
367 |
|
|
368 |
< |
dAtom->getTrq(Tb); |
369 |
< |
dAtom->lab2Body(Tb); |
368 |
> |
integrableObjects[i]->getTrq(Tb); |
369 |
> |
integrableObjects[i]->lab2Body(Tb); |
370 |
|
|
371 |
|
// get the angular momentum, and propagate a half step |
372 |
|
|
373 |
< |
dAtom->getJ(ji); |
373 |
> |
integrableObjects[i]->getJ(ji); |
374 |
|
|
375 |
|
for (j = 0; j < 3; j++) |
376 |
|
ji[j] += (dt2 * Tb[j]) * eConvert; |
377 |
|
|
378 |
< |
this->rotationPropagation( dAtom, ji ); |
378 |
> |
this->rotationPropagation( integrableObjects[i], ji ); |
379 |
|
|
380 |
< |
dAtom->setJ(ji); |
380 |
> |
integrableObjects[i]->setJ(ji); |
381 |
|
} |
382 |
|
} |
383 |
|
|
389 |
|
|
390 |
|
template<typename T> void Integrator<T>::moveB(void){ |
391 |
|
int i, j; |
384 |
– |
DirectionalAtom* dAtom; |
392 |
|
double Tb[3], ji[3]; |
393 |
|
double vel[3], frc[3]; |
394 |
|
double mass; |
395 |
|
|
396 |
< |
for (i = 0; i < nAtoms; i++){ |
397 |
< |
atoms[i]->getVel(vel); |
398 |
< |
atoms[i]->getFrc(frc); |
396 |
> |
for (i = 0; i < integrableObjects.size(); i++){ |
397 |
> |
integrableObjects[i]->getVel(vel); |
398 |
> |
integrableObjects[i]->getFrc(frc); |
399 |
|
|
400 |
< |
mass = atoms[i]->getMass(); |
400 |
> |
mass = integrableObjects[i]->getMass(); |
401 |
|
|
402 |
|
// velocity half step |
403 |
|
for (j = 0; j < 3; j++) |
404 |
|
vel[j] += (dt2 * frc[j] / mass) * eConvert; |
405 |
|
|
406 |
< |
atoms[i]->setVel(vel); |
406 |
> |
integrableObjects[i]->setVel(vel); |
407 |
|
|
408 |
< |
if (atoms[i]->isDirectional()){ |
402 |
< |
dAtom = (DirectionalAtom *) atoms[i]; |
408 |
> |
if (integrableObjects[i]->isDirectional()){ |
409 |
|
|
410 |
|
// get and convert the torque to body frame |
411 |
|
|
412 |
< |
dAtom->getTrq(Tb); |
413 |
< |
dAtom->lab2Body(Tb); |
412 |
> |
integrableObjects[i]->getTrq(Tb); |
413 |
> |
integrableObjects[i]->lab2Body(Tb); |
414 |
|
|
415 |
|
// get the angular momentum, and propagate a half step |
416 |
|
|
417 |
< |
dAtom->getJ(ji); |
417 |
> |
integrableObjects[i]->getJ(ji); |
418 |
|
|
419 |
|
for (j = 0; j < 3; j++) |
420 |
|
ji[j] += (dt2 * Tb[j]) * eConvert; |
421 |
|
|
422 |
|
|
423 |
< |
dAtom->setJ(ji); |
423 |
> |
integrableObjects[i]->setJ(ji); |
424 |
|
} |
425 |
|
} |
426 |
|
|
689 |
|
} |
690 |
|
|
691 |
|
template<typename T> void Integrator<T>::rotationPropagation |
692 |
< |
( DirectionalAtom* dAtom, double ji[3] ){ |
692 |
> |
( StuntDouble* sd, double ji[3] ){ |
693 |
|
|
694 |
|
double angle; |
695 |
|
double A[3][3], I[3][3]; |
696 |
+ |
int i, j, k; |
697 |
|
|
698 |
|
// use the angular velocities to propagate the rotation matrix a |
699 |
|
// full time step |
700 |
|
|
701 |
< |
dAtom->getA(A); |
702 |
< |
dAtom->getI(I); |
701 |
> |
sd->getA(A); |
702 |
> |
sd->getI(I); |
703 |
|
|
704 |
< |
// rotate about the x-axis |
705 |
< |
angle = dt2 * ji[0] / I[0][0]; |
706 |
< |
this->rotate( 1, 2, angle, ji, A ); |
704 |
> |
if (sd->isLinear()) { |
705 |
> |
i = sd->linearAxis(); |
706 |
> |
j = (i+1)%3; |
707 |
> |
k = (i+2)%3; |
708 |
> |
|
709 |
> |
angle = dt2 * ji[j] / I[j][j]; |
710 |
> |
this->rotate( k, i, angle, ji, A ); |
711 |
|
|
712 |
< |
// rotate about the y-axis |
713 |
< |
angle = dt2 * ji[1] / I[1][1]; |
703 |
< |
this->rotate( 2, 0, angle, ji, A ); |
712 |
> |
angle = dt * ji[k] / I[k][k]; |
713 |
> |
this->rotate( i, j, angle, ji, A); |
714 |
|
|
715 |
< |
// rotate about the z-axis |
716 |
< |
angle = dt * ji[2] / I[2][2]; |
707 |
< |
this->rotate( 0, 1, angle, ji, A); |
715 |
> |
angle = dt2 * ji[j] / I[j][j]; |
716 |
> |
this->rotate( k, i, angle, ji, A ); |
717 |
|
|
718 |
< |
// rotate about the y-axis |
719 |
< |
angle = dt2 * ji[1] / I[1][1]; |
720 |
< |
this->rotate( 2, 0, angle, ji, A ); |
721 |
< |
|
722 |
< |
// rotate about the x-axis |
723 |
< |
angle = dt2 * ji[0] / I[0][0]; |
724 |
< |
this->rotate( 1, 2, angle, ji, A ); |
725 |
< |
|
726 |
< |
dAtom->setA( A ); |
718 |
> |
} else { |
719 |
> |
// rotate about the x-axis |
720 |
> |
angle = dt2 * ji[0] / I[0][0]; |
721 |
> |
this->rotate( 1, 2, angle, ji, A ); |
722 |
> |
|
723 |
> |
// rotate about the y-axis |
724 |
> |
angle = dt2 * ji[1] / I[1][1]; |
725 |
> |
this->rotate( 2, 0, angle, ji, A ); |
726 |
> |
|
727 |
> |
// rotate about the z-axis |
728 |
> |
angle = dt * ji[2] / I[2][2]; |
729 |
> |
this->rotate( 0, 1, angle, ji, A); |
730 |
> |
|
731 |
> |
// rotate about the y-axis |
732 |
> |
angle = dt2 * ji[1] / I[1][1]; |
733 |
> |
this->rotate( 2, 0, angle, ji, A ); |
734 |
> |
|
735 |
> |
// rotate about the x-axis |
736 |
> |
angle = dt2 * ji[0] / I[0][0]; |
737 |
> |
this->rotate( 1, 2, angle, ji, A ); |
738 |
> |
|
739 |
> |
} |
740 |
> |
sd->setA( A ); |
741 |
|
} |
742 |
|
|
743 |
|
template<typename T> void Integrator<T>::rotate(int axes1, int axes2, |