| 1 |
#include <math.h> |
| 2 |
|
| 3 |
ExtendedSystem::ExtendedSystem( SimInfo &info ) { |
| 4 |
|
| 5 |
// get what information we need from the SimInfo object |
| 6 |
|
| 7 |
entry_plug = &info; |
| 8 |
nAtoms = info.n_atoms; |
| 9 |
atoms = info.atoms; |
| 10 |
nMols = info.n_mol; |
| 11 |
molecules = info.molecules; |
| 12 |
|
| 13 |
} |
| 14 |
|
| 15 |
ExtendedSystem::~ExtendedSystem() { |
| 16 |
} |
| 17 |
|
| 18 |
|
| 19 |
void ExtendedSystem::nose_hoover_nvt( double ke, double dt, double temp ){ |
| 20 |
|
| 21 |
// Basic thermostating via Hoover, Phys.Rev.A, 1985, Vol. 31 (5) 1695-1697 |
| 22 |
|
| 23 |
int i, j, degrees_freedom; |
| 24 |
double ke, dt, temp, kB; |
| 25 |
double keconverter, NkBT, zetaScale, ke_temp; |
| 26 |
double vxi, vyi, vzi, jxi, jyi, jzi; |
| 27 |
|
| 28 |
degrees_freedom = 6*nmol; // number of degrees of freedom for the system |
| 29 |
kB = 8.31451e-7; // boltzmann constant in amu*Ang^2*fs^-2/K |
| 30 |
keconverter = 4.184e-4; // to convert ke from kcal/mol to amu*Ang^2*fs^-2 / K |
| 31 |
|
| 32 |
ke_temp = ke * keconverter; |
| 33 |
NkBT = degrees_freedom*kB*temp; |
| 34 |
|
| 35 |
// advance the zeta term to zeta(t + dt) - zeta is 0.0d0 on config. readin & |
| 36 |
// qmass is set in the parameter file |
| 37 |
zeta = zeta + dt*((ke_temp*2 - NkBT)/qmass); |
| 38 |
zetaScale = zeta * dt; |
| 39 |
|
| 40 |
// perform thermostat scaling on linear velocities and angular momentum |
| 41 |
for(i = 0, i < nmol; i++ ) { |
| 42 |
vxi = vx(i)*zetaScale; |
| 43 |
vyi = vy(i)*zetaScale; |
| 44 |
vzi = vz(i)*zetaScale; |
| 45 |
jxi = jx(i)*zetaScale; |
| 46 |
jyi = jy(i)*zetaScale; |
| 47 |
jzi = jz(i)*zetaScale; |
| 48 |
|
| 49 |
vx(i) = vx(i) - vxi; |
| 50 |
vy(i) = vy(i) - vyi; |
| 51 |
vz(i) = vz(i) - vzi; |
| 52 |
jx(i) = jx(i) - jxi; |
| 53 |
jy(i) = jy(i) - jyi; |
| 54 |
jz(i) = jz(i) - jzi; |
| 55 |
} |
| 56 |
} |
| 57 |
|
| 58 |
|
| 59 |
void ExtendedSystem::nose_hoover_anderson_npt(double pressure, double ke, double dt, |
| 60 |
double temp ) { |
| 61 |
|
| 62 |
// Basic barostating via Hoover, Phys.Rev.A, 1985, Vol. 31 (5) 1695-1697 |
| 63 |
// Hoover, Phys.Rev.A, 1986, Vol.34 (3) 2499-2500 |
| 64 |
|
| 65 |
int i, j, degrees_freedom; |
| 66 |
double pressure, dt, temp, pressure_units, epsilonScale; |
| 67 |
double ke, kB, vxi, vyi, vzi, pressure_ext; |
| 68 |
double boxx_old, boxy_old, boxz_old; |
| 69 |
double keconverter, NkBT, zetaScale, ke_temp; |
| 70 |
double jxi, jyi, jzi, scale; |
| 71 |
|
| 72 |
kB = 8.31451e-7; // boltzmann constant in amu*Ang^2*fs^-2/K |
| 73 |
pressure_units = 6.10192996e-9; // converts atm to amu*fs^-2*Ang^-1 |
| 74 |
degrees_freedom = 6*nmol; // number of degrees of freedom for the system |
| 75 |
keconverter = 4.184e-4; // to convert ke from kcal/mol to amu*Ang^2*fs^-2/K |
| 76 |
|
| 77 |
pressure_ext = pressure * pressure_units; |
| 78 |
volume = boxx*boxy*boxz; |
| 79 |
ke_temp = ke * keconverter; |
| 80 |
NkBT = degrees_freedom*kB*temp; |
| 81 |
|
| 82 |
// propogate the strain rate |
| 83 |
|
| 84 |
epsilon_dot += dt * ( (p_mol - pressure_ext)*volume |
| 85 |
/ (tau_relax*tau_relax * kB * temp) ); |
| 86 |
|
| 87 |
// determine the change in cell volume |
| 88 |
scale = pow( (1.0 + dt * 3.0 * epsilon_dot), (1.0 / 3.0)); |
| 89 |
|
| 90 |
volume = volume * pow(scale, 3.0); |
| 91 |
|
| 92 |
// perform affine transform to update positions with volume fluctuations |
| 93 |
affine_transform( scale ); |
| 94 |
|
| 95 |
// save old lengths and update box size |
| 96 |
boxx_old = boxx; |
| 97 |
boxy_old = boxy; |
| 98 |
boxz_old = boxz; |
| 99 |
|
| 100 |
boxx = boxx_old*scale; |
| 101 |
boxy = boxy_old*scale; |
| 102 |
boxz = boxz_old*scale; |
| 103 |
|
| 104 |
epsilonScale = epsilon_dot * dt; |
| 105 |
|
| 106 |
// advance the zeta term to zeta(t + dt) - zeta is 0.0d0 on config. readin |
| 107 |
// qmass is set in the parameter file |
| 108 |
zeta += dt * ( (ke_temp*2 - NkBT) / qmass ); |
| 109 |
zetaScale = zeta * dt; |
| 110 |
|
| 111 |
// apply barostating and thermostating to velocities and angular momenta |
| 112 |
|
| 113 |
for (i=0; i < nmol; i++) { |
| 114 |
|
| 115 |
vxi = vx(i)*epsilonScale; |
| 116 |
vyi = vy(i)*epsilonScale; |
| 117 |
vzi = vz(i)*epsilonScale; |
| 118 |
vxi = vxi + vx(i)*zetaScale; |
| 119 |
vyi = vyi + vy(i)*zetaScale; |
| 120 |
vzi = vzi + vz(i)*zetaScale; |
| 121 |
jxi = jx(i)*zetaScale; |
| 122 |
jyi = jy(i)*zetaScale; |
| 123 |
jzi = jz(i)*zetaScale; |
| 124 |
|
| 125 |
vx(i) = vx(i) - vxi; |
| 126 |
vy(i) = vy(i) - vyi; |
| 127 |
vz(i) = vz(i) - vzi; |
| 128 |
jx(i) = jx(i) - jxi; |
| 129 |
jy(i) = jy(i) - jyi; |
| 130 |
jz(i) = jz(i) - jzi; |
| 131 |
} |
| 132 |
|
| 133 |
|
| 134 |
|
| 135 |
} |
| 136 |
|
| 137 |
void ExtendedSystem::affine_transform( double scale ){ |
| 138 |
|
| 139 |
int i; |
| 140 |
double boxx_old, boxy_old, boxz_old, percentScale; |
| 141 |
double boxx_num, boxy_num, boxz_num, rxi, ryi, rzi; |
| 142 |
double[3] r; |
| 143 |
|
| 144 |
// first determine the scaling factor from the box size change |
| 145 |
percentScale = (boxx - boxx_old)/boxx_old; |
| 146 |
|
| 147 |
|
| 148 |
for (i=0; i < nMols; i++) { |
| 149 |
|
| 150 |
molecules[i]->getCOM(r); |
| 151 |
|
| 152 |
// find the minimum image coordinates of the molecular centers of mass: |
| 153 |
|
| 154 |
|
| 155 |
boxx_num = boxx_old*copysign(1.0,r[0])*(double)(int)(fabs(r[0]/boxx_old)+0.5); |
| 156 |
|
| 157 |
boxx_num = boxx_old*dsign(1.0d0,rx(i))*int(abs(rx(i)/boxx_old)+0.5d0); |
| 158 |
boxy_num = boxy_old*dsign(1.0d0,ry(i))*int(abs(ry(i)/boxy_old)+0.5d0); |
| 159 |
boxz_num = boxz_old*dsign(1.0d0,rz(i))*int(abs(rz(i)/boxz_old)+0.5d0); |
| 160 |
|
| 161 |
rxi = rx(i) - boxx_num; |
| 162 |
ryi = ry(i) - boxy_num; |
| 163 |
rzi = rz(i) - boxz_num; |
| 164 |
|
| 165 |
// update the minimum image coordinates using the scaling factor |
| 166 |
rxi = rxi + rxi*percentScale; |
| 167 |
ryi = ryi + ryi*percentScale; |
| 168 |
rzi = rzi + rzi*percentScale; |
| 169 |
|
| 170 |
rx(i) = rxi + boxx_num; |
| 171 |
ry(i) = ryi + boxy_num; |
| 172 |
rz(i) = rzi + boxz_num; |
| 173 |
} |
| 174 |
} |