1 |
|
#include <iostream> |
2 |
< |
#include <cstdlib> |
3 |
< |
#include <cmath> |
2 |
> |
#include <stdlib.h> |
3 |
> |
#include <math.h> |
4 |
|
|
5 |
|
#ifdef IS_MPI |
6 |
|
#include "mpiSimulation.hpp" |
7 |
|
#include <unistd.h> |
8 |
|
#endif //is_mpi |
9 |
|
|
10 |
+ |
#ifdef PROFILE |
11 |
+ |
#include "mdProfile.hpp" |
12 |
+ |
#endif // profile |
13 |
+ |
|
14 |
|
#include "Integrator.hpp" |
15 |
|
#include "simError.h" |
16 |
|
|
29 |
|
if (info->the_integrator != NULL){ |
30 |
|
delete info->the_integrator; |
31 |
|
} |
32 |
< |
|
32 |
> |
|
33 |
|
nAtoms = info->n_atoms; |
34 |
+ |
integrableObjects = info->integrableObjects; |
35 |
|
|
36 |
|
// check for constraints |
37 |
|
|
69 |
|
|
70 |
|
SRI** theArray; |
71 |
|
for (int i = 0; i < nMols; i++){ |
72 |
< |
theArray = (SRI * *) molecules[i].getMyBonds(); |
72 |
> |
|
73 |
> |
theArray = (SRI * *) molecules[i].getMyBonds(); |
74 |
|
for (int j = 0; j < molecules[i].getNBonds(); j++){ |
75 |
|
constrained = theArray[j]->is_constrained(); |
76 |
|
|
116 |
|
} |
117 |
|
} |
118 |
|
|
119 |
+ |
|
120 |
|
if (nConstrained > 0){ |
121 |
|
isConstrained = 1; |
122 |
|
|
138 |
|
} |
139 |
|
|
140 |
|
|
141 |
< |
// save oldAtoms to check for lode balanceing later on. |
141 |
> |
// save oldAtoms to check for lode balancing later on. |
142 |
|
|
143 |
|
oldAtoms = nAtoms; |
144 |
|
|
153 |
|
|
154 |
|
|
155 |
|
template<typename T> void Integrator<T>::integrate(void){ |
149 |
– |
int i, j; // loop counters |
156 |
|
|
157 |
|
double runTime = info->run_time; |
158 |
|
double sampleTime = info->sampleTime; |
165 |
|
double currThermal; |
166 |
|
double currStatus; |
167 |
|
double currReset; |
168 |
< |
|
168 |
> |
|
169 |
|
int calcPot, calcStress; |
164 |
– |
int isError; |
170 |
|
|
171 |
|
tStats = new Thermo(info); |
172 |
|
statOut = new StatWriter(info); |
173 |
|
dumpOut = new DumpWriter(info); |
174 |
|
|
175 |
|
atoms = info->atoms; |
171 |
– |
DirectionalAtom* dAtom; |
176 |
|
|
177 |
|
dt = info->dt; |
178 |
|
dt2 = 0.5 * dt; |
179 |
|
|
180 |
|
readyCheck(); |
181 |
|
|
182 |
+ |
// remove center of mass drift velocity (in case we passed in a configuration |
183 |
+ |
// that was drifting |
184 |
+ |
tStats->removeCOMdrift(); |
185 |
+ |
|
186 |
|
// initialize the forces before the first step |
187 |
|
|
188 |
|
calcForce(1, 1); |
189 |
< |
|
189 |
> |
|
190 |
|
if (nConstrained){ |
191 |
|
preMove(); |
192 |
|
constrainA(); |
193 |
< |
calcForce(1, 1); |
193 |
> |
calcForce(1, 1); |
194 |
|
constrainB(); |
195 |
|
} |
196 |
|
|
209 |
|
statOut->writeStat(info->getTime()); |
210 |
|
|
211 |
|
|
204 |
– |
|
212 |
|
#ifdef IS_MPI |
213 |
|
strcpy(checkPointMsg, "The integrator is ready to go."); |
214 |
|
MPIcheckPoint(); |
215 |
|
#endif // is_mpi |
216 |
|
|
217 |
< |
while (info->getTime() < runTime){ |
217 |
> |
while (info->getTime() < runTime && !stopIntegrator()){ |
218 |
|
if ((info->getTime() + dt) >= currStatus){ |
219 |
|
calcPot = 1; |
220 |
|
calcStress = 1; |
221 |
|
} |
222 |
|
|
223 |
+ |
#ifdef PROFILE |
224 |
+ |
startProfile( pro1 ); |
225 |
+ |
#endif |
226 |
+ |
|
227 |
|
integrateStep(calcPot, calcStress); |
228 |
|
|
229 |
+ |
#ifdef PROFILE |
230 |
+ |
endProfile( pro1 ); |
231 |
+ |
|
232 |
+ |
startProfile( pro2 ); |
233 |
+ |
#endif // profile |
234 |
+ |
|
235 |
|
info->incrTime(dt); |
236 |
|
|
237 |
|
if (info->setTemp){ |
247 |
|
} |
248 |
|
|
249 |
|
if (info->getTime() >= currStatus){ |
250 |
< |
statOut->writeStat(info->getTime()); |
251 |
< |
calcPot = 0; |
250 |
> |
statOut->writeStat(info->getTime()); |
251 |
> |
calcPot = 0; |
252 |
|
calcStress = 0; |
253 |
|
currStatus += statusTime; |
254 |
< |
} |
254 |
> |
} |
255 |
|
|
256 |
|
if (info->resetIntegrator){ |
257 |
|
if (info->getTime() >= currReset){ |
259 |
|
currReset += resetTime; |
260 |
|
} |
261 |
|
} |
262 |
+ |
|
263 |
+ |
#ifdef PROFILE |
264 |
+ |
endProfile( pro2 ); |
265 |
+ |
#endif //profile |
266 |
|
|
267 |
|
#ifdef IS_MPI |
268 |
|
strcpy(checkPointMsg, "successfully took a time step."); |
270 |
|
#endif // is_mpi |
271 |
|
} |
272 |
|
|
252 |
– |
dumpOut->writeFinal(info->getTime()); |
253 |
– |
|
273 |
|
delete dumpOut; |
274 |
|
delete statOut; |
275 |
|
} |
277 |
|
template<typename T> void Integrator<T>::integrateStep(int calcPot, |
278 |
|
int calcStress){ |
279 |
|
// Position full step, and velocity half step |
280 |
+ |
|
281 |
+ |
#ifdef PROFILE |
282 |
+ |
startProfile(pro3); |
283 |
+ |
#endif //profile |
284 |
+ |
|
285 |
|
preMove(); |
286 |
|
|
287 |
< |
moveA(); |
287 |
> |
#ifdef PROFILE |
288 |
> |
endProfile(pro3); |
289 |
|
|
290 |
+ |
startProfile(pro4); |
291 |
+ |
#endif // profile |
292 |
|
|
293 |
+ |
moveA(); |
294 |
|
|
295 |
+ |
#ifdef PROFILE |
296 |
+ |
endProfile(pro4); |
297 |
+ |
|
298 |
+ |
startProfile(pro5); |
299 |
+ |
#endif//profile |
300 |
|
|
301 |
+ |
|
302 |
|
#ifdef IS_MPI |
303 |
|
strcpy(checkPointMsg, "Succesful moveA\n"); |
304 |
|
MPIcheckPoint(); |
314 |
|
MPIcheckPoint(); |
315 |
|
#endif // is_mpi |
316 |
|
|
317 |
+ |
#ifdef PROFILE |
318 |
+ |
endProfile( pro5 ); |
319 |
|
|
320 |
+ |
startProfile( pro6 ); |
321 |
+ |
#endif //profile |
322 |
+ |
|
323 |
|
// finish the velocity half step |
324 |
|
|
325 |
|
moveB(); |
326 |
|
|
327 |
+ |
#ifdef PROFILE |
328 |
+ |
endProfile(pro6); |
329 |
+ |
#endif // profile |
330 |
|
|
289 |
– |
|
331 |
|
#ifdef IS_MPI |
332 |
|
strcpy(checkPointMsg, "Succesful moveB\n"); |
333 |
|
MPIcheckPoint(); |
336 |
|
|
337 |
|
|
338 |
|
template<typename T> void Integrator<T>::moveA(void){ |
339 |
< |
int i, j; |
339 |
> |
size_t i, j; |
340 |
|
DirectionalAtom* dAtom; |
341 |
|
double Tb[3], ji[3]; |
342 |
|
double vel[3], pos[3], frc[3]; |
343 |
|
double mass; |
344 |
+ |
|
345 |
+ |
for (i = 0; i < integrableObjects.size() ; i++){ |
346 |
+ |
integrableObjects[i]->getVel(vel); |
347 |
+ |
integrableObjects[i]->getPos(pos); |
348 |
+ |
integrableObjects[i]->getFrc(frc); |
349 |
|
|
350 |
< |
for (i = 0; i < nAtoms; i++){ |
351 |
< |
atoms[i]->getVel(vel); |
352 |
< |
atoms[i]->getPos(pos); |
307 |
< |
atoms[i]->getFrc(frc); |
350 |
> |
std::cerr << "i =\t" << i << "\t" << frc[0] << "\t" << frc[1]<< "\t" << frc[2] << "\n"; |
351 |
> |
|
352 |
> |
mass = integrableObjects[i]->getMass(); |
353 |
|
|
309 |
– |
mass = atoms[i]->getMass(); |
310 |
– |
|
354 |
|
for (j = 0; j < 3; j++){ |
355 |
|
// velocity half step |
356 |
|
vel[j] += (dt2 * frc[j] / mass) * eConvert; |
358 |
|
pos[j] += dt * vel[j]; |
359 |
|
} |
360 |
|
|
361 |
< |
atoms[i]->setVel(vel); |
362 |
< |
atoms[i]->setPos(pos); |
361 |
> |
integrableObjects[i]->setVel(vel); |
362 |
> |
integrableObjects[i]->setPos(pos); |
363 |
|
|
364 |
< |
if (atoms[i]->isDirectional()){ |
322 |
< |
dAtom = (DirectionalAtom *) atoms[i]; |
364 |
> |
if (integrableObjects[i]->isDirectional()){ |
365 |
|
|
366 |
|
// get and convert the torque to body frame |
367 |
|
|
368 |
< |
dAtom->getTrq(Tb); |
369 |
< |
dAtom->lab2Body(Tb); |
368 |
> |
integrableObjects[i]->getTrq(Tb); |
369 |
> |
integrableObjects[i]->lab2Body(Tb); |
370 |
|
|
371 |
|
// get the angular momentum, and propagate a half step |
372 |
|
|
373 |
< |
dAtom->getJ(ji); |
373 |
> |
integrableObjects[i]->getJ(ji); |
374 |
|
|
375 |
|
for (j = 0; j < 3; j++) |
376 |
|
ji[j] += (dt2 * Tb[j]) * eConvert; |
377 |
|
|
378 |
< |
this->rotationPropagation( dAtom, ji ); |
378 |
> |
this->rotationPropagation( integrableObjects[i], ji ); |
379 |
|
|
380 |
< |
dAtom->setJ(ji); |
380 |
> |
integrableObjects[i]->setJ(ji); |
381 |
|
} |
382 |
|
} |
383 |
|
|
389 |
|
|
390 |
|
template<typename T> void Integrator<T>::moveB(void){ |
391 |
|
int i, j; |
350 |
– |
DirectionalAtom* dAtom; |
392 |
|
double Tb[3], ji[3]; |
393 |
|
double vel[3], frc[3]; |
394 |
|
double mass; |
395 |
|
|
396 |
< |
for (i = 0; i < nAtoms; i++){ |
397 |
< |
atoms[i]->getVel(vel); |
398 |
< |
atoms[i]->getFrc(frc); |
396 |
> |
for (i = 0; i < integrableObjects.size(); i++){ |
397 |
> |
integrableObjects[i]->getVel(vel); |
398 |
> |
integrableObjects[i]->getFrc(frc); |
399 |
|
|
400 |
< |
mass = atoms[i]->getMass(); |
400 |
> |
mass = integrableObjects[i]->getMass(); |
401 |
|
|
402 |
|
// velocity half step |
403 |
|
for (j = 0; j < 3; j++) |
404 |
|
vel[j] += (dt2 * frc[j] / mass) * eConvert; |
405 |
|
|
406 |
< |
atoms[i]->setVel(vel); |
406 |
> |
integrableObjects[i]->setVel(vel); |
407 |
|
|
408 |
< |
if (atoms[i]->isDirectional()){ |
368 |
< |
dAtom = (DirectionalAtom *) atoms[i]; |
408 |
> |
if (integrableObjects[i]->isDirectional()){ |
409 |
|
|
410 |
< |
// get and convert the torque to body frame |
410 |
> |
// get and convert the torque to body frame |
411 |
|
|
412 |
< |
dAtom->getTrq(Tb); |
413 |
< |
dAtom->lab2Body(Tb); |
412 |
> |
integrableObjects[i]->getTrq(Tb); |
413 |
> |
integrableObjects[i]->lab2Body(Tb); |
414 |
|
|
415 |
|
// get the angular momentum, and propagate a half step |
416 |
|
|
417 |
< |
dAtom->getJ(ji); |
417 |
> |
integrableObjects[i]->getJ(ji); |
418 |
|
|
419 |
|
for (j = 0; j < 3; j++) |
420 |
|
ji[j] += (dt2 * Tb[j]) * eConvert; |
421 |
|
|
422 |
|
|
423 |
< |
dAtom->setJ(ji); |
423 |
> |
integrableObjects[i]->setJ(ji); |
424 |
|
} |
425 |
|
} |
426 |
|
|
445 |
|
} |
446 |
|
|
447 |
|
template<typename T> void Integrator<T>::constrainA(){ |
448 |
< |
int i, j, k; |
448 |
> |
int i, j; |
449 |
|
int done; |
450 |
|
double posA[3], posB[3]; |
451 |
|
double velA[3], velB[3]; |
589 |
|
} |
590 |
|
|
591 |
|
template<typename T> void Integrator<T>::constrainB(void){ |
592 |
< |
int i, j, k; |
592 |
> |
int i, j; |
593 |
|
int done; |
594 |
|
double posA[3], posB[3]; |
595 |
|
double velA[3], velB[3]; |
598 |
|
int a, b, ax, ay, az, bx, by, bz; |
599 |
|
double rma, rmb; |
600 |
|
double dx, dy, dz; |
601 |
< |
double rabsq, pabsq, rvab; |
562 |
< |
double diffsq; |
601 |
> |
double rvab; |
602 |
|
double gab; |
603 |
|
int iteration; |
604 |
|
|
689 |
|
} |
690 |
|
|
691 |
|
template<typename T> void Integrator<T>::rotationPropagation |
692 |
< |
( DirectionalAtom* dAtom, double ji[3] ){ |
692 |
> |
( StuntDouble* sd, double ji[3] ){ |
693 |
|
|
694 |
|
double angle; |
695 |
|
double A[3][3], I[3][3]; |
696 |
+ |
int i, j, k; |
697 |
|
|
698 |
|
// use the angular velocities to propagate the rotation matrix a |
699 |
|
// full time step |
700 |
|
|
701 |
< |
dAtom->getA(A); |
702 |
< |
dAtom->getI(I); |
703 |
< |
|
704 |
< |
// rotate about the x-axis |
705 |
< |
angle = dt2 * ji[0] / I[0][0]; |
706 |
< |
this->rotate( 1, 2, angle, ji, A ); |
707 |
< |
|
708 |
< |
// rotate about the y-axis |
709 |
< |
angle = dt2 * ji[1] / I[1][1]; |
710 |
< |
this->rotate( 2, 0, angle, ji, A ); |
711 |
< |
|
712 |
< |
// rotate about the z-axis |
713 |
< |
angle = dt * ji[2] / I[2][2]; |
714 |
< |
this->rotate( 0, 1, angle, ji, A); |
715 |
< |
|
716 |
< |
// rotate about the y-axis |
717 |
< |
angle = dt2 * ji[1] / I[1][1]; |
718 |
< |
this->rotate( 2, 0, angle, ji, A ); |
719 |
< |
|
720 |
< |
// rotate about the x-axis |
721 |
< |
angle = dt2 * ji[0] / I[0][0]; |
722 |
< |
this->rotate( 1, 2, angle, ji, A ); |
723 |
< |
|
724 |
< |
dAtom->setA( A ); |
701 |
> |
sd->getA(A); |
702 |
> |
sd->getI(I); |
703 |
> |
|
704 |
> |
if (sd->isLinear()) { |
705 |
> |
i = sd->linearAxis(); |
706 |
> |
j = (i+1)%3; |
707 |
> |
k = (i+2)%3; |
708 |
> |
|
709 |
> |
angle = dt2 * ji[j] / I[j][j]; |
710 |
> |
this->rotate( k, i, angle, ji, A ); |
711 |
> |
|
712 |
> |
angle = dt * ji[k] / I[k][k]; |
713 |
> |
this->rotate( i, j, angle, ji, A); |
714 |
> |
|
715 |
> |
angle = dt2 * ji[j] / I[j][j]; |
716 |
> |
this->rotate( k, i, angle, ji, A ); |
717 |
> |
|
718 |
> |
} else { |
719 |
> |
// rotate about the x-axis |
720 |
> |
angle = dt2 * ji[0] / I[0][0]; |
721 |
> |
this->rotate( 1, 2, angle, ji, A ); |
722 |
> |
|
723 |
> |
// rotate about the y-axis |
724 |
> |
angle = dt2 * ji[1] / I[1][1]; |
725 |
> |
this->rotate( 2, 0, angle, ji, A ); |
726 |
> |
|
727 |
> |
// rotate about the z-axis |
728 |
> |
angle = dt * ji[2] / I[2][2]; |
729 |
> |
this->rotate( 0, 1, angle, ji, A); |
730 |
> |
|
731 |
> |
// rotate about the y-axis |
732 |
> |
angle = dt2 * ji[1] / I[1][1]; |
733 |
> |
this->rotate( 2, 0, angle, ji, A ); |
734 |
> |
|
735 |
> |
// rotate about the x-axis |
736 |
> |
angle = dt2 * ji[0] / I[0][0]; |
737 |
> |
this->rotate( 1, 2, angle, ji, A ); |
738 |
> |
|
739 |
> |
} |
740 |
> |
sd->setA( A ); |
741 |
|
} |
742 |
|
|
743 |
|
template<typename T> void Integrator<T>::rotate(int axes1, int axes2, |
805 |
|
} |
806 |
|
} |
807 |
|
|
808 |
< |
// rotate the Rotation matrix acording to: |
808 |
> |
// rotate the Rotation matrix acording to: |
809 |
|
// A[][] = A[][] * transpose(rot[][]) |
810 |
|
|
811 |
|
|
834 |
|
template<typename T> double Integrator<T>::getConservedQuantity(void){ |
835 |
|
return tStats->getTotalE(); |
836 |
|
} |
837 |
+ |
template<typename T> string Integrator<T>::getAdditionalParameters(void){ |
838 |
+ |
//By default, return a null string |
839 |
+ |
//The reason we use string instead of char* is that if we use char*, we will |
840 |
+ |
//return a pointer point to local variable which might cause problem |
841 |
+ |
return string(); |
842 |
+ |
} |