31 |
|
} |
32 |
|
|
33 |
|
nAtoms = info->n_atoms; |
34 |
< |
|
34 |
> |
integrableObjects = info->integrableObjects; |
35 |
> |
|
36 |
|
// check for constraints |
37 |
|
|
38 |
|
constrainedA = NULL; |
45 |
|
nConstrained = 0; |
46 |
|
|
47 |
|
checkConstraints(); |
48 |
+ |
|
49 |
|
} |
50 |
|
|
51 |
|
template<typename T> Integrator<T>::~Integrator(){ |
161 |
|
double thermalTime = info->thermalTime; |
162 |
|
double resetTime = info->resetTime; |
163 |
|
|
164 |
< |
|
164 |
> |
double difference; |
165 |
|
double currSample; |
166 |
|
double currThermal; |
167 |
|
double currStatus; |
180 |
|
|
181 |
|
readyCheck(); |
182 |
|
|
183 |
+ |
// remove center of mass drift velocity (in case we passed in a configuration |
184 |
+ |
// that was drifting |
185 |
+ |
tStats->removeCOMdrift(); |
186 |
+ |
|
187 |
+ |
// initialize the retraints if necessary |
188 |
+ |
if (info->useThermInt) { |
189 |
+ |
myFF->initRestraints(); |
190 |
+ |
} |
191 |
+ |
|
192 |
|
// initialize the forces before the first step |
193 |
|
|
194 |
|
calcForce(1, 1); |
184 |
– |
|
185 |
– |
//temp test |
186 |
– |
tStats->getPotential(); |
195 |
|
|
196 |
|
if (nConstrained){ |
197 |
|
preMove(); |
220 |
|
MPIcheckPoint(); |
221 |
|
#endif // is_mpi |
222 |
|
|
223 |
< |
while (info->getTime() < runTime){ |
224 |
< |
if ((info->getTime() + dt) >= currStatus){ |
223 |
> |
while (info->getTime() < runTime && !stopIntegrator()){ |
224 |
> |
difference = info->getTime() + dt - currStatus; |
225 |
> |
if (difference > 0 || fabs(difference) < 1e-4 ){ |
226 |
|
calcPot = 1; |
227 |
|
calcStress = 1; |
228 |
|
} |
255 |
|
|
256 |
|
if (info->getTime() >= currStatus){ |
257 |
|
statOut->writeStat(info->getTime()); |
258 |
+ |
statOut->writeRaw(info->getTime()); |
259 |
|
calcPot = 0; |
260 |
|
calcStress = 0; |
261 |
|
currStatus += statusTime; |
278 |
|
#endif // is_mpi |
279 |
|
} |
280 |
|
|
281 |
+ |
// dump out a file containing the omega values for the final configuration |
282 |
+ |
if (info->useThermInt) |
283 |
+ |
myFF->dumpzAngle(); |
284 |
+ |
|
285 |
+ |
|
286 |
|
delete dumpOut; |
287 |
|
delete statOut; |
288 |
|
} |
317 |
|
MPIcheckPoint(); |
318 |
|
#endif // is_mpi |
319 |
|
|
305 |
– |
|
320 |
|
// calc forces |
307 |
– |
|
321 |
|
calcForce(calcPot, calcStress); |
322 |
|
|
323 |
|
#ifdef IS_MPI |
347 |
|
|
348 |
|
|
349 |
|
template<typename T> void Integrator<T>::moveA(void){ |
350 |
< |
int i, j; |
350 |
> |
size_t i, j; |
351 |
|
DirectionalAtom* dAtom; |
352 |
|
double Tb[3], ji[3]; |
353 |
|
double vel[3], pos[3], frc[3]; |
354 |
|
double mass; |
355 |
< |
|
356 |
< |
for (i = 0; i < nAtoms; i++){ |
357 |
< |
atoms[i]->getVel(vel); |
358 |
< |
atoms[i]->getPos(pos); |
359 |
< |
atoms[i]->getFrc(frc); |
360 |
< |
|
361 |
< |
mass = atoms[i]->getMass(); |
355 |
> |
double omega; |
356 |
> |
|
357 |
> |
for (i = 0; i < integrableObjects.size() ; i++){ |
358 |
> |
integrableObjects[i]->getVel(vel); |
359 |
> |
integrableObjects[i]->getPos(pos); |
360 |
> |
integrableObjects[i]->getFrc(frc); |
361 |
> |
|
362 |
> |
mass = integrableObjects[i]->getMass(); |
363 |
|
|
364 |
|
for (j = 0; j < 3; j++){ |
365 |
|
// velocity half step |
368 |
|
pos[j] += dt * vel[j]; |
369 |
|
} |
370 |
|
|
371 |
< |
atoms[i]->setVel(vel); |
372 |
< |
atoms[i]->setPos(pos); |
371 |
> |
integrableObjects[i]->setVel(vel); |
372 |
> |
integrableObjects[i]->setPos(pos); |
373 |
|
|
374 |
< |
if (atoms[i]->isDirectional()){ |
361 |
< |
dAtom = (DirectionalAtom *) atoms[i]; |
374 |
> |
if (integrableObjects[i]->isDirectional()){ |
375 |
|
|
376 |
|
// get and convert the torque to body frame |
377 |
|
|
378 |
< |
dAtom->getTrq(Tb); |
379 |
< |
dAtom->lab2Body(Tb); |
378 |
> |
integrableObjects[i]->getTrq(Tb); |
379 |
> |
integrableObjects[i]->lab2Body(Tb); |
380 |
|
|
381 |
|
// get the angular momentum, and propagate a half step |
382 |
|
|
383 |
< |
dAtom->getJ(ji); |
383 |
> |
integrableObjects[i]->getJ(ji); |
384 |
|
|
385 |
|
for (j = 0; j < 3; j++) |
386 |
|
ji[j] += (dt2 * Tb[j]) * eConvert; |
387 |
|
|
388 |
< |
this->rotationPropagation( dAtom, ji ); |
388 |
> |
this->rotationPropagation( integrableObjects[i], ji ); |
389 |
|
|
390 |
< |
dAtom->setJ(ji); |
390 |
> |
integrableObjects[i]->setJ(ji); |
391 |
|
} |
392 |
|
} |
393 |
|
|
399 |
|
|
400 |
|
template<typename T> void Integrator<T>::moveB(void){ |
401 |
|
int i, j; |
389 |
– |
DirectionalAtom* dAtom; |
402 |
|
double Tb[3], ji[3]; |
403 |
|
double vel[3], frc[3]; |
404 |
|
double mass; |
405 |
|
|
406 |
< |
for (i = 0; i < nAtoms; i++){ |
407 |
< |
atoms[i]->getVel(vel); |
408 |
< |
atoms[i]->getFrc(frc); |
406 |
> |
for (i = 0; i < integrableObjects.size(); i++){ |
407 |
> |
integrableObjects[i]->getVel(vel); |
408 |
> |
integrableObjects[i]->getFrc(frc); |
409 |
|
|
410 |
< |
mass = atoms[i]->getMass(); |
410 |
> |
mass = integrableObjects[i]->getMass(); |
411 |
|
|
412 |
|
// velocity half step |
413 |
|
for (j = 0; j < 3; j++) |
414 |
|
vel[j] += (dt2 * frc[j] / mass) * eConvert; |
415 |
|
|
416 |
< |
atoms[i]->setVel(vel); |
416 |
> |
integrableObjects[i]->setVel(vel); |
417 |
|
|
418 |
< |
if (atoms[i]->isDirectional()){ |
407 |
< |
dAtom = (DirectionalAtom *) atoms[i]; |
418 |
> |
if (integrableObjects[i]->isDirectional()){ |
419 |
|
|
420 |
|
// get and convert the torque to body frame |
421 |
|
|
422 |
< |
dAtom->getTrq(Tb); |
423 |
< |
dAtom->lab2Body(Tb); |
422 |
> |
integrableObjects[i]->getTrq(Tb); |
423 |
> |
integrableObjects[i]->lab2Body(Tb); |
424 |
|
|
425 |
|
// get the angular momentum, and propagate a half step |
426 |
|
|
427 |
< |
dAtom->getJ(ji); |
427 |
> |
integrableObjects[i]->getJ(ji); |
428 |
|
|
429 |
|
for (j = 0; j < 3; j++) |
430 |
|
ji[j] += (dt2 * Tb[j]) * eConvert; |
431 |
|
|
432 |
|
|
433 |
< |
dAtom->setJ(ji); |
433 |
> |
integrableObjects[i]->setJ(ji); |
434 |
|
} |
435 |
|
} |
436 |
|
|
699 |
|
} |
700 |
|
|
701 |
|
template<typename T> void Integrator<T>::rotationPropagation |
702 |
< |
( DirectionalAtom* dAtom, double ji[3] ){ |
702 |
> |
( StuntDouble* sd, double ji[3] ){ |
703 |
|
|
704 |
|
double angle; |
705 |
|
double A[3][3], I[3][3]; |
706 |
+ |
int i, j, k; |
707 |
|
|
708 |
|
// use the angular velocities to propagate the rotation matrix a |
709 |
|
// full time step |
710 |
|
|
711 |
< |
dAtom->getA(A); |
712 |
< |
dAtom->getI(I); |
701 |
< |
|
702 |
< |
// rotate about the x-axis |
703 |
< |
angle = dt2 * ji[0] / I[0][0]; |
704 |
< |
this->rotate( 1, 2, angle, ji, A ); |
711 |
> |
sd->getA(A); |
712 |
> |
sd->getI(I); |
713 |
|
|
714 |
< |
// rotate about the y-axis |
715 |
< |
angle = dt2 * ji[1] / I[1][1]; |
716 |
< |
this->rotate( 2, 0, angle, ji, A ); |
714 |
> |
if (sd->isLinear()) { |
715 |
> |
i = sd->linearAxis(); |
716 |
> |
j = (i+1)%3; |
717 |
> |
k = (i+2)%3; |
718 |
> |
|
719 |
> |
angle = dt2 * ji[j] / I[j][j]; |
720 |
> |
this->rotate( k, i, angle, ji, A ); |
721 |
|
|
722 |
< |
// rotate about the z-axis |
723 |
< |
angle = dt * ji[2] / I[2][2]; |
724 |
< |
this->rotate( 0, 1, angle, ji, A); |
722 |
> |
angle = dt * ji[k] / I[k][k]; |
723 |
> |
this->rotate( i, j, angle, ji, A); |
724 |
> |
|
725 |
> |
angle = dt2 * ji[j] / I[j][j]; |
726 |
> |
this->rotate( k, i, angle, ji, A ); |
727 |
|
|
728 |
< |
// rotate about the y-axis |
729 |
< |
angle = dt2 * ji[1] / I[1][1]; |
730 |
< |
this->rotate( 2, 0, angle, ji, A ); |
731 |
< |
|
732 |
< |
// rotate about the x-axis |
733 |
< |
angle = dt2 * ji[0] / I[0][0]; |
734 |
< |
this->rotate( 1, 2, angle, ji, A ); |
735 |
< |
|
736 |
< |
dAtom->setA( A ); |
728 |
> |
} else { |
729 |
> |
// rotate about the x-axis |
730 |
> |
angle = dt2 * ji[0] / I[0][0]; |
731 |
> |
this->rotate( 1, 2, angle, ji, A ); |
732 |
> |
|
733 |
> |
// rotate about the y-axis |
734 |
> |
angle = dt2 * ji[1] / I[1][1]; |
735 |
> |
this->rotate( 2, 0, angle, ji, A ); |
736 |
> |
|
737 |
> |
// rotate about the z-axis |
738 |
> |
angle = dt * ji[2] / I[2][2]; |
739 |
> |
sd->addZangle(angle); |
740 |
> |
this->rotate( 0, 1, angle, ji, A); |
741 |
> |
|
742 |
> |
// rotate about the y-axis |
743 |
> |
angle = dt2 * ji[1] / I[1][1]; |
744 |
> |
this->rotate( 2, 0, angle, ji, A ); |
745 |
> |
|
746 |
> |
// rotate about the x-axis |
747 |
> |
angle = dt2 * ji[0] / I[0][0]; |
748 |
> |
this->rotate( 1, 2, angle, ji, A ); |
749 |
> |
|
750 |
> |
} |
751 |
> |
sd->setA( A ); |
752 |
|
} |
753 |
|
|
754 |
|
template<typename T> void Integrator<T>::rotate(int axes1, int axes2, |