31 |
|
} |
32 |
|
|
33 |
|
nAtoms = info->n_atoms; |
34 |
+ |
integrableObjects = info->integrableObjects; |
35 |
|
|
36 |
|
// check for constraints |
37 |
|
|
69 |
|
|
70 |
|
SRI** theArray; |
71 |
|
for (int i = 0; i < nMols; i++){ |
72 |
< |
theArray = (SRI * *) molecules[i].getMyBonds(); |
72 |
> |
|
73 |
> |
theArray = (SRI * *) molecules[i].getMyBonds(); |
74 |
|
for (int j = 0; j < molecules[i].getNBonds(); j++){ |
75 |
|
constrained = theArray[j]->is_constrained(); |
76 |
|
|
116 |
|
} |
117 |
|
} |
118 |
|
|
119 |
+ |
|
120 |
|
if (nConstrained > 0){ |
121 |
|
isConstrained = 1; |
122 |
|
|
138 |
|
} |
139 |
|
|
140 |
|
|
141 |
< |
// save oldAtoms to check for lode balanceing later on. |
141 |
> |
// save oldAtoms to check for lode balancing later on. |
142 |
|
|
143 |
|
oldAtoms = nAtoms; |
144 |
|
|
183 |
|
|
184 |
|
calcForce(1, 1); |
185 |
|
|
186 |
+ |
//temp test |
187 |
+ |
tStats->getPotential(); |
188 |
+ |
|
189 |
|
if (nConstrained){ |
190 |
|
preMove(); |
191 |
|
constrainA(); |
335 |
|
|
336 |
|
|
337 |
|
template<typename T> void Integrator<T>::moveA(void){ |
338 |
< |
int i, j; |
338 |
> |
size_t i, j; |
339 |
|
DirectionalAtom* dAtom; |
340 |
|
double Tb[3], ji[3]; |
341 |
|
double vel[3], pos[3], frc[3]; |
342 |
|
double mass; |
343 |
< |
|
344 |
< |
for (i = 0; i < nAtoms; i++){ |
345 |
< |
atoms[i]->getVel(vel); |
346 |
< |
atoms[i]->getPos(pos); |
347 |
< |
atoms[i]->getFrc(frc); |
348 |
< |
|
349 |
< |
mass = atoms[i]->getMass(); |
343 |
> |
|
344 |
> |
for (i = 0; i < integrableObjects.size() ; i++){ |
345 |
> |
integrableObjects[i]->getVel(vel); |
346 |
> |
integrableObjects[i]->getPos(pos); |
347 |
> |
integrableObjects[i]->getFrc(frc); |
348 |
> |
|
349 |
> |
mass = integrableObjects[i]->getMass(); |
350 |
|
|
351 |
|
for (j = 0; j < 3; j++){ |
352 |
|
// velocity half step |
355 |
|
pos[j] += dt * vel[j]; |
356 |
|
} |
357 |
|
|
358 |
< |
atoms[i]->setVel(vel); |
359 |
< |
atoms[i]->setPos(pos); |
358 |
> |
integrableObjects[i]->setVel(vel); |
359 |
> |
integrableObjects[i]->setPos(pos); |
360 |
|
|
361 |
< |
if (atoms[i]->isDirectional()){ |
356 |
< |
dAtom = (DirectionalAtom *) atoms[i]; |
361 |
> |
if (integrableObjects[i]->isDirectional()){ |
362 |
|
|
363 |
|
// get and convert the torque to body frame |
364 |
|
|
365 |
< |
dAtom->getTrq(Tb); |
366 |
< |
dAtom->lab2Body(Tb); |
365 |
> |
integrableObjects[i]->getTrq(Tb); |
366 |
> |
integrableObjects[i]->lab2Body(Tb); |
367 |
|
|
368 |
|
// get the angular momentum, and propagate a half step |
369 |
|
|
370 |
< |
dAtom->getJ(ji); |
370 |
> |
integrableObjects[i]->getJ(ji); |
371 |
|
|
372 |
|
for (j = 0; j < 3; j++) |
373 |
|
ji[j] += (dt2 * Tb[j]) * eConvert; |
374 |
|
|
375 |
< |
this->rotationPropagation( dAtom, ji ); |
375 |
> |
this->rotationPropagation( integrableObjects[i], ji ); |
376 |
|
|
377 |
< |
dAtom->setJ(ji); |
377 |
> |
integrableObjects[i]->setJ(ji); |
378 |
|
} |
379 |
|
} |
380 |
|
|
386 |
|
|
387 |
|
template<typename T> void Integrator<T>::moveB(void){ |
388 |
|
int i, j; |
384 |
– |
DirectionalAtom* dAtom; |
389 |
|
double Tb[3], ji[3]; |
390 |
|
double vel[3], frc[3]; |
391 |
|
double mass; |
392 |
|
|
393 |
< |
for (i = 0; i < nAtoms; i++){ |
394 |
< |
atoms[i]->getVel(vel); |
395 |
< |
atoms[i]->getFrc(frc); |
393 |
> |
for (i = 0; i < integrableObjects.size(); i++){ |
394 |
> |
integrableObjects[i]->getVel(vel); |
395 |
> |
integrableObjects[i]->getFrc(frc); |
396 |
|
|
397 |
< |
mass = atoms[i]->getMass(); |
397 |
> |
mass = integrableObjects[i]->getMass(); |
398 |
|
|
399 |
|
// velocity half step |
400 |
|
for (j = 0; j < 3; j++) |
401 |
|
vel[j] += (dt2 * frc[j] / mass) * eConvert; |
402 |
|
|
403 |
< |
atoms[i]->setVel(vel); |
403 |
> |
integrableObjects[i]->setVel(vel); |
404 |
|
|
405 |
< |
if (atoms[i]->isDirectional()){ |
402 |
< |
dAtom = (DirectionalAtom *) atoms[i]; |
405 |
> |
if (integrableObjects[i]->isDirectional()){ |
406 |
|
|
407 |
|
// get and convert the torque to body frame |
408 |
|
|
409 |
< |
dAtom->getTrq(Tb); |
410 |
< |
dAtom->lab2Body(Tb); |
409 |
> |
integrableObjects[i]->getTrq(Tb); |
410 |
> |
integrableObjects[i]->lab2Body(Tb); |
411 |
|
|
412 |
|
// get the angular momentum, and propagate a half step |
413 |
|
|
414 |
< |
dAtom->getJ(ji); |
414 |
> |
integrableObjects[i]->getJ(ji); |
415 |
|
|
416 |
|
for (j = 0; j < 3; j++) |
417 |
|
ji[j] += (dt2 * Tb[j]) * eConvert; |
418 |
|
|
419 |
|
|
420 |
< |
dAtom->setJ(ji); |
420 |
> |
integrableObjects[i]->setJ(ji); |
421 |
|
} |
422 |
|
} |
423 |
|
|
686 |
|
} |
687 |
|
|
688 |
|
template<typename T> void Integrator<T>::rotationPropagation |
689 |
< |
( DirectionalAtom* dAtom, double ji[3] ){ |
689 |
> |
( StuntDouble* sd, double ji[3] ){ |
690 |
|
|
691 |
|
double angle; |
692 |
|
double A[3][3], I[3][3]; |
694 |
|
// use the angular velocities to propagate the rotation matrix a |
695 |
|
// full time step |
696 |
|
|
697 |
< |
dAtom->getA(A); |
698 |
< |
dAtom->getI(I); |
697 |
> |
sd->getA(A); |
698 |
> |
sd->getI(I); |
699 |
|
|
700 |
|
// rotate about the x-axis |
701 |
|
angle = dt2 * ji[0] / I[0][0]; |
717 |
|
angle = dt2 * ji[0] / I[0][0]; |
718 |
|
this->rotate( 1, 2, angle, ji, A ); |
719 |
|
|
720 |
< |
dAtom->setA( A ); |
720 |
> |
sd->setA( A ); |
721 |
|
} |
722 |
|
|
723 |
|
template<typename T> void Integrator<T>::rotate(int axes1, int axes2, |