4 |
|
#include "SimInfo.hpp" |
5 |
|
#include "Thermo.hpp" |
6 |
|
#include "ExtendedSystem.hpp" |
7 |
+ |
#include "simError.h" |
8 |
|
|
9 |
< |
ExtendedSystem::ExtendedSystem( SimInfo &info ) { |
9 |
> |
ExtendedSystem::ExtendedSystem( SimInfo* the_entry_plug ) { |
10 |
|
|
11 |
|
// get what information we need from the SimInfo object |
12 |
|
|
13 |
< |
entry_plug = &info; |
13 |
< |
nAtoms = entry_plug->n_atoms; |
14 |
< |
atoms = entry_plug->atoms; |
15 |
< |
nMols = entry_plug->n_mol; |
16 |
< |
molecules = entry_plug->molecules; |
17 |
< |
nOriented = entry_plug->n_oriented; |
18 |
< |
ndf = entry_plug->ndf; |
13 |
> |
entry_plug = the_entry_plug; |
14 |
|
zeta = 0.0; |
15 |
|
epsilonDot = 0.0; |
16 |
+ |
epsilonDotX = 0.0; |
17 |
+ |
epsilonDotY = 0.0; |
18 |
+ |
epsilonDotZ = 0.0; |
19 |
+ |
have_tau_thermostat = 0; |
20 |
+ |
have_tau_barostat = 0; |
21 |
+ |
have_target_temp = 0; |
22 |
+ |
have_target_pressure = 0; |
23 |
+ |
have_qmass = 0; |
24 |
|
|
25 |
|
} |
26 |
|
|
36 |
|
// amu*Ang^2*fs^-2/K |
37 |
|
DirectionalAtom* dAtom; |
38 |
|
|
39 |
+ |
if (this->NVTready()) { |
40 |
|
|
41 |
< |
ke_temp = ke * e_convert; |
38 |
< |
NkBT = (double)ndf * kB * targetTemp; |
39 |
< |
|
40 |
< |
// advance the zeta term to zeta(t + dt) - zeta is 0.0d0 on config. readin |
41 |
< |
// qmass is set in the parameter file |
42 |
< |
|
43 |
< |
zeta += dt * ( (ke_temp*2.0 - NkBT) / qmass ); |
44 |
< |
zetaScale = zeta * dt; |
45 |
< |
|
46 |
< |
// perform thermostat scaling on linear velocities and angular momentum |
47 |
< |
for(i = 0; i < nAtoms; i++){ |
41 |
> |
atoms = entry_plug->atoms; |
42 |
|
|
43 |
< |
vx = atoms[i]->get_vx(); |
44 |
< |
vy = atoms[i]->get_vy(); |
51 |
< |
vz = atoms[i]->get_vz(); |
43 |
> |
ke_temp = ke * e_convert; |
44 |
> |
NkBT = (double)entry_plug->ndf * kB * targetTemp; |
45 |
|
|
46 |
< |
atoms[i]->set_vx(vx * (1.0 - zetaScale)); |
47 |
< |
atoms[i]->set_vy(vy * (1.0 - zetaScale)); |
55 |
< |
atoms[i]->set_vz(vz * (1.0 - zetaScale)); |
56 |
< |
} |
57 |
< |
if( nOriented ){ |
46 |
> |
// advance the zeta term to zeta(t + dt) - zeta is 0.0d0 on config. readin |
47 |
> |
// qmass is set in the parameter file |
48 |
|
|
49 |
< |
for( i=0; i < nAtoms; i++ ){ |
49 |
> |
zeta += dt * ( (ke_temp*2.0 - NkBT) / qmass ); |
50 |
> |
|
51 |
> |
zetaScale = zeta * dt; |
52 |
> |
|
53 |
> |
//std::cerr << "zetaScale = " << zetaScale << "\n"; |
54 |
> |
|
55 |
> |
// perform thermostat scaling on linear velocities and angular momentum |
56 |
> |
for(i = 0; i < entry_plug->n_atoms; i++){ |
57 |
|
|
58 |
< |
if( atoms[i]->isDirectional() ){ |
59 |
< |
|
60 |
< |
dAtom = (DirectionalAtom *)atoms[i]; |
58 |
> |
vx = atoms[i]->get_vx(); |
59 |
> |
vy = atoms[i]->get_vy(); |
60 |
> |
vz = atoms[i]->get_vz(); |
61 |
> |
|
62 |
> |
atoms[i]->set_vx(vx * (1.0 - zetaScale)); |
63 |
> |
atoms[i]->set_vy(vy * (1.0 - zetaScale)); |
64 |
> |
atoms[i]->set_vz(vz * (1.0 - zetaScale)); |
65 |
> |
} |
66 |
> |
if( entry_plug->n_oriented ){ |
67 |
> |
|
68 |
> |
for( i=0; i < entry_plug->n_atoms; i++ ){ |
69 |
|
|
70 |
< |
jx = dAtom->getJx(); |
71 |
< |
jy = dAtom->getJy(); |
72 |
< |
jz = dAtom->getJz(); |
73 |
< |
|
74 |
< |
dAtom->setJx(jx * (1.0 - zetaScale)); |
75 |
< |
dAtom->setJy(jy * (1.0 - zetaScale)); |
76 |
< |
dAtom->setJz(jz * (1.0 - zetaScale)); |
77 |
< |
} |
78 |
< |
} |
70 |
> |
if( atoms[i]->isDirectional() ){ |
71 |
> |
|
72 |
> |
dAtom = (DirectionalAtom *)atoms[i]; |
73 |
> |
|
74 |
> |
jx = dAtom->getJx(); |
75 |
> |
jy = dAtom->getJy(); |
76 |
> |
jz = dAtom->getJz(); |
77 |
> |
|
78 |
> |
dAtom->setJx(jx * (1.0 - zetaScale)); |
79 |
> |
dAtom->setJy(jy * (1.0 - zetaScale)); |
80 |
> |
dAtom->setJz(jz * (1.0 - zetaScale)); |
81 |
> |
} |
82 |
> |
} |
83 |
> |
} |
84 |
|
} |
85 |
|
} |
86 |
|
|
87 |
|
|
88 |
|
void ExtendedSystem::NoseHooverAndersonNPT( double dt, |
89 |
|
double ke, |
90 |
< |
double p_int ) { |
90 |
> |
double p_tensor[9] ) { |
91 |
|
|
92 |
|
// Basic barostating via Hoover, Phys.Rev.A, 1985, Vol. 31 (5) 1695-1697 |
93 |
|
// Hoover, Phys.Rev.A, 1986, Vol.34 (3) 2499-2500 |
99 |
|
const double e_convert = 4.184e-4; // to convert ke from kcal/mol to |
100 |
|
// amu*Ang^2*fs^-2/K |
101 |
|
|
102 |
+ |
int i; |
103 |
|
double p_ext, zetaScale, epsilonScale, scale, NkBT, ke_temp; |
104 |
|
double volume, p_mol; |
105 |
|
double vx, vy, vz, jx, jy, jz; |
106 |
|
DirectionalAtom* dAtom; |
96 |
– |
int i; |
107 |
|
|
108 |
< |
p_ext = targetPressure * p_units; |
109 |
< |
p_mol = p_int * p_units; |
108 |
> |
if (this->NPTready()) { |
109 |
> |
atoms = entry_plug->atoms; |
110 |
> |
|
111 |
> |
p_ext = targetPressure * p_units; |
112 |
> |
p_mol = (p_tensor[0] + p_tensor[4] + p_tensor[8])/3.0; |
113 |
> |
|
114 |
> |
entry_plug->getBox(oldBox); |
115 |
> |
volume = oldBox[0]*oldBox[1]*oldBox[2]; |
116 |
> |
|
117 |
> |
ke_temp = ke * e_convert; |
118 |
> |
NkBT = (double)entry_plug->ndf * kB * targetTemp; |
119 |
> |
|
120 |
> |
// propagate the strain rate |
121 |
> |
|
122 |
> |
epsilonDot += dt * ((p_mol - p_ext) * volume / |
123 |
> |
(tauBarostat*tauBarostat * kB * targetTemp) ); |
124 |
> |
|
125 |
> |
// determine the change in cell volume |
126 |
> |
scale = pow( (1.0 + dt * 3.0 * epsilonDot), (1.0 / 3.0)); |
127 |
> |
//std::cerr << "pmol = " << p_mol << " p_ext = " << p_ext << " scale = " << scale << "\n"; |
128 |
> |
|
129 |
> |
newBox[0] = oldBox[0] * scale; |
130 |
> |
newBox[1] = oldBox[1] * scale; |
131 |
> |
newBox[2] = oldBox[2] * scale; |
132 |
> |
volume = newBox[0]*newBox[1]*newBox[2]; |
133 |
> |
|
134 |
> |
entry_plug->setBox(newBox); |
135 |
> |
|
136 |
> |
// perform affine transform to update positions with volume fluctuations |
137 |
> |
this->AffineTransform( oldBox, newBox ); |
138 |
> |
|
139 |
> |
epsilonScale = epsilonDot * dt; |
140 |
> |
|
141 |
> |
// advance the zeta term to zeta(t + dt) - zeta is 0.0d0 on config. readin |
142 |
> |
// qmass is set in the parameter file |
143 |
> |
|
144 |
> |
zeta += dt * ( (ke_temp*2.0 - NkBT) / qmass ); |
145 |
> |
zetaScale = zeta * dt; |
146 |
> |
|
147 |
> |
//std::cerr << "zetaScale = " << zetaScale << " epsilonScale = " << epsilonScale << "\n"; |
148 |
> |
|
149 |
> |
// apply barostating and thermostating to velocities and angular momenta |
150 |
> |
for(i = 0; i < entry_plug->n_atoms; i++){ |
151 |
> |
|
152 |
> |
vx = atoms[i]->get_vx(); |
153 |
> |
vy = atoms[i]->get_vy(); |
154 |
> |
vz = atoms[i]->get_vz(); |
155 |
> |
|
156 |
> |
atoms[i]->set_vx(vx * (1.0 - zetaScale - epsilonScale)); |
157 |
> |
atoms[i]->set_vy(vy * (1.0 - zetaScale - epsilonScale)); |
158 |
> |
atoms[i]->set_vz(vz * (1.0 - zetaScale - epsilonScale)); |
159 |
> |
} |
160 |
> |
if( entry_plug->n_oriented ){ |
161 |
> |
|
162 |
> |
for( i=0; i < entry_plug->n_atoms; i++ ){ |
163 |
> |
|
164 |
> |
if( atoms[i]->isDirectional() ){ |
165 |
> |
|
166 |
> |
dAtom = (DirectionalAtom *)atoms[i]; |
167 |
> |
|
168 |
> |
jx = dAtom->getJx(); |
169 |
> |
jy = dAtom->getJy(); |
170 |
> |
jz = dAtom->getJz(); |
171 |
> |
|
172 |
> |
dAtom->setJx( jx * (1.0 - zetaScale)); |
173 |
> |
dAtom->setJy( jy * (1.0 - zetaScale)); |
174 |
> |
dAtom->setJz( jz * (1.0 - zetaScale)); |
175 |
> |
} |
176 |
> |
} |
177 |
> |
} |
178 |
> |
} |
179 |
> |
} |
180 |
|
|
101 |
– |
entry_plug->getBox(oldBox); |
181 |
|
|
182 |
< |
volume = oldBox[0]*oldBox[1]*oldBox[2]; |
182 |
> |
void ExtendedSystem::ConstantStress( double dt, |
183 |
> |
double ke, |
184 |
> |
double p_tensor[9] ) { |
185 |
|
|
186 |
< |
ke_temp = ke * e_convert; |
187 |
< |
NkBT = (double)ndf * kB * targetTemp; |
186 |
> |
double oldBox[3]; |
187 |
> |
double newBox[3]; |
188 |
> |
const double kB = 8.31451e-7; // boltzmann constant in amu*Ang^2*fs^-2/K |
189 |
> |
const double p_units = 6.10192996e-9; // converts atm to amu*fs^-2*Ang^-1 |
190 |
> |
const double e_convert = 4.184e-4; // to convert ke from kcal/mol to |
191 |
> |
// amu*Ang^2*fs^-2/K |
192 |
|
|
193 |
< |
// propogate the strain rate |
193 |
> |
int i; |
194 |
> |
double p_ext, zetaScale, epsilonScale, scale, NkBT, ke_temp; |
195 |
> |
double pX_ext, pY_ext, pZ_ext; |
196 |
> |
double volume, p_mol; |
197 |
> |
double vx, vy, vz, jx, jy, jz; |
198 |
> |
DirectionalAtom* dAtom; |
199 |
|
|
200 |
< |
epsilonDot += dt * ((p_mol - p_ext) * volume / |
201 |
< |
(tauRelax*tauRelax * kB * targetTemp) ); |
200 |
> |
if (this->NPTready()) { |
201 |
> |
atoms = entry_plug->atoms; |
202 |
> |
|
203 |
> |
p_ext = targetPressure * p_units; |
204 |
|
|
205 |
< |
// determine the change in cell volume |
206 |
< |
scale = pow( (1.0 + dt * 3.0 * epsilonDot), (1.0 / 3.0)); |
207 |
< |
|
208 |
< |
newBox[0] = oldBox[0] * scale; |
209 |
< |
newBox[1] = oldBox[1] * scale; |
210 |
< |
newBox[2] = oldBox[2] * scale; |
211 |
< |
volume = newBox[0]*newBox[1]*newBox[2]; |
212 |
< |
|
213 |
< |
entry_plug->setBox(newBox); |
214 |
< |
|
215 |
< |
// perform affine transform to update positions with volume fluctuations |
216 |
< |
this->AffineTransform( oldBox, newBox ); |
205 |
> |
pX_ext = p_ext / 3.0; |
206 |
> |
pY_ext = p_ext / 3.0; |
207 |
> |
pZ_ext = p_ext / 3.0; |
208 |
> |
|
209 |
> |
entry_plug->getBox(oldBox); |
210 |
> |
volume = oldBox[0]*oldBox[1]*oldBox[2]; |
211 |
> |
|
212 |
> |
ke_temp = ke * e_convert; |
213 |
> |
NkBT = (double)entry_plug->ndf * kB * targetTemp; |
214 |
> |
|
215 |
> |
// propagate the strain rate |
216 |
> |
|
217 |
> |
epsilonDotX += dt * ((p_tensor[0] - pX_ext) * volume / |
218 |
> |
(tauBarostat*tauBarostat * kB * targetTemp) ); |
219 |
> |
epsilonDotY += dt * ((p_tensor[4] - pY_ext) * volume / |
220 |
> |
(tauBarostat*tauBarostat * kB * targetTemp) ); |
221 |
> |
epsilonDotZ += dt * ((p_tensor[8] - pZ_ext) * volume / |
222 |
> |
(tauBarostat*tauBarostat * kB * targetTemp) ); |
223 |
> |
|
224 |
> |
// determine the change in cell volume |
225 |
|
|
226 |
< |
epsilonScale = epsilonDot * dt; |
227 |
< |
|
128 |
< |
// advance the zeta term to zeta(t + dt) - zeta is 0.0d0 on config. readin |
129 |
< |
// qmass is set in the parameter file |
130 |
< |
|
131 |
< |
zeta += dt * ( (ke_temp*2.0 - NkBT) / qmass ); |
132 |
< |
zetaScale = zeta * dt; |
133 |
< |
|
134 |
< |
// apply barostating and thermostating to velocities and angular momenta |
135 |
< |
for(i = 0; i < nAtoms; i++){ |
226 |
> |
//scale = pow( (1.0 + dt * 3.0 * (epsilonDot), (1.0 / 3.0)); |
227 |
> |
//std::cerr << "pmol = " << p_mol << " p_ext = " << p_ext << " scale = " << scale << "\n"; |
228 |
|
|
229 |
< |
vx = atoms[i]->get_vx(); |
230 |
< |
vy = atoms[i]->get_vy(); |
231 |
< |
vz = atoms[i]->get_vz(); |
229 |
> |
newBox[0] = oldBox[0] * scale; |
230 |
> |
newBox[1] = oldBox[1] * scale; |
231 |
> |
newBox[2] = oldBox[2] * scale; |
232 |
> |
volume = newBox[0]*newBox[1]*newBox[2]; |
233 |
|
|
234 |
< |
atoms[i]->set_vx(vx * (1.0 - zetaScale - epsilonScale)); |
142 |
< |
atoms[i]->set_vy(vy * (1.0 - zetaScale - epsilonScale)); |
143 |
< |
atoms[i]->set_vz(vz * (1.0 - zetaScale - epsilonScale)); |
144 |
< |
} |
145 |
< |
if( nOriented ){ |
234 |
> |
entry_plug->setBox(newBox); |
235 |
|
|
236 |
< |
for( i=0; i < nAtoms; i++ ){ |
236 |
> |
// perform affine transform to update positions with volume fluctuations |
237 |
> |
this->AffineTransform( oldBox, newBox ); |
238 |
> |
|
239 |
> |
epsilonScale = epsilonDot * dt; |
240 |
> |
|
241 |
> |
// advance the zeta term to zeta(t + dt) - zeta is 0.0d0 on config. readin |
242 |
> |
// qmass is set in the parameter file |
243 |
> |
|
244 |
> |
zeta += dt * ( (ke_temp*2.0 - NkBT) / qmass ); |
245 |
> |
zetaScale = zeta * dt; |
246 |
> |
|
247 |
> |
//std::cerr << "zetaScale = " << zetaScale << " epsilonScale = " << epsilonScale << "\n"; |
248 |
> |
|
249 |
> |
// apply barostating and thermostating to velocities and angular momenta |
250 |
> |
for(i = 0; i < entry_plug->n_atoms; i++){ |
251 |
|
|
252 |
< |
if( atoms[i]->isDirectional() ){ |
253 |
< |
|
254 |
< |
dAtom = (DirectionalAtom *)atoms[i]; |
252 |
> |
vx = atoms[i]->get_vx(); |
253 |
> |
vy = atoms[i]->get_vy(); |
254 |
> |
vz = atoms[i]->get_vz(); |
255 |
> |
|
256 |
> |
atoms[i]->set_vx(vx * (1.0 - zetaScale - epsilonScale)); |
257 |
> |
atoms[i]->set_vy(vy * (1.0 - zetaScale - epsilonScale)); |
258 |
> |
atoms[i]->set_vz(vz * (1.0 - zetaScale - epsilonScale)); |
259 |
> |
} |
260 |
> |
if( entry_plug->n_oriented ){ |
261 |
> |
|
262 |
> |
for( i=0; i < entry_plug->n_atoms; i++ ){ |
263 |
|
|
264 |
< |
jx = dAtom->getJx(); |
265 |
< |
jy = dAtom->getJy(); |
266 |
< |
jz = dAtom->getJz(); |
267 |
< |
|
268 |
< |
dAtom->setJx( jx * (1.0 - zetaScale)); |
269 |
< |
dAtom->setJy( jy * (1.0 - zetaScale)); |
270 |
< |
dAtom->setJz( jz * (1.0 - zetaScale)); |
271 |
< |
} |
272 |
< |
} |
264 |
> |
if( atoms[i]->isDirectional() ){ |
265 |
> |
|
266 |
> |
dAtom = (DirectionalAtom *)atoms[i]; |
267 |
> |
|
268 |
> |
jx = dAtom->getJx(); |
269 |
> |
jy = dAtom->getJy(); |
270 |
> |
jz = dAtom->getJz(); |
271 |
> |
|
272 |
> |
dAtom->setJx( jx * (1.0 - zetaScale)); |
273 |
> |
dAtom->setJy( jy * (1.0 - zetaScale)); |
274 |
> |
dAtom->setJz( jz * (1.0 - zetaScale)); |
275 |
> |
} |
276 |
> |
} |
277 |
> |
} |
278 |
|
} |
279 |
|
} |
280 |
|
|
284 |
|
double r[3]; |
285 |
|
double boxNum[3]; |
286 |
|
double percentScale[3]; |
287 |
+ |
double delta[3]; |
288 |
|
double rxi, ryi, rzi; |
289 |
+ |
|
290 |
+ |
molecules = entry_plug->molecules; |
291 |
|
|
292 |
|
// first determine the scaling factor from the box size change |
293 |
|
percentScale[0] = (newBox[0] - oldBox[0]) / oldBox[0]; |
294 |
|
percentScale[1] = (newBox[1] - oldBox[1]) / oldBox[1]; |
295 |
|
percentScale[2] = (newBox[2] - oldBox[2]) / oldBox[2]; |
296 |
|
|
297 |
< |
for (i=0; i < nMols; i++) { |
297 |
> |
for (i=0; i < entry_plug->n_mol; i++) { |
298 |
|
|
299 |
|
molecules[i].getCOM(r); |
300 |
< |
|
300 |
> |
|
301 |
|
// find the minimum image coordinates of the molecular centers of mass: |
302 |
|
|
303 |
|
boxNum[0] = oldBox[0] * copysign(1.0,r[0]) * |
318 |
|
ryi += ryi*percentScale[1]; |
319 |
|
rzi += rzi*percentScale[2]; |
320 |
|
|
321 |
< |
r[0] = rxi + boxNum[0]; |
322 |
< |
r[1] = ryi + boxNum[1]; |
323 |
< |
r[2] = rzi + boxNum[2]; |
321 |
> |
delta[0] = r[0] - (rxi + boxNum[0]); |
322 |
> |
delta[1] = r[1] - (ryi + boxNum[1]); |
323 |
> |
delta[2] = r[2] - (rzi + boxNum[2]); |
324 |
|
|
325 |
< |
molecules[i].moveCOM(r); |
325 |
> |
molecules[i].moveCOM(delta); |
326 |
|
} |
327 |
|
} |
328 |
+ |
|
329 |
+ |
short int ExtendedSystem::NVTready() { |
330 |
+ |
const double kB = 8.31451e-7; // boltzmann constant in amu*Ang^2*fs^-2/K |
331 |
+ |
double NkBT; |
332 |
+ |
|
333 |
+ |
if (!have_target_temp) { |
334 |
+ |
sprintf( painCave.errMsg, |
335 |
+ |
"ExtendedSystem error: You can't use NVT without a targetTemp!\n" |
336 |
+ |
); |
337 |
+ |
painCave.isFatal = 1; |
338 |
+ |
simError(); |
339 |
+ |
return -1; |
340 |
+ |
} |
341 |
+ |
|
342 |
+ |
if (!have_qmass) { |
343 |
+ |
if (have_tau_thermostat) { |
344 |
+ |
|
345 |
+ |
NkBT = (double)entry_plug->ndf * kB * targetTemp; |
346 |
+ |
std::cerr << "Setting qMass = " << tauThermostat * NkBT << "\n"; |
347 |
+ |
this->setQmass(tauThermostat * NkBT); |
348 |
+ |
|
349 |
+ |
} else { |
350 |
+ |
sprintf( painCave.errMsg, |
351 |
+ |
"ExtendedSystem error: If you use the constant temperature\n" |
352 |
+ |
" ensemble, you must set either tauThermostat or qMass.\n"); |
353 |
+ |
painCave.isFatal = 1; |
354 |
+ |
simError(); |
355 |
+ |
} |
356 |
+ |
} |
357 |
+ |
|
358 |
+ |
return 1; |
359 |
+ |
} |
360 |
+ |
|
361 |
+ |
short int ExtendedSystem::NPTready() { |
362 |
+ |
const double kB = 8.31451e-7; // boltzmann constant in amu*Ang^2*fs^-2/K |
363 |
+ |
double NkBT; |
364 |
+ |
|
365 |
+ |
if (!have_target_temp) { |
366 |
+ |
sprintf( painCave.errMsg, |
367 |
+ |
"ExtendedSystem error: You can't use NPT without a targetTemp!\n" |
368 |
+ |
); |
369 |
+ |
painCave.isFatal = 1; |
370 |
+ |
simError(); |
371 |
+ |
return -1; |
372 |
+ |
} |
373 |
+ |
|
374 |
+ |
if (!have_target_pressure) { |
375 |
+ |
sprintf( painCave.errMsg, |
376 |
+ |
"ExtendedSystem error: You can't use NPT without a targetPressure!\n" |
377 |
+ |
); |
378 |
+ |
painCave.isFatal = 1; |
379 |
+ |
simError(); |
380 |
+ |
return -1; |
381 |
+ |
} |
382 |
+ |
|
383 |
+ |
if (!have_tau_barostat) { |
384 |
+ |
sprintf( painCave.errMsg, |
385 |
+ |
"ExtendedSystem error: If you use the NPT\n" |
386 |
+ |
" ensemble, you must set tauBarostat.\n"); |
387 |
+ |
painCave.isFatal = 1; |
388 |
+ |
simError(); |
389 |
+ |
} |
390 |
+ |
|
391 |
+ |
if (!have_qmass) { |
392 |
+ |
if (have_tau_thermostat) { |
393 |
+ |
|
394 |
+ |
NkBT = (double)entry_plug->ndf * kB * targetTemp; |
395 |
+ |
std::cerr << "Setting qMass = " << tauThermostat * NkBT << "\n"; |
396 |
+ |
this->setQmass(tauThermostat * NkBT); |
397 |
+ |
|
398 |
+ |
} else { |
399 |
+ |
sprintf( painCave.errMsg, |
400 |
+ |
"ExtendedSystem error: If you use the NPT\n" |
401 |
+ |
" ensemble, you must set either tauThermostat or qMass.\n"); |
402 |
+ |
painCave.isFatal = 1; |
403 |
+ |
simError(); |
404 |
+ |
} |
405 |
+ |
} |
406 |
+ |
return 1; |
407 |
+ |
} |
408 |
+ |
|