4 |
|
#include "SimInfo.hpp" |
5 |
|
#include "Thermo.hpp" |
6 |
|
#include "ExtendedSystem.hpp" |
7 |
+ |
#include "simError.h" |
8 |
|
|
9 |
< |
ExtendedSystem::ExtendedSystem( SimInfo &info ) { |
9 |
> |
ExtendedSystem::ExtendedSystem( SimInfo* the_entry_plug ) { |
10 |
|
|
11 |
|
// get what information we need from the SimInfo object |
12 |
|
|
13 |
< |
entry_plug = &info; |
13 |
< |
nAtoms = info.n_atoms; |
14 |
< |
atoms = info.atoms; |
15 |
< |
nMols = info.n_mol; |
16 |
< |
molecules = info.molecules; |
13 |
> |
entry_plug = the_entry_plug; |
14 |
|
zeta = 0.0; |
15 |
|
epsilonDot = 0.0; |
16 |
+ |
have_tau_thermostat = 0; |
17 |
+ |
have_tau_barostat = 0; |
18 |
+ |
have_target_temp = 0; |
19 |
+ |
have_target_pressure = 0; |
20 |
+ |
have_qmass = 0; |
21 |
|
|
22 |
|
} |
23 |
|
|
22 |
– |
ExtendedSystem::~ExtendedSystem() { |
23 |
– |
} |
24 |
– |
|
25 |
– |
|
24 |
|
void ExtendedSystem::NoseHooverNVT( double dt, double ke ){ |
25 |
|
|
26 |
|
// Basic thermostating via Hoover, Phys.Rev.A, 1985, Vol. 31 (5) 1695-1697 |
31 |
|
const double kB = 8.31451e-7; // boltzmann constant in amu*Ang^2*fs^-2/K |
32 |
|
const double e_convert = 4.184e-4; // to convert ke from kcal/mol to |
33 |
|
// amu*Ang^2*fs^-2/K |
34 |
< |
|
37 |
< |
ke_temp = ke * e_convert; |
38 |
< |
NkBT = (double)getNDF() * kB * targetTemp; |
34 |
> |
DirectionalAtom* dAtom; |
35 |
|
|
36 |
< |
// advance the zeta term to zeta(t + dt) - zeta is 0.0d0 on config. readin |
41 |
< |
// qmass is set in the parameter file |
36 |
> |
if (this->NVTready()) { |
37 |
|
|
38 |
< |
zeta += dt * ( (ke_temp*2.0 - NkBT) / qmass ); |
44 |
< |
zetaScale = zeta * dt; |
45 |
< |
|
46 |
< |
// perform thermostat scaling on linear velocities and angular momentum |
47 |
< |
for(i = 0; i < n_atoms; i++){ |
38 |
> |
atoms = entry_plug->atoms; |
39 |
|
|
40 |
< |
vx = atoms[i]->get_vx(); |
41 |
< |
vy = atoms[i]->get_vy(); |
51 |
< |
vz = atoms[i]->get_vz(); |
40 |
> |
ke_temp = ke * e_convert; |
41 |
> |
NkBT = (double)entry_plug->ndf * kB * targetTemp; |
42 |
|
|
43 |
< |
atoms[i]->set_vx(vx * (1.0 - zetaScale)); |
44 |
< |
atoms[i]->set_vy(vy * (1.0 - zetaScale)); |
55 |
< |
atoms[i]->set_vz(vz * (1.0 - zetaScale)); |
56 |
< |
} |
57 |
< |
if( n_oriented ){ |
43 |
> |
// advance the zeta term to zeta(t + dt) - zeta is 0.0d0 on config. readin |
44 |
> |
// qmass is set in the parameter file |
45 |
|
|
46 |
< |
for( i=0; i < n_atoms; i++ ){ |
46 |
> |
zeta += dt * ( (ke_temp*2.0 - NkBT) / qmass ); |
47 |
> |
|
48 |
> |
zetaScale = zeta * dt; |
49 |
> |
|
50 |
> |
std::cerr << "zetaScale = " << zetaScale << "\n"; |
51 |
> |
|
52 |
> |
// perform thermostat scaling on linear velocities and angular momentum |
53 |
> |
for(i = 0; i < entry_plug->n_atoms; i++){ |
54 |
|
|
55 |
< |
if( atoms[i]->isDirectional() ){ |
56 |
< |
|
57 |
< |
dAtom = (DirectionalAtom *)atoms[i]; |
55 |
> |
vx = atoms[i]->get_vx(); |
56 |
> |
vy = atoms[i]->get_vy(); |
57 |
> |
vz = atoms[i]->get_vz(); |
58 |
> |
|
59 |
> |
atoms[i]->set_vx(vx * (1.0 - zetaScale)); |
60 |
> |
atoms[i]->set_vy(vy * (1.0 - zetaScale)); |
61 |
> |
atoms[i]->set_vz(vz * (1.0 - zetaScale)); |
62 |
> |
} |
63 |
> |
if( entry_plug->n_oriented ){ |
64 |
> |
|
65 |
> |
for( i=0; i < entry_plug->n_atoms; i++ ){ |
66 |
|
|
67 |
< |
jx = dAtom->getJx(); |
68 |
< |
jy = dAtom->getJy(); |
69 |
< |
jz = dAtom->getJz(); |
70 |
< |
|
71 |
< |
dAtom->setJx(jx * (1.0 - zetaScale)); |
72 |
< |
dAtom->setJy(jy * (1.0 - zetaScale)); |
73 |
< |
dAtom->setJz(jz * (1.0 - zetaScale)); |
74 |
< |
} |
75 |
< |
} |
67 |
> |
if( atoms[i]->isDirectional() ){ |
68 |
> |
|
69 |
> |
dAtom = (DirectionalAtom *)atoms[i]; |
70 |
> |
|
71 |
> |
jx = dAtom->getJx(); |
72 |
> |
jy = dAtom->getJy(); |
73 |
> |
jz = dAtom->getJz(); |
74 |
> |
|
75 |
> |
dAtom->setJx(jx * (1.0 - zetaScale)); |
76 |
> |
dAtom->setJy(jy * (1.0 - zetaScale)); |
77 |
> |
dAtom->setJz(jz * (1.0 - zetaScale)); |
78 |
> |
} |
79 |
> |
} |
80 |
> |
} |
81 |
|
} |
82 |
|
} |
83 |
|
|
84 |
|
|
85 |
|
void ExtendedSystem::NoseHooverAndersonNPT( double dt, |
86 |
|
double ke, |
87 |
< |
double p_int ) { |
87 |
> |
double p_tensor[9] ) { |
88 |
|
|
89 |
|
// Basic barostating via Hoover, Phys.Rev.A, 1985, Vol. 31 (5) 1695-1697 |
90 |
|
// Hoover, Phys.Rev.A, 1986, Vol.34 (3) 2499-2500 |
96 |
|
const double e_convert = 4.184e-4; // to convert ke from kcal/mol to |
97 |
|
// amu*Ang^2*fs^-2/K |
98 |
|
|
99 |
< |
double p_ext; |
99 |
> |
int i; |
100 |
> |
double p_ext, zetaScale, epsilonScale, scale, NkBT, ke_temp; |
101 |
> |
double volume, p_mol; |
102 |
> |
double vx, vy, vz, jx, jy, jz; |
103 |
> |
DirectionalAtom* dAtom; |
104 |
|
|
105 |
< |
p_ext = targetPressure * p_units; |
106 |
< |
p_mol = p_int * p_units; |
96 |
< |
|
97 |
< |
getBox(oldBox); |
98 |
< |
|
99 |
< |
volume = oldBox[0]*oldBox[1]*oldBox[2]; |
100 |
< |
|
101 |
< |
ke_temp = ke * e_convert; |
102 |
< |
NkBT = (double)getNDF() * kB * targetTemp; |
103 |
< |
|
104 |
< |
// propogate the strain rate |
105 |
< |
|
106 |
< |
epsilonDot += dt * ((p_mol - p_ext) * volume / |
107 |
< |
(tauRelax*tauRelax * kB * targetTemp) ); |
108 |
< |
|
109 |
< |
// determine the change in cell volume |
110 |
< |
scale = pow( (1.0 + dt * 3.0 * epsilonDot), (1.0 / 3.0)); |
111 |
< |
|
112 |
< |
newBox[0] = oldBox[0] * scale; |
113 |
< |
newBox[1] = oldBox[1] * scale; |
114 |
< |
newBox[2] = oldBox[2] * scale; |
115 |
< |
volume = newBox[0]*newBox[1]*newBox[2]; |
116 |
< |
|
117 |
< |
// perform affine transform to update positions with volume fluctuations |
118 |
< |
this->AffineTransform( oldBox, newBox ); |
119 |
< |
|
120 |
< |
epsilonScale = epsilonDot * dt; |
121 |
< |
|
122 |
< |
// advance the zeta term to zeta(t + dt) - zeta is 0.0d0 on config. readin |
123 |
< |
// qmass is set in the parameter file |
124 |
< |
|
125 |
< |
zeta += dt * ( (ke_temp*2.0 - NkBT) / qmass ); |
126 |
< |
zetaScale = zeta * dt; |
127 |
< |
|
128 |
< |
// apply barostating and thermostating to velocities and angular momenta |
129 |
< |
for(i = 0; i < n_atoms; i++){ |
105 |
> |
if (this->NPTready()) { |
106 |
> |
atoms = entry_plug->atoms; |
107 |
|
|
108 |
< |
vx = atoms[i]->get_vx(); |
109 |
< |
vy = atoms[i]->get_vy(); |
110 |
< |
vz = atoms[i]->get_vz(); |
108 |
> |
p_ext = targetPressure * p_units; |
109 |
> |
p_mol = (p_tensor[0] + p_tensor[4] + p_tensor[8])/3.0; |
110 |
> |
|
111 |
> |
entry_plug->getBox(oldBox); |
112 |
> |
volume = oldBox[0]*oldBox[1]*oldBox[2]; |
113 |
|
|
114 |
< |
atoms[i]->set_vx(vx * (1.0 - zetaScale - epsilonScale)); |
115 |
< |
atoms[i]->set_vy(vy * (1.0 - zetaScale - epsilonScale)); |
137 |
< |
atoms[i]->set_vz(vz * (1.0 - zetaScale - epsilonScale)); |
138 |
< |
} |
139 |
< |
if( n_oriented ){ |
114 |
> |
ke_temp = ke * e_convert; |
115 |
> |
NkBT = (double)entry_plug->ndf * kB * targetTemp; |
116 |
|
|
117 |
< |
for( i=0; i < n_atoms; i++ ){ |
117 |
> |
// propagate the strain rate |
118 |
> |
|
119 |
> |
epsilonDot += dt * ((p_mol - p_ext) * volume / |
120 |
> |
(tauBarostat*tauBarostat * kB * targetTemp) ); |
121 |
> |
|
122 |
> |
// determine the change in cell volume |
123 |
> |
scale = pow( (1.0 + dt * 3.0 * epsilonDot), (1.0 / 3.0)); |
124 |
> |
std::cerr << "pmol = " << p_mol << " p_ext = " << p_ext << " scale = " << scale << "\n"; |
125 |
> |
|
126 |
> |
newBox[0] = oldBox[0] * scale; |
127 |
> |
newBox[1] = oldBox[1] * scale; |
128 |
> |
newBox[2] = oldBox[2] * scale; |
129 |
> |
volume = newBox[0]*newBox[1]*newBox[2]; |
130 |
> |
|
131 |
> |
entry_plug->setBox(newBox); |
132 |
> |
|
133 |
> |
// perform affine transform to update positions with volume fluctuations |
134 |
> |
this->AffineTransform( oldBox, newBox ); |
135 |
> |
|
136 |
> |
epsilonScale = epsilonDot * dt; |
137 |
> |
|
138 |
> |
// advance the zeta term to zeta(t + dt) - zeta is 0.0d0 on config. readin |
139 |
> |
// qmass is set in the parameter file |
140 |
> |
|
141 |
> |
zeta += dt * ( (ke_temp*2.0 - NkBT) / qmass ); |
142 |
> |
zetaScale = zeta * dt; |
143 |
> |
|
144 |
> |
std::cerr << "zetaScale = " << zetaScale << " epsilonScale = " << epsilonScale << "\n"; |
145 |
> |
|
146 |
> |
// apply barostating and thermostating to velocities and angular momenta |
147 |
> |
for(i = 0; i < entry_plug->n_atoms; i++){ |
148 |
|
|
149 |
< |
if( atoms[i]->isDirectional() ){ |
150 |
< |
|
151 |
< |
dAtom = (DirectionalAtom *)atoms[i]; |
149 |
> |
vx = atoms[i]->get_vx(); |
150 |
> |
vy = atoms[i]->get_vy(); |
151 |
> |
vz = atoms[i]->get_vz(); |
152 |
> |
|
153 |
> |
atoms[i]->set_vx(vx * (1.0 - zetaScale - epsilonScale)); |
154 |
> |
atoms[i]->set_vy(vy * (1.0 - zetaScale - epsilonScale)); |
155 |
> |
atoms[i]->set_vz(vz * (1.0 - zetaScale - epsilonScale)); |
156 |
> |
} |
157 |
> |
if( entry_plug->n_oriented ){ |
158 |
> |
|
159 |
> |
for( i=0; i < entry_plug->n_atoms; i++ ){ |
160 |
|
|
161 |
< |
jx = dAtom->getJx(); |
162 |
< |
jy = dAtom->getJy(); |
163 |
< |
jz = dAtom->getJz(); |
164 |
< |
|
165 |
< |
dAtom->setJx( jx * (1.0 - zetaScale)); |
166 |
< |
dAtom->setJy( jy * (1.0 - zetaScale)); |
167 |
< |
dAtom->setJz( jz * (1.0 - zetaScale)); |
168 |
< |
} |
169 |
< |
} |
161 |
> |
if( atoms[i]->isDirectional() ){ |
162 |
> |
|
163 |
> |
dAtom = (DirectionalAtom *)atoms[i]; |
164 |
> |
|
165 |
> |
jx = dAtom->getJx(); |
166 |
> |
jy = dAtom->getJy(); |
167 |
> |
jz = dAtom->getJz(); |
168 |
> |
|
169 |
> |
dAtom->setJx( jx * (1.0 - zetaScale)); |
170 |
> |
dAtom->setJy( jy * (1.0 - zetaScale)); |
171 |
> |
dAtom->setJz( jz * (1.0 - zetaScale)); |
172 |
> |
} |
173 |
> |
} |
174 |
> |
} |
175 |
|
} |
176 |
|
} |
177 |
|
|
181 |
|
double r[3]; |
182 |
|
double boxNum[3]; |
183 |
|
double percentScale[3]; |
184 |
+ |
double delta[3]; |
185 |
|
double rxi, ryi, rzi; |
186 |
+ |
|
187 |
+ |
molecules = entry_plug->molecules; |
188 |
|
|
189 |
|
// first determine the scaling factor from the box size change |
190 |
|
percentScale[0] = (newBox[0] - oldBox[0]) / oldBox[0]; |
191 |
|
percentScale[1] = (newBox[1] - oldBox[1]) / oldBox[1]; |
192 |
|
percentScale[2] = (newBox[2] - oldBox[2]) / oldBox[2]; |
193 |
|
|
194 |
< |
for (i=0; i < nMols; i++) { |
194 |
> |
for (i=0; i < entry_plug->n_mol; i++) { |
195 |
|
|
196 |
< |
molecules[i]->getCOM(r); |
197 |
< |
|
196 |
> |
molecules[i].getCOM(r); |
197 |
> |
|
198 |
|
// find the minimum image coordinates of the molecular centers of mass: |
199 |
|
|
200 |
|
boxNum[0] = oldBox[0] * copysign(1.0,r[0]) * |
215 |
|
ryi += ryi*percentScale[1]; |
216 |
|
rzi += rzi*percentScale[2]; |
217 |
|
|
218 |
< |
r[0] = rxi + boxNum[0]; |
219 |
< |
r[1] = ryi + boxNum[1]; |
220 |
< |
r[2] = rzi + boxNum[2]; |
218 |
> |
delta[0] = r[0] - (rxi + boxNum[0]); |
219 |
> |
delta[1] = r[1] - (ryi + boxNum[1]); |
220 |
> |
delta[2] = r[2] - (rzi + boxNum[2]); |
221 |
|
|
222 |
< |
molecules[i]->moveCOM(r); |
222 |
> |
molecules[i].moveCOM(delta); |
223 |
|
} |
224 |
|
} |
225 |
+ |
|
226 |
+ |
short int ExtendedSystem::NVTready() { |
227 |
+ |
const double kB = 8.31451e-7; // boltzmann constant in amu*Ang^2*fs^-2/K |
228 |
+ |
double NkBT; |
229 |
+ |
|
230 |
+ |
if (!have_target_temp) { |
231 |
+ |
sprintf( painCave.errMsg, |
232 |
+ |
"ExtendedSystem error: You can't use NVT without a targetTemp!\n" |
233 |
+ |
); |
234 |
+ |
painCave.isFatal = 1; |
235 |
+ |
simError(); |
236 |
+ |
return -1; |
237 |
+ |
} |
238 |
+ |
|
239 |
+ |
if (!have_qmass) { |
240 |
+ |
if (have_tau_thermostat) { |
241 |
+ |
|
242 |
+ |
NkBT = (double)entry_plug->ndf * kB * targetTemp; |
243 |
+ |
std::cerr << "Setting qMass = " << tauThermostat * NkBT << "\n"; |
244 |
+ |
this->setQmass(tauThermostat * NkBT); |
245 |
+ |
|
246 |
+ |
} else { |
247 |
+ |
sprintf( painCave.errMsg, |
248 |
+ |
"ExtendedSystem error: If you use the constant temperature\n" |
249 |
+ |
" ensemble, you must set either tauThermostat or qMass.\n"); |
250 |
+ |
painCave.isFatal = 1; |
251 |
+ |
simError(); |
252 |
+ |
} |
253 |
+ |
} |
254 |
+ |
|
255 |
+ |
return 1; |
256 |
+ |
} |
257 |
+ |
|
258 |
+ |
short int ExtendedSystem::NPTready() { |
259 |
+ |
const double kB = 8.31451e-7; // boltzmann constant in amu*Ang^2*fs^-2/K |
260 |
+ |
double NkBT; |
261 |
+ |
|
262 |
+ |
if (!have_target_temp) { |
263 |
+ |
sprintf( painCave.errMsg, |
264 |
+ |
"ExtendedSystem error: You can't use NPT without a targetTemp!\n" |
265 |
+ |
); |
266 |
+ |
painCave.isFatal = 1; |
267 |
+ |
simError(); |
268 |
+ |
return -1; |
269 |
+ |
} |
270 |
+ |
|
271 |
+ |
if (!have_target_pressure) { |
272 |
+ |
sprintf( painCave.errMsg, |
273 |
+ |
"ExtendedSystem error: You can't use NPT without a targetPressure!\n" |
274 |
+ |
); |
275 |
+ |
painCave.isFatal = 1; |
276 |
+ |
simError(); |
277 |
+ |
return -1; |
278 |
+ |
} |
279 |
+ |
|
280 |
+ |
if (!have_tau_barostat) { |
281 |
+ |
sprintf( painCave.errMsg, |
282 |
+ |
"ExtendedSystem error: If you use the NPT\n" |
283 |
+ |
" ensemble, you must set tauBarostat.\n"); |
284 |
+ |
painCave.isFatal = 1; |
285 |
+ |
simError(); |
286 |
+ |
} |
287 |
+ |
|
288 |
+ |
if (!have_qmass) { |
289 |
+ |
if (have_tau_thermostat) { |
290 |
+ |
|
291 |
+ |
NkBT = (double)entry_plug->ndf * kB * targetTemp; |
292 |
+ |
std::cerr << "Setting qMass = " << tauThermostat * NkBT << "\n"; |
293 |
+ |
this->setQmass(tauThermostat * NkBT); |
294 |
+ |
|
295 |
+ |
} else { |
296 |
+ |
sprintf( painCave.errMsg, |
297 |
+ |
"ExtendedSystem error: If you use the NPT\n" |
298 |
+ |
" ensemble, you must set either tauThermostat or qMass.\n"); |
299 |
+ |
painCave.isFatal = 1; |
300 |
+ |
simError(); |
301 |
+ |
} |
302 |
+ |
} |
303 |
+ |
return 1; |
304 |
+ |
} |
305 |
+ |
|