| 1 | 
#include <math.h> | 
| 2 | 
#include "Atom.hpp" | 
| 3 | 
#include "Molecule.hpp" | 
| 4 | 
#include "SimInfo.hpp" | 
| 5 | 
#include "Thermo.hpp" | 
| 6 | 
#include "ExtendedSystem.hpp" | 
| 7 | 
 | 
| 8 | 
ExtendedSystem::ExtendedSystem( SimInfo &info ) { | 
| 9 | 
 | 
| 10 | 
  // get what information we need from the SimInfo object | 
| 11 | 
   | 
| 12 | 
  entry_plug = &info; | 
| 13 | 
  nAtoms = entry_plug->n_atoms; | 
| 14 | 
  atoms = entry_plug->atoms; | 
| 15 | 
  nMols = entry_plug->n_mol; | 
| 16 | 
  molecules = entry_plug->molecules; | 
| 17 | 
  nOriented = entry_plug->n_oriented; | 
| 18 | 
  ndf = entry_plug->ndf; | 
| 19 | 
  zeta = 0.0; | 
| 20 | 
  epsilonDot = 0.0; | 
| 21 | 
 | 
| 22 | 
} | 
| 23 | 
 | 
| 24 | 
void ExtendedSystem::NoseHooverNVT( double dt, double ke ){ | 
| 25 | 
 | 
| 26 | 
  // Basic thermostating via Hoover, Phys.Rev.A, 1985, Vol. 31 (5) 1695-1697 | 
| 27 | 
   | 
| 28 | 
  int i; | 
| 29 | 
  double NkBT, zetaScale, ke_temp; | 
| 30 | 
  double vx, vy, vz, jx, jy, jz; | 
| 31 | 
  const double kB = 8.31451e-7;     // boltzmann constant in amu*Ang^2*fs^-2/K | 
| 32 | 
  const double e_convert = 4.184e-4;    // to convert ke from kcal/mol to  | 
| 33 | 
                                        // amu*Ang^2*fs^-2/K | 
| 34 | 
  DirectionalAtom* dAtom;     | 
| 35 | 
 | 
| 36 | 
 | 
| 37 | 
  ke_temp = ke * e_convert; | 
| 38 | 
  NkBT = (double)ndf * kB * targetTemp; | 
| 39 | 
 | 
| 40 | 
  // advance the zeta term to zeta(t + dt) - zeta is 0.0d0 on config. readin | 
| 41 | 
  // qmass is set in the parameter file | 
| 42 | 
 | 
| 43 | 
  zeta += dt * ( (ke_temp*2.0 - NkBT) / qmass ); | 
| 44 | 
  zetaScale = zeta * dt; | 
| 45 | 
 | 
| 46 | 
  // perform thermostat scaling on linear velocities and angular momentum | 
| 47 | 
  for(i = 0; i < nAtoms; i++){ | 
| 48 | 
     | 
| 49 | 
    vx = atoms[i]->get_vx(); | 
| 50 | 
    vy = atoms[i]->get_vy(); | 
| 51 | 
    vz = atoms[i]->get_vz(); | 
| 52 | 
     | 
| 53 | 
    atoms[i]->set_vx(vx * (1.0 - zetaScale)); | 
| 54 | 
    atoms[i]->set_vy(vy * (1.0 - zetaScale)); | 
| 55 | 
    atoms[i]->set_vz(vz * (1.0 - zetaScale)); | 
| 56 | 
  } | 
| 57 | 
  if( nOriented ){ | 
| 58 | 
     | 
| 59 | 
    for( i=0; i < nAtoms; i++ ){ | 
| 60 | 
       | 
| 61 | 
      if( atoms[i]->isDirectional() ){ | 
| 62 | 
         | 
| 63 | 
        dAtom = (DirectionalAtom *)atoms[i]; | 
| 64 | 
         | 
| 65 | 
        jx = dAtom->getJx(); | 
| 66 | 
        jy = dAtom->getJy(); | 
| 67 | 
        jz = dAtom->getJz(); | 
| 68 | 
         | 
| 69 | 
        dAtom->setJx(jx * (1.0 - zetaScale)); | 
| 70 | 
        dAtom->setJy(jy * (1.0 - zetaScale)); | 
| 71 | 
        dAtom->setJz(jz * (1.0 - zetaScale)); | 
| 72 | 
      } | 
| 73 | 
    }    | 
| 74 | 
  } | 
| 75 | 
} | 
| 76 | 
 | 
| 77 | 
 | 
| 78 | 
void ExtendedSystem::NoseHooverAndersonNPT( double dt,  | 
| 79 | 
                                            double ke,  | 
| 80 | 
                                            double p_int ) { | 
| 81 | 
 | 
| 82 | 
  // Basic barostating via Hoover, Phys.Rev.A, 1985, Vol. 31 (5) 1695-1697  | 
| 83 | 
  // Hoover, Phys.Rev.A, 1986, Vol.34 (3) 2499-2500 | 
| 84 | 
 | 
| 85 | 
  double oldBox[3]; | 
| 86 | 
  double newBox[3]; | 
| 87 | 
  const double kB = 8.31451e-7;     // boltzmann constant in amu*Ang^2*fs^-2/K | 
| 88 | 
  const double p_units = 6.10192996e-9; // converts atm to amu*fs^-2*Ang^-1 | 
| 89 | 
  const double e_convert = 4.184e-4;    // to convert ke from kcal/mol to  | 
| 90 | 
                                        // amu*Ang^2*fs^-2/K | 
| 91 | 
 | 
| 92 | 
  double p_ext, zetaScale, epsilonScale, scale, NkBT, ke_temp; | 
| 93 | 
  double volume, p_mol; | 
| 94 | 
  double vx, vy, vz, jx, jy, jz; | 
| 95 | 
  DirectionalAtom* dAtom; | 
| 96 | 
  int i; | 
| 97 | 
 | 
| 98 | 
  p_ext = targetPressure * p_units; | 
| 99 | 
  p_mol = p_int * p_units; | 
| 100 | 
 | 
| 101 | 
  entry_plug->getBox(oldBox); | 
| 102 | 
 | 
| 103 | 
  volume = oldBox[0]*oldBox[1]*oldBox[2]; | 
| 104 | 
 | 
| 105 | 
  ke_temp = ke * e_convert; | 
| 106 | 
  NkBT = (double)ndf * kB * targetTemp; | 
| 107 | 
 | 
| 108 | 
  // propogate the strain rate | 
| 109 | 
 | 
| 110 | 
  epsilonDot +=  dt * ((p_mol - p_ext) * volume /  | 
| 111 | 
                       (tauRelax*tauRelax * kB * targetTemp) ); | 
| 112 | 
 | 
| 113 | 
  // determine the change in cell volume | 
| 114 | 
  scale = pow( (1.0 + dt * 3.0 * epsilonDot), (1.0 / 3.0)); | 
| 115 | 
 | 
| 116 | 
  newBox[0] = oldBox[0] * scale; | 
| 117 | 
  newBox[1] = oldBox[1] * scale; | 
| 118 | 
  newBox[2] = oldBox[2] * scale; | 
| 119 | 
  volume = newBox[0]*newBox[1]*newBox[2]; | 
| 120 | 
 | 
| 121 | 
  entry_plug->setBox(newBox); | 
| 122 | 
 | 
| 123 | 
  // perform affine transform to update positions with volume fluctuations | 
| 124 | 
  this->AffineTransform( oldBox, newBox ); | 
| 125 | 
 | 
| 126 | 
  epsilonScale = epsilonDot * dt; | 
| 127 | 
 | 
| 128 | 
  // advance the zeta term to zeta(t + dt) - zeta is 0.0d0 on config. readin  | 
| 129 | 
  // qmass is set in the parameter file | 
| 130 | 
 | 
| 131 | 
  zeta += dt * ( (ke_temp*2.0 - NkBT) / qmass ); | 
| 132 | 
  zetaScale = zeta * dt; | 
| 133 | 
   | 
| 134 | 
  // apply barostating and thermostating to velocities and angular momenta | 
| 135 | 
  for(i = 0; i < nAtoms; i++){ | 
| 136 | 
     | 
| 137 | 
    vx = atoms[i]->get_vx(); | 
| 138 | 
    vy = atoms[i]->get_vy(); | 
| 139 | 
    vz = atoms[i]->get_vz(); | 
| 140 | 
     | 
| 141 | 
    atoms[i]->set_vx(vx * (1.0 - zetaScale - epsilonScale)); | 
| 142 | 
    atoms[i]->set_vy(vy * (1.0 - zetaScale - epsilonScale)); | 
| 143 | 
    atoms[i]->set_vz(vz * (1.0 - zetaScale - epsilonScale)); | 
| 144 | 
  } | 
| 145 | 
  if( nOriented ){ | 
| 146 | 
     | 
| 147 | 
    for( i=0; i < nAtoms; i++ ){ | 
| 148 | 
       | 
| 149 | 
      if( atoms[i]->isDirectional() ){ | 
| 150 | 
         | 
| 151 | 
        dAtom = (DirectionalAtom *)atoms[i]; | 
| 152 | 
         | 
| 153 | 
        jx = dAtom->getJx(); | 
| 154 | 
        jy = dAtom->getJy(); | 
| 155 | 
        jz = dAtom->getJz(); | 
| 156 | 
         | 
| 157 | 
        dAtom->setJx( jx * (1.0 - zetaScale)); | 
| 158 | 
        dAtom->setJy( jy * (1.0 - zetaScale)); | 
| 159 | 
        dAtom->setJz( jz * (1.0 - zetaScale)); | 
| 160 | 
      } | 
| 161 | 
    }    | 
| 162 | 
  } | 
| 163 | 
} | 
| 164 | 
 | 
| 165 | 
void ExtendedSystem::AffineTransform( double oldBox[3], double newBox[3] ){ | 
| 166 | 
 | 
| 167 | 
  int i; | 
| 168 | 
  double r[3]; | 
| 169 | 
  double boxNum[3]; | 
| 170 | 
  double percentScale[3]; | 
| 171 | 
  double rxi, ryi, rzi; | 
| 172 | 
     | 
| 173 | 
  // first determine the scaling factor from the box size change | 
| 174 | 
  percentScale[0] = (newBox[0] - oldBox[0]) / oldBox[0]; | 
| 175 | 
  percentScale[1] = (newBox[1] - oldBox[1]) / oldBox[1]; | 
| 176 | 
  percentScale[2] = (newBox[2] - oldBox[2]) / oldBox[2]; | 
| 177 | 
   | 
| 178 | 
  for (i=0; i < nMols; i++) { | 
| 179 | 
     | 
| 180 | 
    molecules[i].getCOM(r); | 
| 181 | 
     | 
| 182 | 
    // find the minimum image coordinates of the molecular centers of mass:     | 
| 183 | 
     | 
| 184 | 
    boxNum[0] = oldBox[0] * copysign(1.0,r[0]) *  | 
| 185 | 
      (double)(int)(fabs(r[0]/oldBox[0]) + 0.5); | 
| 186 | 
 | 
| 187 | 
    boxNum[1] = oldBox[1] * copysign(1.0,r[1]) *  | 
| 188 | 
      (double)(int)(fabs(r[1]/oldBox[1]) + 0.5); | 
| 189 | 
 | 
| 190 | 
    boxNum[2] = oldBox[2] * copysign(1.0,r[2]) *  | 
| 191 | 
      (double)(int)(fabs(r[2]/oldBox[2]) + 0.5); | 
| 192 | 
 | 
| 193 | 
    rxi = r[0] - boxNum[0]; | 
| 194 | 
    ryi = r[1] - boxNum[1]; | 
| 195 | 
    rzi = r[2] - boxNum[2]; | 
| 196 | 
 | 
| 197 | 
    // update the minimum image coordinates using the scaling factor | 
| 198 | 
    rxi += rxi*percentScale[0]; | 
| 199 | 
    ryi += ryi*percentScale[1]; | 
| 200 | 
    rzi += rzi*percentScale[2]; | 
| 201 | 
 | 
| 202 | 
    r[0] = rxi + boxNum[0]; | 
| 203 | 
    r[1] = ryi + boxNum[1]; | 
| 204 | 
    r[2] = rzi + boxNum[2]; | 
| 205 | 
 | 
| 206 | 
    molecules[i].moveCOM(r); | 
| 207 | 
  } | 
| 208 | 
} |