1 |
#include <math.h> |
2 |
#include "Atom.hpp" |
3 |
#include "Molecule.hpp" |
4 |
#include "SimInfo.hpp" |
5 |
#include "Thermo.hpp" |
6 |
#include "ExtendedSystem.hpp" |
7 |
|
8 |
ExtendedSystem::ExtendedSystem( SimInfo* the_entry_plug ) { |
9 |
|
10 |
// get what information we need from the SimInfo object |
11 |
|
12 |
entry_plug = the_entry_plug; |
13 |
nAtoms = entry_plug->n_atoms; |
14 |
atoms = entry_plug->atoms; |
15 |
nMols = entry_plug->n_mol; |
16 |
molecules = entry_plug->molecules; |
17 |
nOriented = entry_plug->n_oriented; |
18 |
ndf = entry_plug->ndf; |
19 |
zeta = 0.0; |
20 |
epsilonDot = 0.0; |
21 |
|
22 |
} |
23 |
|
24 |
void ExtendedSystem::NoseHooverNVT( double dt, double ke ){ |
25 |
|
26 |
// Basic thermostating via Hoover, Phys.Rev.A, 1985, Vol. 31 (5) 1695-1697 |
27 |
|
28 |
int i; |
29 |
double NkBT, zetaScale, ke_temp; |
30 |
double vx, vy, vz, jx, jy, jz; |
31 |
const double kB = 8.31451e-7; // boltzmann constant in amu*Ang^2*fs^-2/K |
32 |
const double e_convert = 4.184e-4; // to convert ke from kcal/mol to |
33 |
// amu*Ang^2*fs^-2/K |
34 |
DirectionalAtom* dAtom; |
35 |
|
36 |
|
37 |
ke_temp = ke * e_convert; |
38 |
NkBT = (double)ndf * kB * targetTemp; |
39 |
|
40 |
// advance the zeta term to zeta(t + dt) - zeta is 0.0d0 on config. readin |
41 |
// qmass is set in the parameter file |
42 |
|
43 |
zeta += dt * ( (ke_temp*2.0 - NkBT) / qmass ); |
44 |
zetaScale = zeta * dt; |
45 |
|
46 |
// perform thermostat scaling on linear velocities and angular momentum |
47 |
for(i = 0; i < nAtoms; i++){ |
48 |
|
49 |
vx = atoms[i]->get_vx(); |
50 |
vy = atoms[i]->get_vy(); |
51 |
vz = atoms[i]->get_vz(); |
52 |
|
53 |
atoms[i]->set_vx(vx * (1.0 - zetaScale)); |
54 |
atoms[i]->set_vy(vy * (1.0 - zetaScale)); |
55 |
atoms[i]->set_vz(vz * (1.0 - zetaScale)); |
56 |
} |
57 |
if( nOriented ){ |
58 |
|
59 |
for( i=0; i < nAtoms; i++ ){ |
60 |
|
61 |
if( atoms[i]->isDirectional() ){ |
62 |
|
63 |
dAtom = (DirectionalAtom *)atoms[i]; |
64 |
|
65 |
jx = dAtom->getJx(); |
66 |
jy = dAtom->getJy(); |
67 |
jz = dAtom->getJz(); |
68 |
|
69 |
dAtom->setJx(jx * (1.0 - zetaScale)); |
70 |
dAtom->setJy(jy * (1.0 - zetaScale)); |
71 |
dAtom->setJz(jz * (1.0 - zetaScale)); |
72 |
} |
73 |
} |
74 |
} |
75 |
} |
76 |
|
77 |
|
78 |
void ExtendedSystem::NoseHooverAndersonNPT( double dt, |
79 |
double ke, |
80 |
double p_int ) { |
81 |
|
82 |
// Basic barostating via Hoover, Phys.Rev.A, 1985, Vol. 31 (5) 1695-1697 |
83 |
// Hoover, Phys.Rev.A, 1986, Vol.34 (3) 2499-2500 |
84 |
|
85 |
double oldBox[3]; |
86 |
double newBox[3]; |
87 |
const double kB = 8.31451e-7; // boltzmann constant in amu*Ang^2*fs^-2/K |
88 |
const double p_units = 6.10192996e-9; // converts atm to amu*fs^-2*Ang^-1 |
89 |
const double e_convert = 4.184e-4; // to convert ke from kcal/mol to |
90 |
// amu*Ang^2*fs^-2/K |
91 |
|
92 |
double p_ext, zetaScale, epsilonScale, scale, NkBT, ke_temp; |
93 |
double volume, p_mol; |
94 |
double vx, vy, vz, jx, jy, jz; |
95 |
DirectionalAtom* dAtom; |
96 |
int i; |
97 |
|
98 |
p_ext = targetPressure * p_units; |
99 |
p_mol = p_int * p_units; |
100 |
|
101 |
entry_plug->getBox(oldBox); |
102 |
|
103 |
volume = oldBox[0]*oldBox[1]*oldBox[2]; |
104 |
|
105 |
ke_temp = ke * e_convert; |
106 |
NkBT = (double)ndf * kB * targetTemp; |
107 |
|
108 |
// propogate the strain rate |
109 |
|
110 |
epsilonDot += dt * ((p_mol - p_ext) * volume / |
111 |
(tauRelax*tauRelax * kB * targetTemp) ); |
112 |
|
113 |
// determine the change in cell volume |
114 |
scale = pow( (1.0 + dt * 3.0 * epsilonDot), (1.0 / 3.0)); |
115 |
|
116 |
newBox[0] = oldBox[0] * scale; |
117 |
newBox[1] = oldBox[1] * scale; |
118 |
newBox[2] = oldBox[2] * scale; |
119 |
volume = newBox[0]*newBox[1]*newBox[2]; |
120 |
|
121 |
entry_plug->setBox(newBox); |
122 |
|
123 |
// perform affine transform to update positions with volume fluctuations |
124 |
this->AffineTransform( oldBox, newBox ); |
125 |
|
126 |
epsilonScale = epsilonDot * dt; |
127 |
|
128 |
// advance the zeta term to zeta(t + dt) - zeta is 0.0d0 on config. readin |
129 |
// qmass is set in the parameter file |
130 |
|
131 |
zeta += dt * ( (ke_temp*2.0 - NkBT) / qmass ); |
132 |
zetaScale = zeta * dt; |
133 |
|
134 |
// apply barostating and thermostating to velocities and angular momenta |
135 |
for(i = 0; i < nAtoms; i++){ |
136 |
|
137 |
vx = atoms[i]->get_vx(); |
138 |
vy = atoms[i]->get_vy(); |
139 |
vz = atoms[i]->get_vz(); |
140 |
|
141 |
atoms[i]->set_vx(vx * (1.0 - zetaScale - epsilonScale)); |
142 |
atoms[i]->set_vy(vy * (1.0 - zetaScale - epsilonScale)); |
143 |
atoms[i]->set_vz(vz * (1.0 - zetaScale - epsilonScale)); |
144 |
} |
145 |
if( nOriented ){ |
146 |
|
147 |
for( i=0; i < nAtoms; i++ ){ |
148 |
|
149 |
if( atoms[i]->isDirectional() ){ |
150 |
|
151 |
dAtom = (DirectionalAtom *)atoms[i]; |
152 |
|
153 |
jx = dAtom->getJx(); |
154 |
jy = dAtom->getJy(); |
155 |
jz = dAtom->getJz(); |
156 |
|
157 |
dAtom->setJx( jx * (1.0 - zetaScale)); |
158 |
dAtom->setJy( jy * (1.0 - zetaScale)); |
159 |
dAtom->setJz( jz * (1.0 - zetaScale)); |
160 |
} |
161 |
} |
162 |
} |
163 |
} |
164 |
|
165 |
void ExtendedSystem::AffineTransform( double oldBox[3], double newBox[3] ){ |
166 |
|
167 |
int i; |
168 |
double r[3]; |
169 |
double boxNum[3]; |
170 |
double percentScale[3]; |
171 |
double rxi, ryi, rzi; |
172 |
|
173 |
// first determine the scaling factor from the box size change |
174 |
percentScale[0] = (newBox[0] - oldBox[0]) / oldBox[0]; |
175 |
percentScale[1] = (newBox[1] - oldBox[1]) / oldBox[1]; |
176 |
percentScale[2] = (newBox[2] - oldBox[2]) / oldBox[2]; |
177 |
|
178 |
for (i=0; i < nMols; i++) { |
179 |
|
180 |
molecules[i].getCOM(r); |
181 |
|
182 |
// find the minimum image coordinates of the molecular centers of mass: |
183 |
|
184 |
boxNum[0] = oldBox[0] * copysign(1.0,r[0]) * |
185 |
(double)(int)(fabs(r[0]/oldBox[0]) + 0.5); |
186 |
|
187 |
boxNum[1] = oldBox[1] * copysign(1.0,r[1]) * |
188 |
(double)(int)(fabs(r[1]/oldBox[1]) + 0.5); |
189 |
|
190 |
boxNum[2] = oldBox[2] * copysign(1.0,r[2]) * |
191 |
(double)(int)(fabs(r[2]/oldBox[2]) + 0.5); |
192 |
|
193 |
rxi = r[0] - boxNum[0]; |
194 |
ryi = r[1] - boxNum[1]; |
195 |
rzi = r[2] - boxNum[2]; |
196 |
|
197 |
// update the minimum image coordinates using the scaling factor |
198 |
rxi += rxi*percentScale[0]; |
199 |
ryi += ryi*percentScale[1]; |
200 |
rzi += rzi*percentScale[2]; |
201 |
|
202 |
r[0] = rxi + boxNum[0]; |
203 |
r[1] = ryi + boxNum[1]; |
204 |
r[2] = rzi + boxNum[2]; |
205 |
|
206 |
molecules[i].moveCOM(r); |
207 |
} |
208 |
} |