| 1 | #include <iostream> | 
| 2 |  | 
| 3 | using namespace std; | 
| 4 |  | 
| 5 |  | 
| 6 | #include <stdlib.h> | 
| 7 |  | 
| 8 | #ifdef IS_MPI | 
| 9 | #include <mpi.h> | 
| 10 | #endif // is_mpi | 
| 11 |  | 
| 12 |  | 
| 13 | #ifdef PROFILE | 
| 14 | #include "mdProfile.hpp" | 
| 15 | #endif | 
| 16 |  | 
| 17 | #include "simError.h" | 
| 18 | #include "ForceFields.hpp" | 
| 19 | #include "Atom.hpp" | 
| 20 | #include "fortranWrappers.hpp" | 
| 21 |  | 
| 22 |  | 
| 23 | void ForceFields::calcRcut( void ){ | 
| 24 |  | 
| 25 | #ifdef IS_MPI | 
| 26 | double tempBig = bigSigma; | 
| 27 | MPI_Allreduce( &tempBig, &bigSigma, 1, MPI_DOUBLE, MPI_MAX, | 
| 28 | MPI_COMM_WORLD); | 
| 29 | #endif  //is_mpi | 
| 30 |  | 
| 31 | //calc rCut and rList | 
| 32 |  | 
| 33 | entry_plug->setDefaultRcut( 2.5 * bigSigma ); | 
| 34 |  | 
| 35 | } | 
| 36 |  | 
| 37 | void ForceFields::setRcut( double LJrcut ) { | 
| 38 |  | 
| 39 | #ifdef IS_MPI | 
| 40 | double tempBig = bigSigma; | 
| 41 | MPI_Allreduce( &tempBig, &bigSigma, 1, MPI_DOUBLE, MPI_MAX, | 
| 42 | MPI_COMM_WORLD); | 
| 43 | #endif  //is_mpi | 
| 44 |  | 
| 45 | if (LJrcut < 2.5 * bigSigma) { | 
| 46 | sprintf( painCave.errMsg, | 
| 47 | "Setting Lennard-Jones cutoff radius to %lf.\n" | 
| 48 | "\tThis value is smaller than %lf, which is\n" | 
| 49 | "\t2.5 * bigSigma, where bigSigma is the largest\n" | 
| 50 | "\tvalue of sigma present in the simulation.\n" | 
| 51 | "\tThis is potentially a problem since the LJ potential may\n" | 
| 52 | "\tbe appreciable at this distance.  If you don't want the\n" | 
| 53 | "\tsmaller cutoff, change the LJrcut variable.\n", | 
| 54 | LJrcut, 2.5*bigSigma); | 
| 55 | painCave.isFatal = 0; | 
| 56 | simError(); | 
| 57 | } else { | 
| 58 | sprintf( painCave.errMsg, | 
| 59 | "Setting Lennard-Jones cutoff radius to %lf.\n" | 
| 60 | "\tThis value is larger than %lf, which is\n" | 
| 61 | "\t2.5 * bigSigma, where bigSigma is the largest\n" | 
| 62 | "\tvalue of sigma present in the simulation. This should\n" | 
| 63 | "\tnot be a problem, but could adversely effect performance.\n", | 
| 64 | LJrcut, 2.5*bigSigma); | 
| 65 | painCave.isFatal = 0; | 
| 66 | simError(); | 
| 67 | } | 
| 68 |  | 
| 69 | //calc rCut and rList | 
| 70 |  | 
| 71 | entry_plug->setDefaultRcut( LJrcut ); | 
| 72 | } | 
| 73 |  | 
| 74 | void ForceFields::doForces( int calcPot, int calcStress ){ | 
| 75 |  | 
| 76 | int i, j, isError; | 
| 77 | double* frc; | 
| 78 | double* pos; | 
| 79 | double* trq; | 
| 80 | double* A; | 
| 81 | double* u_l; | 
| 82 | double* rc; | 
| 83 | double* massRatio; | 
| 84 | double factor; | 
| 85 | SimState* config; | 
| 86 |  | 
| 87 | Molecule* myMols; | 
| 88 | Atom** myAtoms; | 
| 89 | int numAtom; | 
| 90 | int curIndex; | 
| 91 | double mtot; | 
| 92 | int numMol; | 
| 93 | int numCutoffGroups; | 
| 94 | CutoffGroup* myCutoffGroup; | 
| 95 | vector<CutoffGroup*>::iterator iterCutoff; | 
| 96 | double com[3]; | 
| 97 | vector<double> rcGroup; | 
| 98 |  | 
| 99 | short int passedCalcPot = (short int)calcPot; | 
| 100 | short int passedCalcStress = (short int)calcStress; | 
| 101 |  | 
| 102 | // forces are zeroed here, before any are accumulated. | 
| 103 | // NOTE: do not rezero the forces in Fortran. | 
| 104 |  | 
| 105 | for(i=0; i<entry_plug->n_atoms; i++){ | 
| 106 | entry_plug->atoms[i]->zeroForces(); | 
| 107 | } | 
| 108 |  | 
| 109 | #ifdef PROFILE | 
| 110 | startProfile(pro7); | 
| 111 | #endif | 
| 112 |  | 
| 113 | for(i=0; i<entry_plug->n_mol; i++ ){ | 
| 114 | // CalcForces in molecules takes care of mapping rigid body coordinates | 
| 115 | // into atomic coordinates | 
| 116 | entry_plug->molecules[i].calcForces(); | 
| 117 | } | 
| 118 |  | 
| 119 | #ifdef PROFILE | 
| 120 | endProfile( pro7 ); | 
| 121 | #endif | 
| 122 |  | 
| 123 | config = entry_plug->getConfiguration(); | 
| 124 |  | 
| 125 | frc = config->getFrcArray(); | 
| 126 | pos = config->getPosArray(); | 
| 127 | trq = config->getTrqArray(); | 
| 128 | A   = config->getAmatArray(); | 
| 129 | u_l = config->getUlArray(); | 
| 130 |  | 
| 131 | if(entry_plug->haveCutoffGroups){ | 
| 132 | myMols = entry_plug->molecules; | 
| 133 | numMol = entry_plug->n_mol; | 
| 134 | for(int i  = 0; i < numMol; i++){ | 
| 135 |  | 
| 136 | numCutoffGroups = myMols[i].getNCutoffGroups(); | 
| 137 | for(myCutoffGroup =myMols[i].beginCutoffGroup(iterCutoff); myCutoffGroup != NULL; | 
| 138 | myCutoffGroup =myMols[i].nextCutoffGroup(iterCutoff)){ | 
| 139 | //get center of mass of the cutoff group | 
| 140 | myCutoffGroup->getCOM(com); | 
| 141 |  | 
| 142 | rcGroup.push_back(com[0]); | 
| 143 | rcGroup.push_back(com[1]); | 
| 144 | rcGroup.push_back(com[2]); | 
| 145 |  | 
| 146 | }// end for(myCutoffGroup) | 
| 147 |  | 
| 148 | }//end for(int i = 0) | 
| 149 |  | 
| 150 | rc = &rcGroup[0]; | 
| 151 | } | 
| 152 | else{ | 
| 153 | // center of mass of the group is the same as position of the atom  if cutoff group does not exist | 
| 154 | rc = pos; | 
| 155 | } | 
| 156 |  | 
| 157 |  | 
| 158 |  | 
| 159 | isError = 0; | 
| 160 | entry_plug->lrPot = 0.0; | 
| 161 |  | 
| 162 | for (i=0; i<9; i++) { | 
| 163 | entry_plug->tau[i] = 0.0; | 
| 164 | } | 
| 165 |  | 
| 166 |  | 
| 167 | #ifdef PROFILE | 
| 168 | startProfile(pro8); | 
| 169 | #endif | 
| 170 |  | 
| 171 | fortranForceLoop( pos, | 
| 172 | rc, | 
| 173 | A, | 
| 174 | u_l, | 
| 175 | frc, | 
| 176 | trq, | 
| 177 | entry_plug->tau, | 
| 178 | &(entry_plug->lrPot), | 
| 179 | &passedCalcPot, | 
| 180 | &passedCalcStress, | 
| 181 | &isError ); | 
| 182 |  | 
| 183 |  | 
| 184 | #ifdef PROFILE | 
| 185 | endProfile(pro8); | 
| 186 | #endif | 
| 187 |  | 
| 188 |  | 
| 189 | if( isError ){ | 
| 190 | sprintf( painCave.errMsg, | 
| 191 | "Error returned from the fortran force calculation.\n" ); | 
| 192 | painCave.isFatal = 1; | 
| 193 | simError(); | 
| 194 | } | 
| 195 |  | 
| 196 | if (entry_plug->useSolidThermInt && !entry_plug->useLiquidThermInt) { | 
| 197 |  | 
| 198 | factor = pow(entry_plug->thermIntLambda, entry_plug->thermIntK); | 
| 199 | for (i=0; i < entry_plug->n_atoms; i++) { | 
| 200 | for (j=0; j< 3; j++) | 
| 201 | frc[3*i + j] *= factor; | 
| 202 | if (entry_plug->atoms[i]->isDirectional()) { | 
| 203 | for (j=0; j< 3; j++) | 
| 204 | trq[3*i + j] *= factor; | 
| 205 | } | 
| 206 | } | 
| 207 | entry_plug->vRaw = entry_plug->lrPot; | 
| 208 | entry_plug->lrPot *= factor; | 
| 209 | entry_plug->lrPot += entry_plug->restraint->Calc_Restraint_Forces(entry_plug->integrableObjects); | 
| 210 | entry_plug->vHarm = entry_plug->restraint->getVharm(); | 
| 211 | } | 
| 212 |  | 
| 213 | if (entry_plug->useLiquidThermInt) { | 
| 214 |  | 
| 215 | factor = pow(entry_plug->thermIntLambda, entry_plug->thermIntK); | 
| 216 | for (i=0; i < entry_plug->n_atoms; i++) { | 
| 217 | for (j=0; j< 3; j++) | 
| 218 | frc[3*i + j] *= factor; | 
| 219 | if (entry_plug->atoms[i]->isDirectional()) { | 
| 220 | for (j=0; j< 3; j++) | 
| 221 | trq[3*i + j] *= factor; | 
| 222 | } | 
| 223 | } | 
| 224 | entry_plug->vRaw = entry_plug->lrPot; | 
| 225 | entry_plug->lrPot *= factor; | 
| 226 | } | 
| 227 |  | 
| 228 | for(i=0; i<entry_plug->n_mol; i++ ){ | 
| 229 | entry_plug->molecules[i].atoms2rigidBodies(); | 
| 230 | } | 
| 231 |  | 
| 232 |  | 
| 233 | #ifdef IS_MPI | 
| 234 | sprintf( checkPointMsg, | 
| 235 | "returned from the force calculation.\n" ); | 
| 236 | MPIcheckPoint(); | 
| 237 | #endif // is_mpi | 
| 238 |  | 
| 239 |  | 
| 240 | } | 
| 241 |  | 
| 242 |  | 
| 243 | void ForceFields::initFortran(int ljMixPolicy, int useReactionField ){ | 
| 244 |  | 
| 245 | int isError; | 
| 246 |  | 
| 247 | isError = 0; | 
| 248 | initFortranFF( &ljMixPolicy, &useReactionField, &isError ); | 
| 249 |  | 
| 250 | if(isError){ | 
| 251 | sprintf( painCave.errMsg, | 
| 252 | "ForceField error: There was an error initializing the forceField in fortran.\n" ); | 
| 253 | painCave.isFatal = 1; | 
| 254 | simError(); | 
| 255 | } | 
| 256 |  | 
| 257 |  | 
| 258 | #ifdef IS_MPI | 
| 259 | sprintf( checkPointMsg, "ForceField successfully initialized the fortran component list.\n" ); | 
| 260 | MPIcheckPoint(); | 
| 261 | #endif // is_mpi | 
| 262 |  | 
| 263 | } | 
| 264 |  | 
| 265 |  | 
| 266 | void ForceFields::initRestraints(){ | 
| 267 | int i; | 
| 268 | // store the initial info. | 
| 269 | // set the omega values to zero | 
| 270 | for (i=0; i<entry_plug->integrableObjects.size(); i++) | 
| 271 | entry_plug->integrableObjects[i]->setZangle( 0.0 ); | 
| 272 |  | 
| 273 | entry_plug->restraint->Store_Init_Info(entry_plug->integrableObjects); | 
| 274 |  | 
| 275 | } | 
| 276 |  | 
| 277 | void ForceFields::dumpzAngle(){ | 
| 278 |  | 
| 279 | // store the initial info. | 
| 280 | entry_plug->restraint->Write_zAngle_File(entry_plug->integrableObjects); | 
| 281 |  | 
| 282 | } |