| 27 |
|
|
| 28 |
|
nAtoms = info->n_atoms; |
| 29 |
|
|
| 30 |
+ |
std::cerr << "integ nAtoms = " << nAtoms << "\n"; |
| 31 |
+ |
|
| 32 |
|
// check for constraints |
| 33 |
|
|
| 34 |
|
constrainedA = NULL; |
| 74 |
|
for(int j=0; j<molecules[i].getNBonds(); j++){ |
| 75 |
|
|
| 76 |
|
constrained = theArray[j]->is_constrained(); |
| 77 |
+ |
|
| 78 |
+ |
std::cerr << "Is the folowing bond constrained \n"; |
| 79 |
+ |
theArray[j]->printMe(); |
| 80 |
|
|
| 81 |
|
if(constrained){ |
| 82 |
|
|
| 83 |
+ |
std::cerr << "Yes\n"; |
| 84 |
+ |
|
| 85 |
|
dummy_plug = theArray[j]->get_constraint(); |
| 86 |
|
temp_con[nConstrained].set_a( dummy_plug->get_a() ); |
| 87 |
|
temp_con[nConstrained].set_b( dummy_plug->get_b() ); |
| 89 |
|
|
| 90 |
|
nConstrained++; |
| 91 |
|
constrained = 0; |
| 92 |
< |
} |
| 92 |
> |
} |
| 93 |
> |
else std::cerr << "No.\n"; |
| 94 |
|
} |
| 95 |
|
|
| 96 |
|
theArray = (SRI**) molecules[i].getMyBends(); |
| 234 |
|
calcStress = 1; |
| 235 |
|
} |
| 236 |
|
|
| 237 |
+ |
std::cerr << "calcPot = " << calcPot << "; calcStress = " |
| 238 |
+ |
<< calcStress << "\n"; |
| 239 |
+ |
|
| 240 |
|
integrateStep( calcPot, calcStress ); |
| 241 |
|
|
| 242 |
|
currTime += dt; |
| 304 |
|
double Tb[3]; |
| 305 |
|
double ji[3]; |
| 306 |
|
double angle; |
| 307 |
+ |
double A[3][3]; |
| 308 |
|
|
| 309 |
|
|
| 298 |
– |
|
| 310 |
|
for( i=0; i<nAtoms; i++ ){ |
| 311 |
|
atomIndex = i * 3; |
| 312 |
|
aMatIndex = i * 9; |
| 314 |
|
// velocity half step |
| 315 |
|
for( j=atomIndex; j<(atomIndex+3); j++ ) |
| 316 |
|
vel[j] += ( dt2 * frc[j] / atoms[i]->getMass() ) * eConvert; |
| 317 |
+ |
|
| 318 |
+ |
std::cerr<< "MoveA vel[" << i << "] = " |
| 319 |
+ |
<< vel[atomIndex] << "\t" |
| 320 |
+ |
<< vel[atomIndex+1]<< "\t" |
| 321 |
+ |
<< vel[atomIndex+2]<< "\n"; |
| 322 |
|
|
| 323 |
|
// position whole step |
| 324 |
|
for( j=atomIndex; j<(atomIndex+3); j++ ) pos[j] += dt * vel[j]; |
| 325 |
|
|
| 326 |
+ |
|
| 327 |
+ |
std::cerr<< "MoveA pos[" << i << "] = " |
| 328 |
+ |
<< pos[atomIndex] << "\t" |
| 329 |
+ |
<< pos[atomIndex+1]<< "\t" |
| 330 |
+ |
<< pos[atomIndex+2]<< "\n"; |
| 331 |
+ |
|
| 332 |
|
if( atoms[i]->isDirectional() ){ |
| 333 |
|
|
| 334 |
|
dAtom = (DirectionalAtom *)atoms[i]; |
| 349 |
|
|
| 350 |
|
// use the angular velocities to propagate the rotation matrix a |
| 351 |
|
// full time step |
| 352 |
+ |
|
| 353 |
+ |
// get the atom's rotation matrix |
| 354 |
+ |
|
| 355 |
+ |
A[0][0] = dAtom->getAxx(); |
| 356 |
+ |
A[0][1] = dAtom->getAxy(); |
| 357 |
+ |
A[0][2] = dAtom->getAxz(); |
| 358 |
+ |
|
| 359 |
+ |
A[1][0] = dAtom->getAyx(); |
| 360 |
+ |
A[1][1] = dAtom->getAyy(); |
| 361 |
+ |
A[1][2] = dAtom->getAyz(); |
| 362 |
|
|
| 363 |
+ |
A[2][0] = dAtom->getAzx(); |
| 364 |
+ |
A[2][1] = dAtom->getAzy(); |
| 365 |
+ |
A[2][2] = dAtom->getAzz(); |
| 366 |
+ |
|
| 367 |
|
// rotate about the x-axis |
| 368 |
|
angle = dt2 * ji[0] / dAtom->getIxx(); |
| 369 |
< |
this->rotate( 1, 2, angle, ji, &Amat[aMatIndex] ); |
| 369 |
> |
this->rotate( 1, 2, angle, ji, A ); |
| 370 |
|
|
| 371 |
|
// rotate about the y-axis |
| 372 |
|
angle = dt2 * ji[1] / dAtom->getIyy(); |
| 373 |
< |
this->rotate( 2, 0, angle, ji, &Amat[aMatIndex] ); |
| 373 |
> |
this->rotate( 2, 0, angle, ji, A ); |
| 374 |
|
|
| 375 |
|
// rotate about the z-axis |
| 376 |
|
angle = dt * ji[2] / dAtom->getIzz(); |
| 377 |
< |
this->rotate( 0, 1, angle, ji, &Amat[aMatIndex] ); |
| 377 |
> |
this->rotate( 0, 1, angle, ji, A ); |
| 378 |
|
|
| 379 |
|
// rotate about the y-axis |
| 380 |
|
angle = dt2 * ji[1] / dAtom->getIyy(); |
| 381 |
< |
this->rotate( 2, 0, angle, ji, &Amat[aMatIndex] ); |
| 381 |
> |
this->rotate( 2, 0, angle, ji, A ); |
| 382 |
|
|
| 383 |
|
// rotate about the x-axis |
| 384 |
|
angle = dt2 * ji[0] / dAtom->getIxx(); |
| 385 |
< |
this->rotate( 1, 2, angle, ji, &Amat[aMatIndex] ); |
| 385 |
> |
this->rotate( 1, 2, angle, ji, A ); |
| 386 |
|
|
| 387 |
|
dAtom->setJx( ji[0] ); |
| 388 |
|
dAtom->setJy( ji[1] ); |
| 407 |
|
for( j=atomIndex; j<(atomIndex+3); j++ ) |
| 408 |
|
vel[j] += ( dt2 * frc[j] / atoms[i]->getMass() ) * eConvert; |
| 409 |
|
|
| 410 |
+ |
std::cerr<< "MoveB vel[" << i << "] = " |
| 411 |
+ |
<< vel[atomIndex] << "\t" |
| 412 |
+ |
<< vel[atomIndex+1]<< "\t" |
| 413 |
+ |
<< vel[atomIndex+2]<< "\n"; |
| 414 |
+ |
|
| 415 |
+ |
|
| 416 |
|
if( atoms[i]->isDirectional() ){ |
| 417 |
|
|
| 418 |
|
dAtom = (DirectionalAtom *)atoms[i]; |
| 464 |
|
double gab; |
| 465 |
|
int iteration; |
| 466 |
|
|
| 425 |
– |
|
| 426 |
– |
|
| 467 |
|
for( i=0; i<nAtoms; i++){ |
| 468 |
|
|
| 469 |
|
moving[i] = 0; |
| 690 |
|
|
| 691 |
|
|
| 692 |
|
void Integrator::rotate( int axes1, int axes2, double angle, double ji[3], |
| 693 |
< |
double A[9] ){ |
| 693 |
> |
double A[3][3] ){ |
| 694 |
|
|
| 695 |
|
int i,j,k; |
| 696 |
|
double sinAngle; |
| 706 |
|
|
| 707 |
|
for(i=0; i<3; i++){ |
| 708 |
|
for(j=0; j<3; j++){ |
| 709 |
< |
tempA[j][i] = A[3*i + j]; |
| 709 |
> |
tempA[j][i] = A[i][j]; |
| 710 |
|
} |
| 711 |
|
} |
| 712 |
|
|
| 763 |
|
|
| 764 |
|
for(i=0; i<3; i++){ |
| 765 |
|
for(j=0; j<3; j++){ |
| 766 |
< |
A[3*j + i] = 0.0; |
| 766 |
> |
A[j][i] = 0.0; |
| 767 |
|
for(k=0; k<3; k++){ |
| 768 |
< |
A[3*j + i] += tempA[i][k] * rot[j][k]; |
| 768 |
> |
A[j][i] += tempA[i][k] * rot[j][k]; |
| 769 |
|
} |
| 770 |
|
} |
| 771 |
|
} |