| 14 |
|
atoms = info.atoms; |
| 15 |
|
nMols = info.n_mol; |
| 16 |
|
molecules = info.molecules; |
| 17 |
< |
zeta = 0; |
| 17 |
> |
zeta = 0.0; |
| 18 |
> |
epsilonDot = 0.0; |
| 19 |
|
|
| 20 |
|
} |
| 21 |
|
|
| 23 |
|
} |
| 24 |
|
|
| 25 |
|
|
| 26 |
< |
void ExtendedSystem::NoseHooverNVT( double dt ){ |
| 26 |
> |
void ExtendedSystem::NoseHooverNVT( double dt, double ke ){ |
| 27 |
|
|
| 28 |
|
// Basic thermostating via Hoover, Phys.Rev.A, 1985, Vol. 31 (5) 1695-1697 |
| 29 |
|
|
| 30 |
|
int i; |
| 31 |
< |
double kB, keconverter, NkBT, zetaScale, ke_temp; |
| 31 |
> |
double NkBT, zetaScale, ke_temp; |
| 32 |
|
double vx, vy, vz, jx, jy, jz; |
| 33 |
< |
|
| 34 |
< |
kB = 8.31451e-7; // boltzmann constant in amu*Ang^2*fs^-2/K |
| 35 |
< |
keconverter = 4.184e-4; // to convert ke from kcal/mol to amu*Ang^2*fs^-2 / K |
| 36 |
< |
|
| 37 |
< |
ke_temp = getKinetic() * keconverter; |
| 33 |
> |
const double kB = 8.31451e-7; // boltzmann constant in amu*Ang^2*fs^-2/K |
| 34 |
> |
const double e_convert = 4.184e-4; // to convert ke from kcal/mol to |
| 35 |
> |
// amu*Ang^2*fs^-2/K |
| 36 |
> |
|
| 37 |
> |
ke_temp = ke * e_convert; |
| 38 |
|
NkBT = (double)getNDF() * kB * targetTemp; |
| 39 |
|
|
| 40 |
< |
// advance the zeta term to zeta(t + dt) - zeta is 0.0d0 on config. readin & |
| 40 |
> |
// advance the zeta term to zeta(t + dt) - zeta is 0.0d0 on config. readin |
| 41 |
|
// qmass is set in the parameter file |
| 42 |
< |
zeta += dt*((ke_temp*2 - NkBT)/qmass); |
| 42 |
> |
|
| 43 |
> |
zeta += dt * ( (ke_temp*2.0 - NkBT) / qmass ); |
| 44 |
|
zetaScale = zeta * dt; |
| 45 |
|
|
| 46 |
|
// perform thermostat scaling on linear velocities and angular momentum |
| 45 |
– |
|
| 47 |
|
for(i = 0; i < n_atoms; i++){ |
| 48 |
|
|
| 49 |
|
vx = atoms[i]->get_vx(); |
| 50 |
|
vy = atoms[i]->get_vy(); |
| 51 |
|
vz = atoms[i]->get_vz(); |
| 52 |
|
|
| 53 |
< |
atoms[i]->set_vx(vx - zetaScale * vx); |
| 54 |
< |
atoms[i]->set_vy(vy - zetaScale * vy); |
| 55 |
< |
atoms[i]->set_vz(vz - zetaScale * vz); |
| 53 |
> |
atoms[i]->set_vx(vx * (1.0 - zetaScale)); |
| 54 |
> |
atoms[i]->set_vy(vy * (1.0 - zetaScale)); |
| 55 |
> |
atoms[i]->set_vz(vz * (1.0 - zetaScale)); |
| 56 |
|
} |
| 57 |
|
if( n_oriented ){ |
| 58 |
|
|
| 66 |
|
jy = dAtom->getJy(); |
| 67 |
|
jz = dAtom->getJz(); |
| 68 |
|
|
| 69 |
< |
dAtom->setJx( jx - zetaScale * jx); |
| 70 |
< |
dAtom->setJy( jy - zetaScale * jy); |
| 71 |
< |
dAtom->setJz( jz - zetaScale * jz); |
| 69 |
> |
dAtom->setJx(jx * (1.0 - zetaScale)); |
| 70 |
> |
dAtom->setJy(jy * (1.0 - zetaScale)); |
| 71 |
> |
dAtom->setJz(jz * (1.0 - zetaScale)); |
| 72 |
|
} |
| 73 |
|
} |
| 74 |
|
} |
| 75 |
|
} |
| 76 |
|
|
| 77 |
|
|
| 78 |
< |
void ExtendedSystem::NoseHooverAndersonNPT(double pressure, double ke, |
| 79 |
< |
double dt, double temp ) { |
| 78 |
> |
void ExtendedSystem::NoseHooverAndersonNPT( double dt, |
| 79 |
> |
double ke, |
| 80 |
> |
double p_int ) { |
| 81 |
|
|
| 82 |
|
// Basic barostating via Hoover, Phys.Rev.A, 1985, Vol. 31 (5) 1695-1697 |
| 83 |
|
// Hoover, Phys.Rev.A, 1986, Vol.34 (3) 2499-2500 |
| 84 |
|
|
| 85 |
< |
int i, j, degrees_freedom; |
| 86 |
< |
double pressure, dt, temp, pressure_units, epsilonScale; |
| 87 |
< |
double ke, kB, vxi, vyi, vzi, pressure_ext; |
| 88 |
< |
double boxx_old, boxy_old, boxz_old; |
| 89 |
< |
double keconverter, NkBT, zetaScale, ke_temp; |
| 90 |
< |
double jxi, jyi, jzi, scale; |
| 85 |
> |
double oldBox[3]; |
| 86 |
> |
double newBox[3]; |
| 87 |
> |
const double kB = 8.31451e-7; // boltzmann constant in amu*Ang^2*fs^-2/K |
| 88 |
> |
const double p_units = 6.10192996e-9; // converts atm to amu*fs^-2*Ang^-1 |
| 89 |
> |
const double e_convert = 4.184e-4; // to convert ke from kcal/mol to |
| 90 |
> |
// amu*Ang^2*fs^-2/K |
| 91 |
|
|
| 92 |
< |
kB = 8.31451e-7; // boltzmann constant in amu*Ang^2*fs^-2/K |
| 91 |
< |
pressure_units = 6.10192996e-9; // converts atm to amu*fs^-2*Ang^-1 |
| 92 |
< |
degrees_freedom = 6*nmol; // number of degrees of freedom for the system |
| 93 |
< |
keconverter = 4.184e-4; // to convert ke from kcal/mol to amu*Ang^2*fs^-2/K |
| 92 |
> |
double p_ext; |
| 93 |
|
|
| 94 |
< |
pressure_ext = pressure * pressure_units; |
| 95 |
< |
volume = boxx*boxy*boxz; |
| 97 |
< |
ke_temp = ke * keconverter; |
| 98 |
< |
NkBT = degrees_freedom*kB*temp; |
| 94 |
> |
p_ext = targetPressure * p_units; |
| 95 |
> |
p_mol = p_int * p_units; |
| 96 |
|
|
| 97 |
+ |
getBox(oldBox); |
| 98 |
+ |
|
| 99 |
+ |
volume = oldBox[0]*oldBox[1]*oldBox[2]; |
| 100 |
+ |
|
| 101 |
+ |
ke_temp = ke * e_convert; |
| 102 |
+ |
NkBT = (double)getNDF() * kB * targetTemp; |
| 103 |
+ |
|
| 104 |
|
// propogate the strain rate |
| 105 |
|
|
| 106 |
< |
epsilon_dot += dt * ( (p_mol - pressure_ext)*volume |
| 107 |
< |
/ (tau_relax*tau_relax * kB * targetTemp) ); |
| 106 |
> |
epsilonDot += dt * ((p_mol - p_ext) * volume / |
| 107 |
> |
(tauRelax*tauRelax * kB * targetTemp) ); |
| 108 |
|
|
| 109 |
|
// determine the change in cell volume |
| 110 |
< |
scale = pow( (1.0 + dt * 3.0 * epsilon_dot), (1.0 / 3.0)); |
| 110 |
> |
scale = pow( (1.0 + dt * 3.0 * epsilonDot), (1.0 / 3.0)); |
| 111 |
|
|
| 112 |
< |
volume = volume * pow(scale, 3.0); |
| 112 |
> |
newBox[0] = oldBox[0] * scale; |
| 113 |
> |
newBox[1] = oldBox[1] * scale; |
| 114 |
> |
newBox[2] = oldBox[2] * scale; |
| 115 |
> |
volume = newBox[0]*newBox[1]*newBox[2]; |
| 116 |
|
|
| 117 |
|
// perform affine transform to update positions with volume fluctuations |
| 118 |
< |
affine_transform( scale ); |
| 118 |
> |
this->AffineTransform( oldBox, newBox ); |
| 119 |
|
|
| 113 |
– |
// save old lengths and update box size |
| 114 |
– |
boxx_old = boxx; |
| 115 |
– |
boxy_old = boxy; |
| 116 |
– |
boxz_old = boxz; |
| 117 |
– |
|
| 118 |
– |
boxx = boxx_old*scale; |
| 119 |
– |
boxy = boxy_old*scale; |
| 120 |
– |
boxz = boxz_old*scale; |
| 121 |
– |
|
| 120 |
|
epsilonScale = epsilonDot * dt; |
| 121 |
|
|
| 122 |
|
// advance the zeta term to zeta(t + dt) - zeta is 0.0d0 on config. readin |
| 123 |
|
// qmass is set in the parameter file |
| 124 |
< |
zeta += dt * ( (ke_temp*2 - NkBT) / qmass ); |
| 124 |
> |
|
| 125 |
> |
zeta += dt * ( (ke_temp*2.0 - NkBT) / qmass ); |
| 126 |
|
zetaScale = zeta * dt; |
| 127 |
|
|
| 128 |
|
// apply barostating and thermostating to velocities and angular momenta |
| 132 |
|
vy = atoms[i]->get_vy(); |
| 133 |
|
vz = atoms[i]->get_vz(); |
| 134 |
|
|
| 135 |
< |
atoms[i]->set_vx(vx * (1.0 - zetaScale * epsilonScale)); |
| 136 |
< |
atoms[i]->set_vy(vy * (1.0 - zetaScale * epsilonScale)); |
| 137 |
< |
atoms[i]->set_vz(vz * (1.0 - zetaScale * epsilonScale)); |
| 135 |
> |
atoms[i]->set_vx(vx * (1.0 - zetaScale - epsilonScale)); |
| 136 |
> |
atoms[i]->set_vy(vy * (1.0 - zetaScale - epsilonScale)); |
| 137 |
> |
atoms[i]->set_vz(vz * (1.0 - zetaScale - epsilonScale)); |
| 138 |
|
} |
| 139 |
|
if( n_oriented ){ |
| 140 |
|
|
| 156 |
|
} |
| 157 |
|
} |
| 158 |
|
|
| 159 |
< |
void ExtendedSystem::AffineTransform( double scale ){ |
| 159 |
> |
void ExtendedSystem::AffineTransform( double oldBox[3], double newBox[3] ){ |
| 160 |
|
|
| 161 |
|
int i; |
| 162 |
< |
double boxx_old, boxy_old, boxz_old, percentScale; |
| 163 |
< |
double boxx_num, boxy_num, boxz_num, rxi, ryi, rzi; |
| 164 |
< |
double[3] r; |
| 162 |
> |
double r[3]; |
| 163 |
> |
double boxNum[3]; |
| 164 |
> |
double percentScale[3]; |
| 165 |
> |
double rxi, ryi, rzi; |
| 166 |
|
|
| 167 |
|
// first determine the scaling factor from the box size change |
| 168 |
< |
percentScale = (boxx - boxx_old)/boxx_old; |
| 168 |
> |
percentScale[0] = (newBox[0] - oldBox[0]) / oldBox[0]; |
| 169 |
> |
percentScale[1] = (newBox[1] - oldBox[1]) / oldBox[1]; |
| 170 |
> |
percentScale[2] = (newBox[2] - oldBox[2]) / oldBox[2]; |
| 171 |
|
|
| 170 |
– |
|
| 172 |
|
for (i=0; i < nMols; i++) { |
| 173 |
|
|
| 174 |
|
molecules[i]->getCOM(r); |
| 175 |
|
|
| 176 |
< |
// find the minimum image coordinates of the molecular centers of mass: |
| 176 |
> |
// find the minimum image coordinates of the molecular centers of mass: |
| 177 |
|
|
| 178 |
< |
|
| 179 |
< |
boxx_num = boxx_old*copysign(1.0,r[0])*(double)(int)(fabs(r[0]/boxx_old)+0.5); |
| 178 |
> |
boxNum[0] = oldBox[0] * copysign(1.0,r[0]) * |
| 179 |
> |
(double)(int)(fabs(r[0]/oldBox[0]) + 0.5); |
| 180 |
|
|
| 181 |
< |
boxx_num = boxx_old*dsign(1.0d0,rx(i))*int(abs(rx(i)/boxx_old)+0.5d0); |
| 182 |
< |
boxy_num = boxy_old*dsign(1.0d0,ry(i))*int(abs(ry(i)/boxy_old)+0.5d0); |
| 182 |
< |
boxz_num = boxz_old*dsign(1.0d0,rz(i))*int(abs(rz(i)/boxz_old)+0.5d0); |
| 181 |
> |
boxNum[1] = oldBox[1] * copysign(1.0,r[1]) * |
| 182 |
> |
(double)(int)(fabs(r[1]/oldBox[1]) + 0.5); |
| 183 |
|
|
| 184 |
< |
rxi = rx(i) - boxx_num; |
| 185 |
< |
ryi = ry(i) - boxy_num; |
| 186 |
< |
rzi = rz(i) - boxz_num; |
| 184 |
> |
boxNum[2] = oldBox[2] * copysign(1.0,r[2]) * |
| 185 |
> |
(double)(int)(fabs(r[2]/oldBox[2]) + 0.5); |
| 186 |
|
|
| 187 |
+ |
rxi = r[0] - boxNum[0]; |
| 188 |
+ |
ryi = r[1] - boxNum[1]; |
| 189 |
+ |
rzi = r[2] - boxNum[2]; |
| 190 |
+ |
|
| 191 |
|
// update the minimum image coordinates using the scaling factor |
| 192 |
< |
rxi = rxi + rxi*percentScale; |
| 193 |
< |
ryi = ryi + ryi*percentScale; |
| 194 |
< |
rzi = rzi + rzi*percentScale; |
| 192 |
> |
rxi += rxi*percentScale[0]; |
| 193 |
> |
ryi += ryi*percentScale[1]; |
| 194 |
> |
rzi += rzi*percentScale[2]; |
| 195 |
|
|
| 196 |
< |
rx(i) = rxi + boxx_num; |
| 197 |
< |
ry(i) = ryi + boxy_num; |
| 198 |
< |
rz(i) = rzi + boxz_num; |
| 196 |
> |
r[0] = rxi + boxNum[0]; |
| 197 |
> |
r[1] = ryi + boxNum[1]; |
| 198 |
> |
r[2] = rzi + boxNum[2]; |
| 199 |
> |
|
| 200 |
> |
molecules[i]->moveCOM(r); |
| 201 |
|
} |
| 202 |
|
} |