160 |
|
double thermalTime = info->thermalTime; |
161 |
|
double resetTime = info->resetTime; |
162 |
|
|
163 |
< |
|
163 |
> |
double difference; |
164 |
|
double currSample; |
165 |
|
double currThermal; |
166 |
|
double currStatus; |
179 |
|
|
180 |
|
readyCheck(); |
181 |
|
|
182 |
+ |
// remove center of mass drift velocity (in case we passed in a configuration |
183 |
+ |
// that was drifting |
184 |
+ |
tStats->removeCOMdrift(); |
185 |
+ |
|
186 |
|
// initialize the forces before the first step |
187 |
|
|
188 |
|
calcForce(1, 1); |
185 |
– |
|
186 |
– |
//temp test |
187 |
– |
tStats->getPotential(); |
189 |
|
|
190 |
|
if (nConstrained){ |
191 |
|
preMove(); |
214 |
|
MPIcheckPoint(); |
215 |
|
#endif // is_mpi |
216 |
|
|
217 |
< |
while (info->getTime() < runTime){ |
218 |
< |
if ((info->getTime() + dt) >= currStatus){ |
217 |
> |
while (info->getTime() < runTime && !stopIntegrator()){ |
218 |
> |
difference = info->getTime() + dt - currStatus; |
219 |
> |
if (difference > 0 || fabs(difference) < 1e-4 ){ |
220 |
|
calcPot = 1; |
221 |
|
calcStress = 1; |
222 |
|
} |
692 |
|
|
693 |
|
double angle; |
694 |
|
double A[3][3], I[3][3]; |
695 |
+ |
int i, j, k; |
696 |
|
|
697 |
|
// use the angular velocities to propagate the rotation matrix a |
698 |
|
// full time step |
700 |
|
sd->getA(A); |
701 |
|
sd->getI(I); |
702 |
|
|
703 |
< |
// rotate about the x-axis |
704 |
< |
angle = dt2 * ji[0] / I[0][0]; |
705 |
< |
this->rotate( 1, 2, angle, ji, A ); |
703 |
> |
if (sd->isLinear()) { |
704 |
> |
i = sd->linearAxis(); |
705 |
> |
j = (i+1)%3; |
706 |
> |
k = (i+2)%3; |
707 |
> |
|
708 |
> |
angle = dt2 * ji[j] / I[j][j]; |
709 |
> |
this->rotate( k, i, angle, ji, A ); |
710 |
|
|
711 |
< |
// rotate about the y-axis |
712 |
< |
angle = dt2 * ji[1] / I[1][1]; |
706 |
< |
this->rotate( 2, 0, angle, ji, A ); |
711 |
> |
angle = dt * ji[k] / I[k][k]; |
712 |
> |
this->rotate( i, j, angle, ji, A); |
713 |
|
|
714 |
< |
// rotate about the z-axis |
715 |
< |
angle = dt * ji[2] / I[2][2]; |
710 |
< |
this->rotate( 0, 1, angle, ji, A); |
714 |
> |
angle = dt2 * ji[j] / I[j][j]; |
715 |
> |
this->rotate( k, i, angle, ji, A ); |
716 |
|
|
717 |
< |
// rotate about the y-axis |
718 |
< |
angle = dt2 * ji[1] / I[1][1]; |
719 |
< |
this->rotate( 2, 0, angle, ji, A ); |
720 |
< |
|
721 |
< |
// rotate about the x-axis |
722 |
< |
angle = dt2 * ji[0] / I[0][0]; |
723 |
< |
this->rotate( 1, 2, angle, ji, A ); |
724 |
< |
|
717 |
> |
} else { |
718 |
> |
// rotate about the x-axis |
719 |
> |
angle = dt2 * ji[0] / I[0][0]; |
720 |
> |
this->rotate( 1, 2, angle, ji, A ); |
721 |
> |
|
722 |
> |
// rotate about the y-axis |
723 |
> |
angle = dt2 * ji[1] / I[1][1]; |
724 |
> |
this->rotate( 2, 0, angle, ji, A ); |
725 |
> |
|
726 |
> |
// rotate about the z-axis |
727 |
> |
angle = dt * ji[2] / I[2][2]; |
728 |
> |
this->rotate( 0, 1, angle, ji, A); |
729 |
> |
|
730 |
> |
// rotate about the y-axis |
731 |
> |
angle = dt2 * ji[1] / I[1][1]; |
732 |
> |
this->rotate( 2, 0, angle, ji, A ); |
733 |
> |
|
734 |
> |
// rotate about the x-axis |
735 |
> |
angle = dt2 * ji[0] / I[0][0]; |
736 |
> |
this->rotate( 1, 2, angle, ji, A ); |
737 |
> |
|
738 |
> |
} |
739 |
|
sd->setA( A ); |
740 |
|
} |
741 |
|
|