1 |
|
#include <iostream> |
2 |
< |
#include <cstdlib> |
3 |
< |
#include <cmath> |
2 |
> |
#include <stdlib.h> |
3 |
> |
#include <math.h> |
4 |
|
|
5 |
|
#ifdef IS_MPI |
6 |
|
#include "mpiSimulation.hpp" |
7 |
|
#include <unistd.h> |
8 |
|
#endif //is_mpi |
9 |
|
|
10 |
+ |
#ifdef PROFILE |
11 |
+ |
#include "mdProfile.hpp" |
12 |
+ |
#endif // profile |
13 |
+ |
|
14 |
|
#include "Integrator.hpp" |
15 |
|
#include "simError.h" |
16 |
|
|
29 |
|
if (info->the_integrator != NULL){ |
30 |
|
delete info->the_integrator; |
31 |
|
} |
32 |
< |
|
32 |
> |
|
33 |
|
nAtoms = info->n_atoms; |
34 |
+ |
integrableObjects = info->integrableObjects; |
35 |
|
|
36 |
|
// check for constraints |
37 |
|
|
69 |
|
|
70 |
|
SRI** theArray; |
71 |
|
for (int i = 0; i < nMols; i++){ |
72 |
< |
theArray = (SRI * *) molecules[i].getMyBonds(); |
72 |
> |
|
73 |
> |
theArray = (SRI * *) molecules[i].getMyBonds(); |
74 |
|
for (int j = 0; j < molecules[i].getNBonds(); j++){ |
75 |
|
constrained = theArray[j]->is_constrained(); |
76 |
|
|
116 |
|
} |
117 |
|
} |
118 |
|
|
119 |
+ |
|
120 |
|
if (nConstrained > 0){ |
121 |
|
isConstrained = 1; |
122 |
|
|
138 |
|
} |
139 |
|
|
140 |
|
|
141 |
< |
// save oldAtoms to check for lode balanceing later on. |
141 |
> |
// save oldAtoms to check for lode balancing later on. |
142 |
|
|
143 |
|
oldAtoms = nAtoms; |
144 |
|
|
165 |
|
double currThermal; |
166 |
|
double currStatus; |
167 |
|
double currReset; |
168 |
< |
|
168 |
> |
|
169 |
|
int calcPot, calcStress; |
170 |
|
|
171 |
|
tStats = new Thermo(info); |
182 |
|
// initialize the forces before the first step |
183 |
|
|
184 |
|
calcForce(1, 1); |
185 |
< |
|
185 |
> |
|
186 |
|
if (nConstrained){ |
187 |
|
preMove(); |
188 |
|
constrainA(); |
189 |
< |
calcForce(1, 1); |
189 |
> |
calcForce(1, 1); |
190 |
|
constrainB(); |
191 |
|
} |
192 |
|
|
205 |
|
statOut->writeStat(info->getTime()); |
206 |
|
|
207 |
|
|
201 |
– |
|
208 |
|
#ifdef IS_MPI |
209 |
|
strcpy(checkPointMsg, "The integrator is ready to go."); |
210 |
|
MPIcheckPoint(); |
211 |
|
#endif // is_mpi |
212 |
|
|
213 |
< |
while (info->getTime() < runTime){ |
213 |
> |
while (info->getTime() < runTime && !stopIntegrator()){ |
214 |
|
if ((info->getTime() + dt) >= currStatus){ |
215 |
|
calcPot = 1; |
216 |
|
calcStress = 1; |
217 |
|
} |
218 |
|
|
219 |
+ |
#ifdef PROFILE |
220 |
+ |
startProfile( pro1 ); |
221 |
+ |
#endif |
222 |
+ |
|
223 |
|
integrateStep(calcPot, calcStress); |
224 |
|
|
225 |
+ |
#ifdef PROFILE |
226 |
+ |
endProfile( pro1 ); |
227 |
+ |
|
228 |
+ |
startProfile( pro2 ); |
229 |
+ |
#endif // profile |
230 |
+ |
|
231 |
|
info->incrTime(dt); |
232 |
|
|
233 |
|
if (info->setTemp){ |
243 |
|
} |
244 |
|
|
245 |
|
if (info->getTime() >= currStatus){ |
246 |
< |
statOut->writeStat(info->getTime()); |
247 |
< |
calcPot = 0; |
246 |
> |
statOut->writeStat(info->getTime()); |
247 |
> |
calcPot = 0; |
248 |
|
calcStress = 0; |
249 |
|
currStatus += statusTime; |
250 |
< |
} |
250 |
> |
} |
251 |
|
|
252 |
|
if (info->resetIntegrator){ |
253 |
|
if (info->getTime() >= currReset){ |
255 |
|
currReset += resetTime; |
256 |
|
} |
257 |
|
} |
258 |
+ |
|
259 |
+ |
#ifdef PROFILE |
260 |
+ |
endProfile( pro2 ); |
261 |
+ |
#endif //profile |
262 |
|
|
263 |
|
#ifdef IS_MPI |
264 |
|
strcpy(checkPointMsg, "successfully took a time step."); |
266 |
|
#endif // is_mpi |
267 |
|
} |
268 |
|
|
249 |
– |
|
250 |
– |
// write the last frame |
251 |
– |
dumpOut->writeDump(info->getTime()); |
252 |
– |
|
269 |
|
delete dumpOut; |
270 |
|
delete statOut; |
271 |
|
} |
273 |
|
template<typename T> void Integrator<T>::integrateStep(int calcPot, |
274 |
|
int calcStress){ |
275 |
|
// Position full step, and velocity half step |
276 |
+ |
|
277 |
+ |
#ifdef PROFILE |
278 |
+ |
startProfile(pro3); |
279 |
+ |
#endif //profile |
280 |
+ |
|
281 |
|
preMove(); |
282 |
|
|
283 |
< |
moveA(); |
283 |
> |
#ifdef PROFILE |
284 |
> |
endProfile(pro3); |
285 |
|
|
286 |
+ |
startProfile(pro4); |
287 |
+ |
#endif // profile |
288 |
|
|
289 |
+ |
moveA(); |
290 |
|
|
291 |
+ |
#ifdef PROFILE |
292 |
+ |
endProfile(pro4); |
293 |
+ |
|
294 |
+ |
startProfile(pro5); |
295 |
+ |
#endif//profile |
296 |
|
|
297 |
+ |
|
298 |
|
#ifdef IS_MPI |
299 |
|
strcpy(checkPointMsg, "Succesful moveA\n"); |
300 |
|
MPIcheckPoint(); |
310 |
|
MPIcheckPoint(); |
311 |
|
#endif // is_mpi |
312 |
|
|
313 |
+ |
#ifdef PROFILE |
314 |
+ |
endProfile( pro5 ); |
315 |
|
|
316 |
+ |
startProfile( pro6 ); |
317 |
+ |
#endif //profile |
318 |
+ |
|
319 |
|
// finish the velocity half step |
320 |
|
|
321 |
|
moveB(); |
322 |
|
|
323 |
+ |
#ifdef PROFILE |
324 |
+ |
endProfile(pro6); |
325 |
+ |
#endif // profile |
326 |
|
|
288 |
– |
|
327 |
|
#ifdef IS_MPI |
328 |
|
strcpy(checkPointMsg, "Succesful moveB\n"); |
329 |
|
MPIcheckPoint(); |
332 |
|
|
333 |
|
|
334 |
|
template<typename T> void Integrator<T>::moveA(void){ |
335 |
< |
int i, j; |
335 |
> |
size_t i, j; |
336 |
|
DirectionalAtom* dAtom; |
337 |
|
double Tb[3], ji[3]; |
338 |
|
double vel[3], pos[3], frc[3]; |
339 |
|
double mass; |
340 |
+ |
|
341 |
+ |
for (i = 0; i < integrableObjects.size() ; i++){ |
342 |
+ |
integrableObjects[i]->getVel(vel); |
343 |
+ |
integrableObjects[i]->getPos(pos); |
344 |
+ |
integrableObjects[i]->getFrc(frc); |
345 |
+ |
|
346 |
+ |
mass = integrableObjects[i]->getMass(); |
347 |
|
|
303 |
– |
for (i = 0; i < nAtoms; i++){ |
304 |
– |
atoms[i]->getVel(vel); |
305 |
– |
atoms[i]->getPos(pos); |
306 |
– |
atoms[i]->getFrc(frc); |
307 |
– |
|
308 |
– |
mass = atoms[i]->getMass(); |
309 |
– |
|
348 |
|
for (j = 0; j < 3; j++){ |
349 |
|
// velocity half step |
350 |
|
vel[j] += (dt2 * frc[j] / mass) * eConvert; |
352 |
|
pos[j] += dt * vel[j]; |
353 |
|
} |
354 |
|
|
355 |
< |
atoms[i]->setVel(vel); |
356 |
< |
atoms[i]->setPos(pos); |
355 |
> |
integrableObjects[i]->setVel(vel); |
356 |
> |
integrableObjects[i]->setPos(pos); |
357 |
|
|
358 |
< |
if (atoms[i]->isDirectional()){ |
321 |
< |
dAtom = (DirectionalAtom *) atoms[i]; |
358 |
> |
if (integrableObjects[i]->isDirectional()){ |
359 |
|
|
360 |
|
// get and convert the torque to body frame |
361 |
|
|
362 |
< |
dAtom->getTrq(Tb); |
363 |
< |
dAtom->lab2Body(Tb); |
362 |
> |
integrableObjects[i]->getTrq(Tb); |
363 |
> |
integrableObjects[i]->lab2Body(Tb); |
364 |
|
|
365 |
|
// get the angular momentum, and propagate a half step |
366 |
|
|
367 |
< |
dAtom->getJ(ji); |
367 |
> |
integrableObjects[i]->getJ(ji); |
368 |
|
|
369 |
|
for (j = 0; j < 3; j++) |
370 |
|
ji[j] += (dt2 * Tb[j]) * eConvert; |
371 |
|
|
372 |
< |
this->rotationPropagation( dAtom, ji ); |
372 |
> |
this->rotationPropagation( integrableObjects[i], ji ); |
373 |
|
|
374 |
< |
dAtom->setJ(ji); |
374 |
> |
integrableObjects[i]->setJ(ji); |
375 |
|
} |
376 |
|
} |
377 |
|
|
383 |
|
|
384 |
|
template<typename T> void Integrator<T>::moveB(void){ |
385 |
|
int i, j; |
349 |
– |
DirectionalAtom* dAtom; |
386 |
|
double Tb[3], ji[3]; |
387 |
|
double vel[3], frc[3]; |
388 |
|
double mass; |
389 |
|
|
390 |
< |
for (i = 0; i < nAtoms; i++){ |
391 |
< |
atoms[i]->getVel(vel); |
392 |
< |
atoms[i]->getFrc(frc); |
390 |
> |
for (i = 0; i < integrableObjects.size(); i++){ |
391 |
> |
integrableObjects[i]->getVel(vel); |
392 |
> |
integrableObjects[i]->getFrc(frc); |
393 |
|
|
394 |
< |
mass = atoms[i]->getMass(); |
394 |
> |
mass = integrableObjects[i]->getMass(); |
395 |
|
|
396 |
|
// velocity half step |
397 |
|
for (j = 0; j < 3; j++) |
398 |
|
vel[j] += (dt2 * frc[j] / mass) * eConvert; |
399 |
|
|
400 |
< |
atoms[i]->setVel(vel); |
400 |
> |
integrableObjects[i]->setVel(vel); |
401 |
|
|
402 |
< |
if (atoms[i]->isDirectional()){ |
367 |
< |
dAtom = (DirectionalAtom *) atoms[i]; |
402 |
> |
if (integrableObjects[i]->isDirectional()){ |
403 |
|
|
404 |
< |
// get and convert the torque to body frame |
404 |
> |
// get and convert the torque to body frame |
405 |
|
|
406 |
< |
dAtom->getTrq(Tb); |
407 |
< |
dAtom->lab2Body(Tb); |
406 |
> |
integrableObjects[i]->getTrq(Tb); |
407 |
> |
integrableObjects[i]->lab2Body(Tb); |
408 |
|
|
409 |
|
// get the angular momentum, and propagate a half step |
410 |
|
|
411 |
< |
dAtom->getJ(ji); |
411 |
> |
integrableObjects[i]->getJ(ji); |
412 |
|
|
413 |
|
for (j = 0; j < 3; j++) |
414 |
|
ji[j] += (dt2 * Tb[j]) * eConvert; |
415 |
|
|
416 |
|
|
417 |
< |
dAtom->setJ(ji); |
417 |
> |
integrableObjects[i]->setJ(ji); |
418 |
|
} |
419 |
|
} |
420 |
|
|
683 |
|
} |
684 |
|
|
685 |
|
template<typename T> void Integrator<T>::rotationPropagation |
686 |
< |
( DirectionalAtom* dAtom, double ji[3] ){ |
686 |
> |
( StuntDouble* sd, double ji[3] ){ |
687 |
|
|
688 |
|
double angle; |
689 |
|
double A[3][3], I[3][3]; |
690 |
+ |
int i, j, k; |
691 |
|
|
692 |
|
// use the angular velocities to propagate the rotation matrix a |
693 |
|
// full time step |
694 |
|
|
695 |
< |
dAtom->getA(A); |
696 |
< |
dAtom->getI(I); |
697 |
< |
|
698 |
< |
// rotate about the x-axis |
699 |
< |
angle = dt2 * ji[0] / I[0][0]; |
700 |
< |
this->rotate( 1, 2, angle, ji, A ); |
701 |
< |
|
702 |
< |
// rotate about the y-axis |
703 |
< |
angle = dt2 * ji[1] / I[1][1]; |
704 |
< |
this->rotate( 2, 0, angle, ji, A ); |
705 |
< |
|
706 |
< |
// rotate about the z-axis |
707 |
< |
angle = dt * ji[2] / I[2][2]; |
708 |
< |
this->rotate( 0, 1, angle, ji, A); |
709 |
< |
|
710 |
< |
// rotate about the y-axis |
711 |
< |
angle = dt2 * ji[1] / I[1][1]; |
712 |
< |
this->rotate( 2, 0, angle, ji, A ); |
713 |
< |
|
714 |
< |
// rotate about the x-axis |
715 |
< |
angle = dt2 * ji[0] / I[0][0]; |
716 |
< |
this->rotate( 1, 2, angle, ji, A ); |
717 |
< |
|
718 |
< |
dAtom->setA( A ); |
695 |
> |
sd->getA(A); |
696 |
> |
sd->getI(I); |
697 |
> |
|
698 |
> |
if (sd->isLinear()) { |
699 |
> |
i = sd->linearAxis(); |
700 |
> |
j = (i+1)%3; |
701 |
> |
k = (i+2)%3; |
702 |
> |
|
703 |
> |
angle = dt2 * ji[j] / I[j][j]; |
704 |
> |
this->rotate( k, i, angle, ji, A ); |
705 |
> |
|
706 |
> |
angle = dt * ji[k] / I[k][k]; |
707 |
> |
this->rotate( i, j, angle, ji, A); |
708 |
> |
|
709 |
> |
angle = dt2 * ji[j] / I[j][j]; |
710 |
> |
this->rotate( k, i, angle, ji, A ); |
711 |
> |
|
712 |
> |
} else { |
713 |
> |
// rotate about the x-axis |
714 |
> |
angle = dt2 * ji[0] / I[0][0]; |
715 |
> |
this->rotate( 1, 2, angle, ji, A ); |
716 |
> |
|
717 |
> |
// rotate about the y-axis |
718 |
> |
angle = dt2 * ji[1] / I[1][1]; |
719 |
> |
this->rotate( 2, 0, angle, ji, A ); |
720 |
> |
|
721 |
> |
// rotate about the z-axis |
722 |
> |
angle = dt * ji[2] / I[2][2]; |
723 |
> |
this->rotate( 0, 1, angle, ji, A); |
724 |
> |
|
725 |
> |
// rotate about the y-axis |
726 |
> |
angle = dt2 * ji[1] / I[1][1]; |
727 |
> |
this->rotate( 2, 0, angle, ji, A ); |
728 |
> |
|
729 |
> |
// rotate about the x-axis |
730 |
> |
angle = dt2 * ji[0] / I[0][0]; |
731 |
> |
this->rotate( 1, 2, angle, ji, A ); |
732 |
> |
|
733 |
> |
} |
734 |
> |
sd->setA( A ); |
735 |
|
} |
736 |
|
|
737 |
|
template<typename T> void Integrator<T>::rotate(int axes1, int axes2, |
799 |
|
} |
800 |
|
} |
801 |
|
|
802 |
< |
// rotate the Rotation matrix acording to: |
802 |
> |
// rotate the Rotation matrix acording to: |
803 |
|
// A[][] = A[][] * transpose(rot[][]) |
804 |
|
|
805 |
|
|
828 |
|
template<typename T> double Integrator<T>::getConservedQuantity(void){ |
829 |
|
return tStats->getTotalE(); |
830 |
|
} |
831 |
+ |
template<typename T> string Integrator<T>::getAdditionalParameters(void){ |
832 |
+ |
//By default, return a null string |
833 |
+ |
//The reason we use string instead of char* is that if we use char*, we will |
834 |
+ |
//return a pointer point to local variable which might cause problem |
835 |
+ |
return string(); |
836 |
+ |
} |