1 |
|
#include <iostream> |
2 |
< |
#include <cstdlib> |
3 |
< |
#include <cmath> |
4 |
< |
|
2 |
> |
#include <stdlib.h> |
3 |
> |
#include <math.h> |
4 |
> |
#include "Rattle.hpp" |
5 |
> |
#include "Roll.hpp" |
6 |
|
#ifdef IS_MPI |
7 |
|
#include "mpiSimulation.hpp" |
8 |
|
#include <unistd.h> |
9 |
|
#endif //is_mpi |
10 |
|
|
11 |
+ |
#ifdef PROFILE |
12 |
+ |
#include "mdProfile.hpp" |
13 |
+ |
#endif // profile |
14 |
+ |
|
15 |
|
#include "Integrator.hpp" |
16 |
|
#include "simError.h" |
17 |
|
|
30 |
|
if (info->the_integrator != NULL){ |
31 |
|
delete info->the_integrator; |
32 |
|
} |
28 |
– |
info->the_integrator = this; |
33 |
|
|
34 |
|
nAtoms = info->n_atoms; |
35 |
+ |
integrableObjects = info->integrableObjects; |
36 |
|
|
37 |
+ |
consFramework = new RattleFramework(info); |
38 |
+ |
|
39 |
+ |
if(consFramework == NULL){ |
40 |
+ |
sprintf(painCave.errMsg, |
41 |
+ |
"Integrator::Intergrator() Error: Memory allocation error for RattleFramework" ); |
42 |
+ |
painCave.isFatal = 1; |
43 |
+ |
simError(); |
44 |
+ |
} |
45 |
+ |
|
46 |
+ |
/* |
47 |
|
// check for constraints |
48 |
|
|
49 |
|
constrainedA = NULL; |
56 |
|
nConstrained = 0; |
57 |
|
|
58 |
|
checkConstraints(); |
59 |
+ |
*/ |
60 |
|
} |
61 |
|
|
62 |
|
template<typename T> Integrator<T>::~Integrator(){ |
63 |
+ |
if (consFramework != NULL) |
64 |
+ |
delete consFramework; |
65 |
+ |
/* |
66 |
|
if (nConstrained){ |
67 |
|
delete[] constrainedA; |
68 |
|
delete[] constrainedB; |
71 |
|
delete[] moved; |
72 |
|
delete[] oldPos; |
73 |
|
} |
74 |
+ |
*/ |
75 |
|
} |
76 |
|
|
77 |
+ |
/* |
78 |
|
template<typename T> void Integrator<T>::checkConstraints(void){ |
79 |
|
isConstrained = 0; |
80 |
|
|
86 |
|
|
87 |
|
SRI** theArray; |
88 |
|
for (int i = 0; i < nMols; i++){ |
89 |
< |
theArray = (SRI * *) molecules[i].getMyBonds(); |
89 |
> |
|
90 |
> |
theArray = (SRI * *) molecules[i].getMyBonds(); |
91 |
|
for (int j = 0; j < molecules[i].getNBonds(); j++){ |
92 |
|
constrained = theArray[j]->is_constrained(); |
93 |
|
|
109 |
|
if (constrained){ |
110 |
|
dummy_plug = theArray[j]->get_constraint(); |
111 |
|
temp_con[nConstrained].set_a(dummy_plug->get_a()); |
112 |
< |
temp_con[nConstrained].set_b(dummy_plug->get_b()); |
112 |
> |
temp_con[nConstrained].set_b(Dummy_plug->get_b()); |
113 |
|
temp_con[nConstrained].set_dsqr(dummy_plug->get_dsqr()); |
114 |
|
|
115 |
|
nConstrained++; |
133 |
|
} |
134 |
|
} |
135 |
|
|
136 |
+ |
|
137 |
|
if (nConstrained > 0){ |
138 |
|
isConstrained = 1; |
139 |
|
|
155 |
|
} |
156 |
|
|
157 |
|
|
158 |
< |
// save oldAtoms to check for lode balanceing later on. |
158 |
> |
// save oldAtoms to check for lode balancing later on. |
159 |
|
|
160 |
|
oldAtoms = nAtoms; |
161 |
|
|
167 |
|
|
168 |
|
delete[] temp_con; |
169 |
|
} |
170 |
+ |
*/ |
171 |
|
|
148 |
– |
|
172 |
|
template<typename T> void Integrator<T>::integrate(void){ |
150 |
– |
int i, j; // loop counters |
173 |
|
|
174 |
|
double runTime = info->run_time; |
175 |
|
double sampleTime = info->sampleTime; |
176 |
|
double statusTime = info->statusTime; |
177 |
|
double thermalTime = info->thermalTime; |
178 |
+ |
double resetTime = info->resetTime; |
179 |
|
|
180 |
+ |
double difference; |
181 |
|
double currSample; |
182 |
|
double currThermal; |
183 |
|
double currStatus; |
184 |
+ |
double currReset; |
185 |
|
|
186 |
|
int calcPot, calcStress; |
162 |
– |
int isError; |
187 |
|
|
188 |
|
tStats = new Thermo(info); |
189 |
|
statOut = new StatWriter(info); |
190 |
|
dumpOut = new DumpWriter(info); |
191 |
|
|
192 |
|
atoms = info->atoms; |
169 |
– |
DirectionalAtom* dAtom; |
193 |
|
|
194 |
|
dt = info->dt; |
195 |
|
dt2 = 0.5 * dt; |
196 |
|
|
197 |
+ |
readyCheck(); |
198 |
+ |
|
199 |
+ |
// remove center of mass drift velocity (in case we passed in a configuration |
200 |
+ |
// that was drifting |
201 |
+ |
tStats->removeCOMdrift(); |
202 |
+ |
|
203 |
+ |
// initialize the retraints if necessary |
204 |
+ |
if (info->useSolidThermInt && !info->useLiquidThermInt) { |
205 |
+ |
myFF->initRestraints(); |
206 |
+ |
} |
207 |
+ |
|
208 |
|
// initialize the forces before the first step |
209 |
|
|
210 |
|
calcForce(1, 1); |
177 |
– |
// myFF->doForces(1,1); |
211 |
|
|
212 |
+ |
//execute constraint algorithm to make sure at the very beginning the system is constrained |
213 |
+ |
consFramework->doPreConstraint(); |
214 |
+ |
consFramework->doConstrainA(); |
215 |
+ |
calcForce(1, 1); |
216 |
+ |
consFramework->doConstrainB(); |
217 |
+ |
|
218 |
|
if (info->setTemp){ |
219 |
|
thermalize(); |
220 |
|
} |
221 |
|
|
183 |
– |
calcPot = 0; |
184 |
– |
calcStress = 0; |
185 |
– |
currSample = sampleTime; |
186 |
– |
currThermal = thermalTime; |
187 |
– |
currStatus = statusTime; |
188 |
– |
|
222 |
|
calcPot = 0; |
223 |
|
calcStress = 0; |
224 |
|
currSample = sampleTime + info->getTime(); |
225 |
|
currThermal = thermalTime+ info->getTime(); |
226 |
|
currStatus = statusTime + info->getTime(); |
227 |
+ |
currReset = resetTime + info->getTime(); |
228 |
|
|
229 |
|
dumpOut->writeDump(info->getTime()); |
230 |
|
statOut->writeStat(info->getTime()); |
231 |
|
|
198 |
– |
readyCheck(); |
232 |
|
|
233 |
|
#ifdef IS_MPI |
234 |
|
strcpy(checkPointMsg, "The integrator is ready to go."); |
235 |
|
MPIcheckPoint(); |
236 |
|
#endif // is_mpi |
237 |
|
|
238 |
< |
while (info->getTime() < runTime){ |
239 |
< |
if ((info->getTime() + dt) >= currStatus){ |
238 |
> |
while (info->getTime() < runTime && !stopIntegrator()){ |
239 |
> |
difference = info->getTime() + dt - currStatus; |
240 |
> |
if (difference > 0 || fabs(difference) < 1e-4 ){ |
241 |
|
calcPot = 1; |
242 |
|
calcStress = 1; |
243 |
|
} |
244 |
|
|
245 |
+ |
#ifdef PROFILE |
246 |
+ |
startProfile( pro1 ); |
247 |
+ |
#endif |
248 |
+ |
|
249 |
|
integrateStep(calcPot, calcStress); |
250 |
|
|
251 |
+ |
#ifdef PROFILE |
252 |
+ |
endProfile( pro1 ); |
253 |
+ |
|
254 |
+ |
startProfile( pro2 ); |
255 |
+ |
#endif // profile |
256 |
+ |
|
257 |
|
info->incrTime(dt); |
258 |
|
|
259 |
|
if (info->setTemp){ |
269 |
|
} |
270 |
|
|
271 |
|
if (info->getTime() >= currStatus){ |
272 |
< |
statOut->writeStat(info->getTime()); |
273 |
< |
calcPot = 0; |
272 |
> |
statOut->writeStat(info->getTime()); |
273 |
> |
calcPot = 0; |
274 |
|
calcStress = 0; |
275 |
|
currStatus += statusTime; |
276 |
< |
} |
276 |
> |
} |
277 |
|
|
278 |
+ |
if (info->resetIntegrator){ |
279 |
+ |
if (info->getTime() >= currReset){ |
280 |
+ |
this->resetIntegrator(); |
281 |
+ |
currReset += resetTime; |
282 |
+ |
} |
283 |
+ |
} |
284 |
+ |
|
285 |
+ |
#ifdef PROFILE |
286 |
+ |
endProfile( pro2 ); |
287 |
+ |
#endif //profile |
288 |
+ |
|
289 |
|
#ifdef IS_MPI |
290 |
|
strcpy(checkPointMsg, "successfully took a time step."); |
291 |
|
MPIcheckPoint(); |
292 |
|
#endif // is_mpi |
293 |
|
} |
294 |
|
|
295 |
< |
dumpOut->writeFinal(info->getTime()); |
295 |
> |
// dump out a file containing the omega values for the final configuration |
296 |
> |
if (info->useSolidThermInt && !info->useLiquidThermInt) |
297 |
> |
myFF->dumpzAngle(); |
298 |
> |
|
299 |
|
|
300 |
|
delete dumpOut; |
301 |
|
delete statOut; |
304 |
|
template<typename T> void Integrator<T>::integrateStep(int calcPot, |
305 |
|
int calcStress){ |
306 |
|
// Position full step, and velocity half step |
249 |
– |
preMove(); |
307 |
|
|
308 |
+ |
#ifdef PROFILE |
309 |
+ |
startProfile(pro3); |
310 |
+ |
#endif //profile |
311 |
+ |
|
312 |
+ |
//save old state (position, velocity etc) |
313 |
+ |
consFramework->doPreConstraint(); |
314 |
+ |
|
315 |
+ |
#ifdef PROFILE |
316 |
+ |
endProfile(pro3); |
317 |
+ |
|
318 |
+ |
startProfile(pro4); |
319 |
+ |
#endif // profile |
320 |
+ |
|
321 |
|
moveA(); |
322 |
|
|
323 |
< |
if (nConstrained){ |
324 |
< |
constrainA(); |
325 |
< |
} |
323 |
> |
#ifdef PROFILE |
324 |
> |
endProfile(pro4); |
325 |
> |
|
326 |
> |
startProfile(pro5); |
327 |
> |
#endif//profile |
328 |
|
|
329 |
|
|
330 |
|
#ifdef IS_MPI |
332 |
|
MPIcheckPoint(); |
333 |
|
#endif // is_mpi |
334 |
|
|
263 |
– |
|
335 |
|
// calc forces |
265 |
– |
|
336 |
|
calcForce(calcPot, calcStress); |
337 |
|
|
338 |
|
#ifdef IS_MPI |
340 |
|
MPIcheckPoint(); |
341 |
|
#endif // is_mpi |
342 |
|
|
343 |
+ |
#ifdef PROFILE |
344 |
+ |
endProfile( pro5 ); |
345 |
|
|
346 |
+ |
startProfile( pro6 ); |
347 |
+ |
#endif //profile |
348 |
+ |
|
349 |
|
// finish the velocity half step |
350 |
|
|
351 |
|
moveB(); |
352 |
|
|
353 |
< |
if (nConstrained){ |
354 |
< |
constrainB(); |
355 |
< |
} |
353 |
> |
#ifdef PROFILE |
354 |
> |
endProfile(pro6); |
355 |
> |
#endif // profile |
356 |
|
|
357 |
|
#ifdef IS_MPI |
358 |
|
strcpy(checkPointMsg, "Succesful moveB\n"); |
362 |
|
|
363 |
|
|
364 |
|
template<typename T> void Integrator<T>::moveA(void){ |
365 |
< |
int i, j; |
365 |
> |
size_t i, j; |
366 |
|
DirectionalAtom* dAtom; |
367 |
|
double Tb[3], ji[3]; |
293 |
– |
double A[3][3], I[3][3]; |
294 |
– |
double angle; |
368 |
|
double vel[3], pos[3], frc[3]; |
369 |
|
double mass; |
370 |
< |
|
371 |
< |
for (i = 0; i < nAtoms; i++){ |
372 |
< |
atoms[i]->getVel(vel); |
373 |
< |
atoms[i]->getPos(pos); |
374 |
< |
atoms[i]->getFrc(frc); |
375 |
< |
|
376 |
< |
mass = atoms[i]->getMass(); |
370 |
> |
double omega; |
371 |
> |
|
372 |
> |
for (i = 0; i < integrableObjects.size() ; i++){ |
373 |
> |
integrableObjects[i]->getVel(vel); |
374 |
> |
integrableObjects[i]->getPos(pos); |
375 |
> |
integrableObjects[i]->getFrc(frc); |
376 |
> |
|
377 |
> |
mass = integrableObjects[i]->getMass(); |
378 |
|
|
379 |
|
for (j = 0; j < 3; j++){ |
380 |
|
// velocity half step |
383 |
|
pos[j] += dt * vel[j]; |
384 |
|
} |
385 |
|
|
386 |
< |
atoms[i]->setVel(vel); |
387 |
< |
atoms[i]->setPos(pos); |
386 |
> |
integrableObjects[i]->setVel(vel); |
387 |
> |
integrableObjects[i]->setPos(pos); |
388 |
|
|
389 |
< |
if (atoms[i]->isDirectional()){ |
316 |
< |
dAtom = (DirectionalAtom *) atoms[i]; |
389 |
> |
if (integrableObjects[i]->isDirectional()){ |
390 |
|
|
391 |
|
// get and convert the torque to body frame |
392 |
|
|
393 |
< |
dAtom->getTrq(Tb); |
394 |
< |
dAtom->lab2Body(Tb); |
393 |
> |
integrableObjects[i]->getTrq(Tb); |
394 |
> |
integrableObjects[i]->lab2Body(Tb); |
395 |
|
|
396 |
|
// get the angular momentum, and propagate a half step |
397 |
|
|
398 |
< |
dAtom->getJ(ji); |
398 |
> |
integrableObjects[i]->getJ(ji); |
399 |
|
|
400 |
|
for (j = 0; j < 3; j++) |
401 |
|
ji[j] += (dt2 * Tb[j]) * eConvert; |
402 |
|
|
403 |
< |
// use the angular velocities to propagate the rotation matrix a |
331 |
< |
// full time step |
403 |
> |
this->rotationPropagation( integrableObjects[i], ji ); |
404 |
|
|
405 |
< |
dAtom->getA(A); |
334 |
< |
dAtom->getI(I); |
335 |
< |
|
336 |
< |
// rotate about the x-axis |
337 |
< |
angle = dt2 * ji[0] / I[0][0]; |
338 |
< |
this->rotate(1, 2, angle, ji, A); |
339 |
< |
|
340 |
< |
// rotate about the y-axis |
341 |
< |
angle = dt2 * ji[1] / I[1][1]; |
342 |
< |
this->rotate(2, 0, angle, ji, A); |
343 |
< |
|
344 |
< |
// rotate about the z-axis |
345 |
< |
angle = dt * ji[2] / I[2][2]; |
346 |
< |
this->rotate(0, 1, angle, ji, A); |
347 |
< |
|
348 |
< |
// rotate about the y-axis |
349 |
< |
angle = dt2 * ji[1] / I[1][1]; |
350 |
< |
this->rotate(2, 0, angle, ji, A); |
351 |
< |
|
352 |
< |
// rotate about the x-axis |
353 |
< |
angle = dt2 * ji[0] / I[0][0]; |
354 |
< |
this->rotate(1, 2, angle, ji, A); |
355 |
< |
|
356 |
< |
|
357 |
< |
dAtom->setJ(ji); |
358 |
< |
dAtom->setA(A); |
405 |
> |
integrableObjects[i]->setJ(ji); |
406 |
|
} |
407 |
|
} |
408 |
+ |
|
409 |
+ |
consFramework->doConstrainA(); |
410 |
|
} |
411 |
|
|
412 |
|
|
413 |
|
template<typename T> void Integrator<T>::moveB(void){ |
414 |
|
int i, j; |
366 |
– |
DirectionalAtom* dAtom; |
415 |
|
double Tb[3], ji[3]; |
416 |
|
double vel[3], frc[3]; |
417 |
|
double mass; |
418 |
|
|
419 |
< |
for (i = 0; i < nAtoms; i++){ |
420 |
< |
atoms[i]->getVel(vel); |
421 |
< |
atoms[i]->getFrc(frc); |
419 |
> |
for (i = 0; i < integrableObjects.size(); i++){ |
420 |
> |
integrableObjects[i]->getVel(vel); |
421 |
> |
integrableObjects[i]->getFrc(frc); |
422 |
|
|
423 |
< |
mass = atoms[i]->getMass(); |
423 |
> |
mass = integrableObjects[i]->getMass(); |
424 |
|
|
425 |
|
// velocity half step |
426 |
|
for (j = 0; j < 3; j++) |
427 |
|
vel[j] += (dt2 * frc[j] / mass) * eConvert; |
428 |
|
|
429 |
< |
atoms[i]->setVel(vel); |
429 |
> |
integrableObjects[i]->setVel(vel); |
430 |
|
|
431 |
< |
if (atoms[i]->isDirectional()){ |
384 |
< |
dAtom = (DirectionalAtom *) atoms[i]; |
431 |
> |
if (integrableObjects[i]->isDirectional()){ |
432 |
|
|
433 |
< |
// get and convert the torque to body frame |
433 |
> |
// get and convert the torque to body frame |
434 |
|
|
435 |
< |
dAtom->getTrq(Tb); |
436 |
< |
dAtom->lab2Body(Tb); |
435 |
> |
integrableObjects[i]->getTrq(Tb); |
436 |
> |
integrableObjects[i]->lab2Body(Tb); |
437 |
|
|
438 |
|
// get the angular momentum, and propagate a half step |
439 |
|
|
440 |
< |
dAtom->getJ(ji); |
440 |
> |
integrableObjects[i]->getJ(ji); |
441 |
|
|
442 |
|
for (j = 0; j < 3; j++) |
443 |
|
ji[j] += (dt2 * Tb[j]) * eConvert; |
444 |
|
|
445 |
|
|
446 |
< |
dAtom->setJ(ji); |
446 |
> |
integrableObjects[i]->setJ(ji); |
447 |
|
} |
448 |
|
} |
449 |
+ |
|
450 |
+ |
consFramework->doConstrainB(); |
451 |
|
} |
452 |
|
|
453 |
+ |
/* |
454 |
|
template<typename T> void Integrator<T>::preMove(void){ |
455 |
|
int i, j; |
456 |
|
double pos[3]; |
467 |
|
} |
468 |
|
|
469 |
|
template<typename T> void Integrator<T>::constrainA(){ |
470 |
< |
int i, j, k; |
470 |
> |
int i, j; |
471 |
|
int done; |
472 |
|
double posA[3], posB[3]; |
473 |
|
double velA[3], velB[3]; |
607 |
|
painCave.isFatal = 1; |
608 |
|
simError(); |
609 |
|
} |
610 |
+ |
|
611 |
|
} |
612 |
|
|
613 |
|
template<typename T> void Integrator<T>::constrainB(void){ |
614 |
< |
int i, j, k; |
614 |
> |
int i, j; |
615 |
|
int done; |
616 |
|
double posA[3], posB[3]; |
617 |
|
double velA[3], velB[3]; |
620 |
|
int a, b, ax, ay, az, bx, by, bz; |
621 |
|
double rma, rmb; |
622 |
|
double dx, dy, dz; |
623 |
< |
double rabsq, pabsq, rvab; |
573 |
< |
double diffsq; |
623 |
> |
double rvab; |
624 |
|
double gab; |
625 |
|
int iteration; |
626 |
|
|
707 |
|
iteration); |
708 |
|
painCave.isFatal = 1; |
709 |
|
simError(); |
710 |
+ |
} |
711 |
+ |
} |
712 |
+ |
*/ |
713 |
+ |
template<typename T> void Integrator<T>::rotationPropagation |
714 |
+ |
( StuntDouble* sd, double ji[3] ){ |
715 |
+ |
|
716 |
+ |
double angle; |
717 |
+ |
double A[3][3], I[3][3]; |
718 |
+ |
int i, j, k; |
719 |
+ |
|
720 |
+ |
// use the angular velocities to propagate the rotation matrix a |
721 |
+ |
// full time step |
722 |
+ |
|
723 |
+ |
sd->getA(A); |
724 |
+ |
sd->getI(I); |
725 |
+ |
|
726 |
+ |
if (sd->isLinear()) { |
727 |
+ |
i = sd->linearAxis(); |
728 |
+ |
j = (i+1)%3; |
729 |
+ |
k = (i+2)%3; |
730 |
+ |
|
731 |
+ |
angle = dt2 * ji[j] / I[j][j]; |
732 |
+ |
this->rotate( k, i, angle, ji, A ); |
733 |
+ |
|
734 |
+ |
angle = dt * ji[k] / I[k][k]; |
735 |
+ |
this->rotate( i, j, angle, ji, A); |
736 |
+ |
|
737 |
+ |
angle = dt2 * ji[j] / I[j][j]; |
738 |
+ |
this->rotate( k, i, angle, ji, A ); |
739 |
+ |
|
740 |
+ |
} else { |
741 |
+ |
// rotate about the x-axis |
742 |
+ |
angle = dt2 * ji[0] / I[0][0]; |
743 |
+ |
this->rotate( 1, 2, angle, ji, A ); |
744 |
+ |
|
745 |
+ |
// rotate about the y-axis |
746 |
+ |
angle = dt2 * ji[1] / I[1][1]; |
747 |
+ |
this->rotate( 2, 0, angle, ji, A ); |
748 |
+ |
|
749 |
+ |
// rotate about the z-axis |
750 |
+ |
angle = dt * ji[2] / I[2][2]; |
751 |
+ |
sd->addZangle(angle); |
752 |
+ |
this->rotate( 0, 1, angle, ji, A); |
753 |
+ |
|
754 |
+ |
// rotate about the y-axis |
755 |
+ |
angle = dt2 * ji[1] / I[1][1]; |
756 |
+ |
this->rotate( 2, 0, angle, ji, A ); |
757 |
+ |
|
758 |
+ |
// rotate about the x-axis |
759 |
+ |
angle = dt2 * ji[0] / I[0][0]; |
760 |
+ |
this->rotate( 1, 2, angle, ji, A ); |
761 |
+ |
|
762 |
|
} |
763 |
+ |
sd->setA( A ); |
764 |
|
} |
765 |
|
|
766 |
|
template<typename T> void Integrator<T>::rotate(int axes1, int axes2, |
828 |
|
} |
829 |
|
} |
830 |
|
|
831 |
< |
// rotate the Rotation matrix acording to: |
831 |
> |
// rotate the Rotation matrix acording to: |
832 |
|
// A[][] = A[][] * transpose(rot[][]) |
833 |
|
|
834 |
|
|
853 |
|
template<typename T> void Integrator<T>::thermalize(){ |
854 |
|
tStats->velocitize(); |
855 |
|
} |
856 |
+ |
|
857 |
+ |
template<typename T> double Integrator<T>::getConservedQuantity(void){ |
858 |
+ |
return tStats->getTotalE(); |
859 |
+ |
} |
860 |
+ |
template<typename T> string Integrator<T>::getAdditionalParameters(void){ |
861 |
+ |
//By default, return a null string |
862 |
+ |
//The reason we use string instead of char* is that if we use char*, we will |
863 |
+ |
//return a pointer point to local variable which might cause problem |
864 |
+ |
return string(); |
865 |
+ |
} |