31 |
|
} |
32 |
|
|
33 |
|
nAtoms = info->n_atoms; |
34 |
+ |
integrableObjects = info->integrableObjects; |
35 |
|
|
36 |
|
// check for constraints |
37 |
|
|
182 |
|
// initialize the forces before the first step |
183 |
|
|
184 |
|
calcForce(1, 1); |
184 |
– |
|
185 |
– |
//temp test |
186 |
– |
tStats->getPotential(); |
185 |
|
|
186 |
|
if (nConstrained){ |
187 |
|
preMove(); |
210 |
|
MPIcheckPoint(); |
211 |
|
#endif // is_mpi |
212 |
|
|
213 |
< |
while (info->getTime() < runTime){ |
213 |
> |
while (info->getTime() < runTime && !stopIntegrator()){ |
214 |
|
if ((info->getTime() + dt) >= currStatus){ |
215 |
|
calcPot = 1; |
216 |
|
calcStress = 1; |
332 |
|
|
333 |
|
|
334 |
|
template<typename T> void Integrator<T>::moveA(void){ |
335 |
< |
int i, j; |
335 |
> |
size_t i, j; |
336 |
|
DirectionalAtom* dAtom; |
337 |
|
double Tb[3], ji[3]; |
338 |
|
double vel[3], pos[3], frc[3]; |
339 |
|
double mass; |
340 |
< |
|
341 |
< |
for (i = 0; i < nAtoms; i++){ |
342 |
< |
atoms[i]->getVel(vel); |
343 |
< |
atoms[i]->getPos(pos); |
344 |
< |
atoms[i]->getFrc(frc); |
345 |
< |
|
346 |
< |
mass = atoms[i]->getMass(); |
340 |
> |
|
341 |
> |
for (i = 0; i < integrableObjects.size() ; i++){ |
342 |
> |
integrableObjects[i]->getVel(vel); |
343 |
> |
integrableObjects[i]->getPos(pos); |
344 |
> |
integrableObjects[i]->getFrc(frc); |
345 |
> |
|
346 |
> |
mass = integrableObjects[i]->getMass(); |
347 |
|
|
348 |
|
for (j = 0; j < 3; j++){ |
349 |
|
// velocity half step |
352 |
|
pos[j] += dt * vel[j]; |
353 |
|
} |
354 |
|
|
355 |
< |
atoms[i]->setVel(vel); |
356 |
< |
atoms[i]->setPos(pos); |
355 |
> |
integrableObjects[i]->setVel(vel); |
356 |
> |
integrableObjects[i]->setPos(pos); |
357 |
|
|
358 |
< |
if (atoms[i]->isDirectional()){ |
361 |
< |
dAtom = (DirectionalAtom *) atoms[i]; |
358 |
> |
if (integrableObjects[i]->isDirectional()){ |
359 |
|
|
360 |
|
// get and convert the torque to body frame |
361 |
|
|
362 |
< |
dAtom->getTrq(Tb); |
363 |
< |
dAtom->lab2Body(Tb); |
362 |
> |
integrableObjects[i]->getTrq(Tb); |
363 |
> |
integrableObjects[i]->lab2Body(Tb); |
364 |
|
|
365 |
|
// get the angular momentum, and propagate a half step |
366 |
|
|
367 |
< |
dAtom->getJ(ji); |
367 |
> |
integrableObjects[i]->getJ(ji); |
368 |
|
|
369 |
|
for (j = 0; j < 3; j++) |
370 |
|
ji[j] += (dt2 * Tb[j]) * eConvert; |
371 |
|
|
372 |
< |
this->rotationPropagation( dAtom, ji ); |
372 |
> |
this->rotationPropagation( integrableObjects[i], ji ); |
373 |
|
|
374 |
< |
dAtom->setJ(ji); |
374 |
> |
integrableObjects[i]->setJ(ji); |
375 |
|
} |
376 |
|
} |
377 |
|
|
383 |
|
|
384 |
|
template<typename T> void Integrator<T>::moveB(void){ |
385 |
|
int i, j; |
389 |
– |
DirectionalAtom* dAtom; |
386 |
|
double Tb[3], ji[3]; |
387 |
|
double vel[3], frc[3]; |
388 |
|
double mass; |
389 |
|
|
390 |
< |
for (i = 0; i < nAtoms; i++){ |
391 |
< |
atoms[i]->getVel(vel); |
392 |
< |
atoms[i]->getFrc(frc); |
390 |
> |
for (i = 0; i < integrableObjects.size(); i++){ |
391 |
> |
integrableObjects[i]->getVel(vel); |
392 |
> |
integrableObjects[i]->getFrc(frc); |
393 |
|
|
394 |
< |
mass = atoms[i]->getMass(); |
394 |
> |
mass = integrableObjects[i]->getMass(); |
395 |
|
|
396 |
|
// velocity half step |
397 |
|
for (j = 0; j < 3; j++) |
398 |
|
vel[j] += (dt2 * frc[j] / mass) * eConvert; |
399 |
|
|
400 |
< |
atoms[i]->setVel(vel); |
400 |
> |
integrableObjects[i]->setVel(vel); |
401 |
|
|
402 |
< |
if (atoms[i]->isDirectional()){ |
407 |
< |
dAtom = (DirectionalAtom *) atoms[i]; |
402 |
> |
if (integrableObjects[i]->isDirectional()){ |
403 |
|
|
404 |
|
// get and convert the torque to body frame |
405 |
|
|
406 |
< |
dAtom->getTrq(Tb); |
407 |
< |
dAtom->lab2Body(Tb); |
406 |
> |
integrableObjects[i]->getTrq(Tb); |
407 |
> |
integrableObjects[i]->lab2Body(Tb); |
408 |
|
|
409 |
|
// get the angular momentum, and propagate a half step |
410 |
|
|
411 |
< |
dAtom->getJ(ji); |
411 |
> |
integrableObjects[i]->getJ(ji); |
412 |
|
|
413 |
|
for (j = 0; j < 3; j++) |
414 |
|
ji[j] += (dt2 * Tb[j]) * eConvert; |
415 |
|
|
416 |
|
|
417 |
< |
dAtom->setJ(ji); |
417 |
> |
integrableObjects[i]->setJ(ji); |
418 |
|
} |
419 |
|
} |
420 |
|
|
683 |
|
} |
684 |
|
|
685 |
|
template<typename T> void Integrator<T>::rotationPropagation |
686 |
< |
( DirectionalAtom* dAtom, double ji[3] ){ |
686 |
> |
( StuntDouble* sd, double ji[3] ){ |
687 |
|
|
688 |
|
double angle; |
689 |
|
double A[3][3], I[3][3]; |
691 |
|
// use the angular velocities to propagate the rotation matrix a |
692 |
|
// full time step |
693 |
|
|
694 |
< |
dAtom->getA(A); |
695 |
< |
dAtom->getI(I); |
694 |
> |
sd->getA(A); |
695 |
> |
sd->getI(I); |
696 |
|
|
697 |
|
// rotate about the x-axis |
698 |
|
angle = dt2 * ji[0] / I[0][0]; |
714 |
|
angle = dt2 * ji[0] / I[0][0]; |
715 |
|
this->rotate( 1, 2, angle, ji, A ); |
716 |
|
|
717 |
< |
dAtom->setA( A ); |
717 |
> |
sd->setA( A ); |
718 |
|
} |
719 |
|
|
720 |
|
template<typename T> void Integrator<T>::rotate(int axes1, int axes2, |