13 |
|
entry_plug = the_entry_plug; |
14 |
|
zeta = 0.0; |
15 |
|
epsilonDot = 0.0; |
16 |
+ |
epsilonDotX = 0.0; |
17 |
+ |
epsilonDotY = 0.0; |
18 |
+ |
epsilonDotZ = 0.0; |
19 |
|
have_tau_thermostat = 0; |
20 |
|
have_tau_barostat = 0; |
21 |
|
have_target_temp = 0; |
50 |
|
|
51 |
|
zetaScale = zeta * dt; |
52 |
|
|
53 |
< |
std::cerr << "zetaScale = " << zetaScale << "\n"; |
53 |
> |
//std::cerr << "zetaScale = " << zetaScale << "\n"; |
54 |
|
|
55 |
|
// perform thermostat scaling on linear velocities and angular momentum |
56 |
|
for(i = 0; i < entry_plug->n_atoms; i++){ |
124 |
|
|
125 |
|
// determine the change in cell volume |
126 |
|
scale = pow( (1.0 + dt * 3.0 * epsilonDot), (1.0 / 3.0)); |
127 |
< |
std::cerr << "pmol = " << p_mol << " p_ext = " << p_ext << " scale = " << scale << "\n"; |
127 |
> |
//std::cerr << "pmol = " << p_mol << " p_ext = " << p_ext << " scale = " << scale << "\n"; |
128 |
|
|
129 |
|
newBox[0] = oldBox[0] * scale; |
130 |
|
newBox[1] = oldBox[1] * scale; |
144 |
|
zeta += dt * ( (ke_temp*2.0 - NkBT) / qmass ); |
145 |
|
zetaScale = zeta * dt; |
146 |
|
|
147 |
< |
std::cerr << "zetaScale = " << zetaScale << " epsilonScale = " << epsilonScale << "\n"; |
147 |
> |
//std::cerr << "zetaScale = " << zetaScale << " epsilonScale = " << epsilonScale << "\n"; |
148 |
|
|
149 |
|
// apply barostating and thermostating to velocities and angular momenta |
150 |
|
for(i = 0; i < entry_plug->n_atoms; i++){ |
178 |
|
} |
179 |
|
} |
180 |
|
|
181 |
+ |
|
182 |
+ |
void ExtendedSystem::ConstantStress( double dt, |
183 |
+ |
double ke, |
184 |
+ |
double p_tensor[9] ) { |
185 |
+ |
|
186 |
+ |
double oldBox[3]; |
187 |
+ |
double newBox[3]; |
188 |
+ |
const double kB = 8.31451e-7; // boltzmann constant in amu*Ang^2*fs^-2/K |
189 |
+ |
const double p_units = 6.10192996e-9; // converts atm to amu*fs^-2*Ang^-1 |
190 |
+ |
const double e_convert = 4.184e-4; // to convert ke from kcal/mol to |
191 |
+ |
// amu*Ang^2*fs^-2/K |
192 |
+ |
|
193 |
+ |
int i; |
194 |
+ |
double p_ext, zetaScale, epsilonScale, scale, NkBT, ke_temp; |
195 |
+ |
double pX_ext, pY_ext, pZ_ext; |
196 |
+ |
double volume, p_mol; |
197 |
+ |
double vx, vy, vz, jx, jy, jz; |
198 |
+ |
DirectionalAtom* dAtom; |
199 |
+ |
|
200 |
+ |
if (this->NPTready()) { |
201 |
+ |
atoms = entry_plug->atoms; |
202 |
+ |
|
203 |
+ |
p_ext = targetPressure * p_units; |
204 |
+ |
|
205 |
+ |
pX_ext = p_ext / 3.0; |
206 |
+ |
pY_ext = p_ext / 3.0; |
207 |
+ |
pZ_ext = p_ext / 3.0; |
208 |
+ |
|
209 |
+ |
entry_plug->getBox(oldBox); |
210 |
+ |
volume = oldBox[0]*oldBox[1]*oldBox[2]; |
211 |
+ |
|
212 |
+ |
ke_temp = ke * e_convert; |
213 |
+ |
NkBT = (double)entry_plug->ndf * kB * targetTemp; |
214 |
+ |
|
215 |
+ |
// propagate the strain rate |
216 |
+ |
|
217 |
+ |
epsilonDotX += dt * ((p_tensor[0] - pX_ext) * volume / |
218 |
+ |
(tauBarostat*tauBarostat * kB * targetTemp) ); |
219 |
+ |
epsilonDotY += dt * ((p_tensor[4] - pY_ext) * volume / |
220 |
+ |
(tauBarostat*tauBarostat * kB * targetTemp) ); |
221 |
+ |
epsilonDotZ += dt * ((p_tensor[8] - pZ_ext) * volume / |
222 |
+ |
(tauBarostat*tauBarostat * kB * targetTemp) ); |
223 |
+ |
|
224 |
+ |
// determine the change in cell volume |
225 |
+ |
|
226 |
+ |
//scale = pow( (1.0 + dt * 3.0 * (epsilonDot), (1.0 / 3.0)); |
227 |
+ |
//std::cerr << "pmol = " << p_mol << " p_ext = " << p_ext << " scale = " << scale << "\n"; |
228 |
+ |
|
229 |
+ |
newBox[0] = oldBox[0] * scale; |
230 |
+ |
newBox[1] = oldBox[1] * scale; |
231 |
+ |
newBox[2] = oldBox[2] * scale; |
232 |
+ |
volume = newBox[0]*newBox[1]*newBox[2]; |
233 |
+ |
|
234 |
+ |
entry_plug->setBox(newBox); |
235 |
+ |
|
236 |
+ |
// perform affine transform to update positions with volume fluctuations |
237 |
+ |
this->AffineTransform( oldBox, newBox ); |
238 |
+ |
|
239 |
+ |
epsilonScale = epsilonDot * dt; |
240 |
+ |
|
241 |
+ |
// advance the zeta term to zeta(t + dt) - zeta is 0.0d0 on config. readin |
242 |
+ |
// qmass is set in the parameter file |
243 |
+ |
|
244 |
+ |
zeta += dt * ( (ke_temp*2.0 - NkBT) / qmass ); |
245 |
+ |
zetaScale = zeta * dt; |
246 |
+ |
|
247 |
+ |
//std::cerr << "zetaScale = " << zetaScale << " epsilonScale = " << epsilonScale << "\n"; |
248 |
+ |
|
249 |
+ |
// apply barostating and thermostating to velocities and angular momenta |
250 |
+ |
for(i = 0; i < entry_plug->n_atoms; i++){ |
251 |
+ |
|
252 |
+ |
vx = atoms[i]->get_vx(); |
253 |
+ |
vy = atoms[i]->get_vy(); |
254 |
+ |
vz = atoms[i]->get_vz(); |
255 |
+ |
|
256 |
+ |
atoms[i]->set_vx(vx * (1.0 - zetaScale - epsilonScale)); |
257 |
+ |
atoms[i]->set_vy(vy * (1.0 - zetaScale - epsilonScale)); |
258 |
+ |
atoms[i]->set_vz(vz * (1.0 - zetaScale - epsilonScale)); |
259 |
+ |
} |
260 |
+ |
if( entry_plug->n_oriented ){ |
261 |
+ |
|
262 |
+ |
for( i=0; i < entry_plug->n_atoms; i++ ){ |
263 |
+ |
|
264 |
+ |
if( atoms[i]->isDirectional() ){ |
265 |
+ |
|
266 |
+ |
dAtom = (DirectionalAtom *)atoms[i]; |
267 |
+ |
|
268 |
+ |
jx = dAtom->getJx(); |
269 |
+ |
jy = dAtom->getJy(); |
270 |
+ |
jz = dAtom->getJz(); |
271 |
+ |
|
272 |
+ |
dAtom->setJx( jx * (1.0 - zetaScale)); |
273 |
+ |
dAtom->setJy( jy * (1.0 - zetaScale)); |
274 |
+ |
dAtom->setJz( jz * (1.0 - zetaScale)); |
275 |
+ |
} |
276 |
+ |
} |
277 |
+ |
} |
278 |
+ |
} |
279 |
+ |
} |
280 |
+ |
|
281 |
|
void ExtendedSystem::AffineTransform( double oldBox[3], double newBox[3] ){ |
282 |
|
|
283 |
|
int i; |