ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/OOPSE/libmdtools/DumpWriter.cpp
(Generate patch)

Comparing trunk/OOPSE/libmdtools/DumpWriter.cpp (file contents):
Revision 929 by tim, Tue Jan 13 15:46:49 2004 UTC vs.
Revision 1198 by tim, Thu May 27 00:48:12 2004 UTC

# Line 1 | Line 1
1 + #define _LARGEFILE_SOURCE64
2   #define _FILE_OFFSET_BITS 64
3  
4   #include <string.h>
# Line 28 | Line 29 | DumpWriter::DumpWriter( SimInfo* the_entry_plug ){
29    if(worldRank == 0 ){
30   #endif // is_mpi
31  
31
32      dumpFile.open(entry_plug->sampleName, ios::out | ios::trunc );
33  
34      if( !dumpFile ){
# Line 40 | Line 40 | DumpWriter::DumpWriter( SimInfo* the_entry_plug ){
40        simError();
41      }
42  
43    //outFile.setf( ios::scientific );
44
43   #ifdef IS_MPI
44    }
45  
# Line 90 | Line 88 | void DumpWriter::sortByGlobalIndex(){
88   */
89  
90   void DumpWriter::sortByGlobalIndex(){
91 <  Atom** atoms = entry_plug->atoms;
94 <  
91 >  Molecule* mols = entry_plug->molecules;  
92    indexArray.clear();
93    
94 <  for(int i = 0; i < mpiSim->getMyNlocal();i++)
95 <    indexArray.push_back(make_pair(i, atoms[i]->getGlobalIndex()));
94 >  for(int i = 0; i < entry_plug->n_mol;i++)
95 >    indexArray.push_back(make_pair(i, mols[i].getGlobalIndex()));
96    
97    sort(indexArray.begin(), indexArray.end(), indexSortingCriterion);    
98   }
99 +
100   #endif
101  
102   void DumpWriter::writeDump(double currentTime){
105  
106 // write to eor file
107  writeFinal(currentTime);
103  
104 < //write to dump file
105 <  writeFrame(dumpFile, currentTime);
104 >  ofstream finalOut;
105 >  vector<ofstream*> fileStreams;
106 >
107 > #ifdef IS_MPI
108 >  if(worldRank == 0 ){
109 > #endif    
110 >    finalOut.open( entry_plug->finalName, ios::out | ios::trunc );
111 >    if( !finalOut ){
112 >      sprintf( painCave.errMsg,
113 >               "Could not open \"%s\" for final dump output.\n",
114 >               entry_plug->finalName );
115 >      painCave.isFatal = 1;
116 >      simError();
117 >    }
118 > #ifdef IS_MPI
119 >  }
120 > #endif // is_mpi
121 >
122 >  fileStreams.push_back(&finalOut);
123 >  fileStreams.push_back(&dumpFile);
124 >
125 >  writeFrame(fileStreams, currentTime);
126 >
127 > #ifdef IS_MPI
128 >  finalOut.close();
129 > #endif
130          
131   }
132  
133   void DumpWriter::writeFinal(double currentTime){
134  
135 <  ofstream finalOut;    
136 <  
137 <  //Open eor file
135 >  ofstream finalOut;
136 >  vector<ofstream*> fileStreams;
137 >
138   #ifdef IS_MPI
139    if(worldRank == 0 ){
140   #endif // is_mpi
141  
142      finalOut.open( entry_plug->finalName, ios::out | ios::trunc );
143 +
144      if( !finalOut ){
145        sprintf( painCave.errMsg,
146                 "Could not open \"%s\" for final dump output.\n",
# Line 128 | Line 148 | void DumpWriter::writeFinal(double currentTime){
148        painCave.isFatal = 1;
149        simError();
150      }
151 <    
151 >
152   #ifdef IS_MPI
153    }
134 #endif
135  
136  //write to eor file  
137  writeFrame(finalOut, currentTime);
138  
139  //close eor file      
140 #ifdef IS_MPI
141  if(worldRank == 0 ){
142    finalOut.close();
143  }
154   #endif // is_mpi
155 +  
156 +  fileStreams.push_back(&finalOut);  
157 +  writeFrame(fileStreams, currentTime);
158  
159 + #ifdef IS_MPI
160 +  finalOut.close();
161 + #endif
162 +  
163   }
164  
165 < void DumpWriter::writeFrame( ofstream& outFile, double currentTime ){
165 > void DumpWriter::writeFrame( vector<ofstream*>& outFile, double currentTime ){
166  
167    const int BUFFERSIZE = 2000;
168    const int MINIBUFFERSIZE = 100;
169  
170 <  char tempBuffer[BUFFERSIZE];
170 >  char tempBuffer[BUFFERSIZE];  
171    char writeLine[BUFFERSIZE];
172  
173 <  int i;
173 >  int i, k;
174  
175   #ifdef IS_MPI
176    
177 +  /*********************************************************************
178 +   * Documentation?  You want DOCUMENTATION?
179 +   *
180 +   * Why all the potatoes below?  
181 +   *
182 +   * To make a long story short, the original version of DumpWriter
183 +   * worked in the most inefficient way possible.  Node 0 would
184 +   * poke each of the node for an individual atom's formatted data
185 +   * as node 0 worked its way down the global index. This was particularly
186 +   * inefficient since the method blocked all processors at every atom
187 +   * (and did it twice!).
188 +   *
189 +   * An intermediate version of DumpWriter could be described from Node
190 +   * zero's perspective as follows:
191 +   *
192 +   *  1) Have 100 of your friends stand in a circle.
193 +   *  2) When you say go, have all of them start tossing potatoes at
194 +   *     you (one at a time).
195 +   *  3) Catch the potatoes.
196 +   *
197 +   * It was an improvement, but MPI has buffers and caches that could
198 +   * best be described in this analogy as "potato nets", so there's no
199 +   * need to block the processors atom-by-atom.
200 +   *
201 +   * This new and improved DumpWriter works in an even more efficient
202 +   * way:
203 +   *
204 +   *  1) Have 100 of your friend stand in a circle.
205 +   *  2) When you say go, have them start tossing 5-pound bags of
206 +   *     potatoes at you.
207 +   *  3) Once you've caught a friend's bag of potatoes,
208 +   *     toss them a spud to let them know they can toss another bag.
209 +   *
210 +   * How's THAT for documentation?
211 +   *
212 +   *********************************************************************/
213 +
214    int *potatoes;
215    int myPotato;
216  
217    int nProc;
218    int j, which_node, done, which_atom, local_index, currentIndex;
219 <  double atomData6[6];
166 <  double atomData13[13];
219 >  double atomData[13];
220    int isDirectional;
221    char* atomTypeString;
222    char MPIatomTypeString[MINIBUFFERSIZE];
223 <
224 < #else //is_mpi
172 <  int nAtoms = entry_plug->n_atoms;
223 >  int nObjects;
224 >  int msgLen; // the length of message actually recieved at master nodes
225   #endif //is_mpi
226  
227 <  double q[4];
227 >  double q[4], ji[3];
228    DirectionalAtom* dAtom;
177  Atom** atoms = entry_plug->atoms;
229    double pos[3], vel[3];
230 <
230 >  int nTotObjects;
231 >  StuntDouble* sd;
232 >  char* molName;
233 >  vector<StuntDouble*> integrableObjects;
234 >  vector<StuntDouble*>::iterator iter;
235 >  nTotObjects = entry_plug->getTotIntegrableObjects();
236   #ifndef IS_MPI
237 +  
238 +  for(k = 0; k < outFile.size(); k++){
239 +    *outFile[k] << nTotObjects << "\n";
240  
241 <  outFile << nAtoms << "\n";
241 >    *outFile[k] << currentTime << ";\t"
242 >               << entry_plug->Hmat[0][0] << "\t"
243 >                     << entry_plug->Hmat[1][0] << "\t"
244 >                     << entry_plug->Hmat[2][0] << ";\t"
245 >              
246 >               << entry_plug->Hmat[0][1] << "\t"
247 >                     << entry_plug->Hmat[1][1] << "\t"
248 >                     << entry_plug->Hmat[2][1] << ";\t"
249  
250 <  outFile << currentTime << ";\t"
251 <          << entry_plug->Hmat[0][0] << "\t"
252 <          << entry_plug->Hmat[1][0] << "\t"
187 <          << entry_plug->Hmat[2][0] << ";\t"
250 >                     << entry_plug->Hmat[0][2] << "\t"
251 >                     << entry_plug->Hmat[1][2] << "\t"
252 >                     << entry_plug->Hmat[2][2] << ";";
253  
254 <          << entry_plug->Hmat[0][1] << "\t"
255 <          << entry_plug->Hmat[1][1] << "\t"
256 <          << entry_plug->Hmat[2][1] << ";\t"
254 >    //write out additional parameters, such as chi and eta
255 >    *outFile[k] << entry_plug->the_integrator->getAdditionalParameters() << endl;
256 >  }
257 >  
258 >  for( i=0; i< entry_plug->n_mol; i++ ){
259  
260 <          << entry_plug->Hmat[0][2] << "\t"
261 <          << entry_plug->Hmat[1][2] << "\t"
262 <          << entry_plug->Hmat[2][2] << ";";
263 <  //write out additional parameters, such as chi and eta
264 <  outFile << entry_plug->the_integrator->getAdditionalParameters();
265 <  outFile << endl;
260 >    integrableObjects = entry_plug->molecules[i].getIntegrableObjects();
261 >    molName = (entry_plug->compStamps[entry_plug->molecules[i].getStampID()])->getID();
262 >    
263 >    for( iter = integrableObjects.begin();iter !=  integrableObjects.end(); ++iter){
264 >      sd = *iter;
265 >      sd->getPos(pos);
266 >      sd->getVel(vel);
267  
268 <  for( i=0; i<nAtoms; i++ ){
269 <
270 <    atoms[i]->getPos(pos);
271 <    atoms[i]->getVel(vel);
268 >      sprintf( tempBuffer,
269 >             "%s\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t",
270 >             sd->getType(),
271 >             pos[0],
272 >             pos[1],
273 >             pos[2],
274 >             vel[0],
275 >             vel[1],
276 >             vel[2]);
277 >      strcpy( writeLine, tempBuffer );
278  
279 <    sprintf( tempBuffer,
206 <             "%s\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t",
207 <             atoms[i]->getType(),
208 <             pos[0],
209 <             pos[1],
210 <             pos[2],
211 <             vel[0],
212 <             vel[1],
213 <             vel[2]);
214 <    strcpy( writeLine, tempBuffer );
279 >      if( sd->isDirectional() ){
280  
281 <    if( atoms[i]->isDirectional() ){
281 >        sd->getQ( q );
282 >        sd->getJ( ji );
283  
284 <      dAtom = (DirectionalAtom *)atoms[i];
285 <      dAtom->getQ( q );
286 <
287 <      sprintf( tempBuffer,
288 <               "%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\n",
289 <               q[0],
290 <               q[1],
291 <               q[2],
292 <               q[3],
293 <               dAtom->getJx(),
294 <               dAtom->getJy(),
295 <               dAtom->getJz());
296 <      strcat( writeLine, tempBuffer );
284 >        sprintf( tempBuffer,
285 >               "%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\n",
286 >               q[0],
287 >               q[1],
288 >               q[2],
289 >               q[3],
290 >                 ji[0],
291 >                 ji[1],
292 >                 ji[2]);
293 >        strcat( writeLine, tempBuffer );
294 >      }
295 >      else
296 >        strcat( writeLine, "0.0\t0.0\t0.0\t0.0\t0.0\t0.0\t0.0\n" );
297      }
232    else
233      strcat( writeLine, "0.0\t0.0\t0.0\t0.0\t0.0\t0.0\t0.0\n" );
298  
299 <    outFile << writeLine;
300 <  }
299 >    
300 >    for(k = 0; k < outFile.size(); k++)
301 >      *outFile[k] << writeLine;
302 > }
303  
304   #else // is_mpi
305  
# Line 250 | Line 316 | void DumpWriter::writeFrame( ofstream& outFile, double
316    int haveError;
317  
318    MPI_Status istatus;
319 <  int *AtomToProcMap = mpiSim->getAtomToProcMap();
319 >  int nCurObj;
320 >  int *MolToProcMap = mpiSim->getMolToProcMap();
321  
322    // write out header and node 0's coordinates
323  
# Line 258 | Line 325 | void DumpWriter::writeFrame( ofstream& outFile, double
325  
326      // Node 0 needs a list of the magic potatoes for each processor;
327  
328 <    nProc = mpiSim->getNumberProcessors();
328 >    nProc = mpiSim->getNprocessors();
329      potatoes = new int[nProc];
330  
331 +    //write out the comment lines
332      for (i = 0; i < nProc; i++)
333        potatoes[i] = 0;
334      
335 <    outFile << mpiSim->getTotAtoms() << "\n";
335 >      for(k = 0; k < outFile.size(); k++){
336 >        *outFile[k] << nTotObjects << "\n";
337  
338 <    outFile << currentTime << ";\t"
339 <            << entry_plug->Hmat[0][0] << "\t"
340 <            << entry_plug->Hmat[1][0] << "\t"
341 <            << entry_plug->Hmat[2][0] << ";\t"
338 >        *outFile[k] << currentTime << ";\t"
339 >                         << entry_plug->Hmat[0][0] << "\t"
340 >                         << entry_plug->Hmat[1][0] << "\t"
341 >                         << entry_plug->Hmat[2][0] << ";\t"
342  
343 <            << entry_plug->Hmat[0][1] << "\t"
344 <            << entry_plug->Hmat[1][1] << "\t"
345 <            << entry_plug->Hmat[2][1] << ";\t"
343 >                         << entry_plug->Hmat[0][1] << "\t"
344 >                         << entry_plug->Hmat[1][1] << "\t"
345 >                         << entry_plug->Hmat[2][1] << ";\t"
346  
347 <            << entry_plug->Hmat[0][2] << "\t"
348 <            << entry_plug->Hmat[1][2] << "\t"
349 <            << entry_plug->Hmat[2][2] << ";";
347 >                         << entry_plug->Hmat[0][2] << "\t"
348 >                         << entry_plug->Hmat[1][2] << "\t"
349 >                         << entry_plug->Hmat[2][2] << ";";
350 >  
351 >        *outFile[k] << entry_plug->the_integrator->getAdditionalParameters() << endl;
352 >    }
353  
282    outFile << entry_plug->the_integrator->getAdditionalParameters();
283    outFile << endl;
284    outFile.flush();
285    
354      currentIndex = 0;
355 <    for (i = 0 ; i < mpiSim->getTotAtoms(); i++ ) {
355 >
356 >    for (i = 0 ; i < mpiSim->getTotNmol(); i++ ) {
357        
358        // Get the Node number which has this atom;
359        
360 <      which_node = AtomToProcMap[i];
360 >      which_node = MolToProcMap[i];
361        
362        if (which_node != 0) {
363 <
364 <        if (potatoes[which_node] + 3 >= MAXTAG) {
363 >        
364 >        if (potatoes[which_node] + 1 >= MAXTAG) {
365            // The potato was going to exceed the maximum value,
366            // so wrap this processor potato back to 0:        
367  
368            potatoes[which_node] = 0;          
369 <          MPI_Send(0, 1, MPI_INT, which_node, 0, MPI_COMM_WORLD);
369 >          MPI_Send(&potatoes[which_node], 1, MPI_INT, which_node, 0, MPI_COMM_WORLD);
370            
371          }
372  
373          myPotato = potatoes[which_node];        
305        
306        MPI_Recv(MPIatomTypeString, MINIBUFFERSIZE, MPI_CHAR, which_node,
307                 myPotato, MPI_COMM_WORLD, &istatus);
308        
309        atomTypeString = MPIatomTypeString;
310        
311        myPotato++;
374  
375 <        MPI_Recv(&isDirectional, 1, MPI_INT, which_node,
375 >        //recieve the number of integrableObject in current molecule
376 >        MPI_Recv(&nCurObj, 1, MPI_INT, which_node,
377                   myPotato, MPI_COMM_WORLD, &istatus);
315              
378          myPotato++;
379 +        
380 +        for(int l = 0; l < nCurObj; l++){
381  
382 <        if (isDirectional) {          
383 <          MPI_Recv(atomData13, 13, MPI_DOUBLE, which_node,
384 <                   myPotato, MPI_COMM_WORLD, &istatus);
385 <        } else {
386 <          MPI_Recv(atomData6, 6, MPI_DOUBLE, which_node,
387 <                   myPotato, MPI_COMM_WORLD, &istatus);          
382 >          if (potatoes[which_node] + 2 >= MAXTAG) {
383 >            // The potato was going to exceed the maximum value,
384 >            // so wrap this processor potato back to 0:        
385 >
386 >            potatoes[which_node] = 0;          
387 >            MPI_Send(&potatoes[which_node], 1, MPI_INT, which_node, 0, MPI_COMM_WORLD);
388 >            
389 >          }
390 >
391 >          MPI_Recv(MPIatomTypeString, MINIBUFFERSIZE, MPI_CHAR, which_node,
392 >          myPotato, MPI_COMM_WORLD, &istatus);
393 >
394 >          atomTypeString = MPIatomTypeString;
395 >
396 >          myPotato++;
397 >
398 >          MPI_Recv(atomData, 13, MPI_DOUBLE, which_node, myPotato, MPI_COMM_WORLD, &istatus);
399 >          myPotato++;
400 >
401 >          MPI_Get_count(&istatus, MPI_DOUBLE, &msgLen);
402 >
403 >          if(msgLen  == 13)
404 >            isDirectional = 1;
405 >          else
406 >            isDirectional = 0;
407 >            
408          }
325        
326        myPotato++;
409          potatoes[which_node] = myPotato;
410  
411        } else {
412          
413 <        haveError = 0;
332 <        which_atom = i;
413 >        haveError = 0;
414          
415 <        local_index = indexArray[currentIndex].first;        
335 <                
336 <        if (which_atom == indexArray[currentIndex].second) {
337 <          
338 <          atomTypeString = atoms[local_index]->getType();
415 >            local_index = indexArray[currentIndex].first;        
416  
417 <          atoms[local_index]->getPos(pos);
341 <          atoms[local_index]->getVel(vel);          
417 >        integrableObjects = (entry_plug->molecules[local_index]).getIntegrableObjects();
418  
419 <          atomData6[0] = pos[0];
420 <          atomData6[1] = pos[1];
421 <          atomData6[2] = pos[2];
419 >        for(iter= integrableObjects.begin(); iter != integrableObjects.end(); ++iter){    
420 >                sd = *iter;
421 >            atomTypeString = sd->getType();
422 >            
423 >            sd->getPos(pos);
424 >            sd->getVel(vel);          
425 >          
426 >            atomData[0] = pos[0];
427 >            atomData[1] = pos[1];
428 >            atomData[2] = pos[2];
429  
430 <          atomData6[3] = vel[0];
431 <          atomData6[4] = vel[1];
432 <          atomData6[5] = vel[2];
433 <          
434 <          isDirectional = 0;
430 >            atomData[3] = vel[0];
431 >            atomData[4] = vel[1];
432 >            atomData[5] = vel[2];
433 >              
434 >            isDirectional = 0;
435  
436 <          if( atoms[local_index]->isDirectional() ){
436 >            if( sd->isDirectional() ){
437  
438 <            isDirectional = 1;
439 <            
440 <            dAtom = (DirectionalAtom *)atoms[local_index];
441 <            dAtom->getQ( q );
438 >              isDirectional = 1;
439 >                
440 >              sd->getQ( q );
441 >              sd->getJ( ji );
442  
443 <            for (int j = 0; j < 6 ; j++)
444 <              atomData13[j] = atomData6[j];            
443 >              for (int j = 0; j < 6 ; j++)
444 >                atomData[j] = atomData[j];            
445 >              
446 >              atomData[6] = q[0];
447 >              atomData[7] = q[1];
448 >              atomData[8] = q[2];
449 >              atomData[9] = q[3];
450 >              
451 >              atomData[10] = ji[0];
452 >              atomData[11] = ji[1];
453 >              atomData[12] = ji[2];
454 >            }
455              
456 <            atomData13[6] = q[0];
364 <            atomData13[7] = q[1];
365 <            atomData13[8] = q[2];
366 <            atomData13[9] = q[3];
367 <            
368 <            atomData13[10] = dAtom->getJx();
369 <            atomData13[11] = dAtom->getJy();
370 <            atomData13[12] = dAtom->getJz();
371 <          }
372 <          
373 <        } else {
374 <          sprintf(painCave.errMsg,
375 <                  "Atom %d not found on processor %d\n",
376 <                  i, worldRank );
377 <          haveError= 1;
378 <          simError();
379 <        }
456 >        }
457          
458 <        if(haveError) DieDieDie();
382 <        
383 <        currentIndex ++;
458 >      currentIndex++;
459        }
460        // If we've survived to here, format the line:
461        
462        if (!isDirectional) {
463          
464 <        sprintf( writeLine,
464 >        sprintf( writeLine,
465                   "%s\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t",
466                   atomTypeString,
467 <                 atomData6[0],
468 <                 atomData6[1],
469 <                 atomData6[2],
470 <                 atomData6[3],
471 <                 atomData6[4],
472 <                 atomData6[5]);
473 <
467 >                 atomData[0],
468 >                 atomData[1],
469 >                 atomData[2],
470 >                 atomData[3],
471 >                 atomData[4],
472 >                 atomData[5]);
473 >        
474          strcat( writeLine, "0.0\t0.0\t0.0\t0.0\t0.0\t0.0\t0.0\n" );
475          
476        } else {
# Line 403 | Line 478 | void DumpWriter::writeFrame( ofstream& outFile, double
478          sprintf( writeLine,
479                   "%s\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\n",
480                   atomTypeString,
481 <                 atomData13[0],
482 <                 atomData13[1],
483 <                 atomData13[2],
484 <                 atomData13[3],
485 <                 atomData13[4],
486 <                 atomData13[5],
487 <                 atomData13[6],
488 <                 atomData13[7],
489 <                 atomData13[8],
490 <                 atomData13[9],
491 <                 atomData13[10],
492 <                 atomData13[11],
493 <                 atomData13[12]);
481 >                 atomData[0],
482 >                 atomData[1],
483 >                 atomData[2],
484 >                 atomData[3],
485 >                 atomData[4],
486 >                 atomData[5],
487 >                 atomData[6],
488 >                 atomData[7],
489 >                 atomData[8],
490 >                 atomData[9],
491 >                 atomData[10],
492 >                 atomData[11],
493 >                 atomData[12]);
494          
495        }
496        
497 <      outFile << writeLine;
497 >      for(k = 0; k < outFile.size(); k++)
498 >        *outFile[k] << writeLine;
499      }
500      
501 <
502 <    outFile.flush();
501 >    for(k = 0; k < outFile.size(); k++)
502 >      outFile[k]->flush();
503 >    
504      sprintf( checkPointMsg,
505               "Sucessfully took a dump.\n");
506 +    
507      MPIcheckPoint();        
508 +    
509      delete[] potatoes;
510 +    
511    } else {
512  
513      // worldRank != 0, so I'm a remote node.  
# Line 437 | Line 517 | void DumpWriter::writeFrame( ofstream& outFile, double
517      myPotato = 0;
518      currentIndex = 0;
519      
520 <    for (i = 0 ; i < mpiSim->getTotAtoms(); i++ ) {
520 >    for (i = 0 ; i < mpiSim->getTotNmol(); i++ ) {
521        
522 <      // Am I the node which has this atom?
522 >      // Am I the node which has this integrableObject?
523        
524 <      if (AtomToProcMap[i] == worldRank) {
524 >      if (MolToProcMap[i] == worldRank) {
525  
446        if (myPotato + 3 >= MAXTAG) {
526  
527 +        if (myPotato + 1 >= MAXTAG) {
528 +          
529            // The potato was going to exceed the maximum value,
530            // so wrap this processor potato back to 0 (and block until
531            // node 0 says we can go:
532 <
532 >          
533            MPI_Recv(&myPotato, 1, MPI_INT, 0, 0, MPI_COMM_WORLD, &istatus);
534            
535          }
455        which_atom = i;
456        local_index = indexArray[currentIndex].first;        
457                
458        if (which_atom == indexArray[currentIndex].second) {
459        
460          atomTypeString = atoms[local_index]->getType();
536  
537 <          atoms[local_index]->getPos(pos);
538 <          atoms[local_index]->getVel(vel);
464 <
465 <          atomData6[0] = pos[0];
466 <          atomData6[1] = pos[1];
467 <          atomData6[2] = pos[2];
468 <
469 <          atomData6[3] = vel[0];
470 <          atomData6[4] = vel[1];
471 <          atomData6[5] = vel[2];
537 >          local_index = indexArray[currentIndex].first;        
538 >          integrableObjects = entry_plug->molecules[local_index].getIntegrableObjects();
539            
540 <          isDirectional = 0;
540 >          nCurObj = integrableObjects.size();
541 >                      
542 >          MPI_Send(&nCurObj, 1, MPI_INT, 0,
543 >                             myPotato, MPI_COMM_WORLD);
544 >          myPotato++;
545  
546 <          if( atoms[local_index]->isDirectional() ){
546 >          for( iter = integrableObjects.begin(); iter  != integrableObjects.end(); iter++){
547  
548 <            isDirectional = 1;
548 >            if (myPotato + 2 >= MAXTAG) {
549 >          
550 >              // The potato was going to exceed the maximum value,
551 >              // so wrap this processor potato back to 0 (and block until
552 >              // node 0 says we can go:
553 >          
554 >              MPI_Recv(&myPotato, 1, MPI_INT, 0, 0, MPI_COMM_WORLD, &istatus);
555 >              
556 >            }
557              
558 <            dAtom = (DirectionalAtom *)atoms[local_index];
480 <            dAtom->getQ( q );
558 >            sd = *iter;
559              
560 <            for (int j = 0; j < 6 ; j++)
483 <              atomData13[j] = atomData6[j];
484 <            
485 <            atomData13[6] = q[0];
486 <            atomData13[7] = q[1];
487 <            atomData13[8] = q[2];
488 <            atomData13[9] = q[3];
560 >            atomTypeString = sd->getType();
561  
562 <            atomData13[10] = dAtom->getJx();
563 <            atomData13[11] = dAtom->getJy();
492 <            atomData13[12] = dAtom->getJz();
493 <          }
562 >            sd->getPos(pos);
563 >            sd->getVel(vel);
564  
565 <        } else {
566 <          sprintf(painCave.errMsg,
567 <                  "Atom %d not found on processor %d\n",
498 <                  i, worldRank );
499 <          haveError= 1;
500 <          simError();
501 <        }
565 >            atomData[0] = pos[0];
566 >            atomData[1] = pos[1];
567 >            atomData[2] = pos[2];
568  
569 <        strncpy(MPIatomTypeString, atomTypeString, MINIBUFFERSIZE);
569 >            atomData[3] = vel[0];
570 >            atomData[4] = vel[1];
571 >            atomData[5] = vel[2];
572 >              
573 >            isDirectional = 0;
574  
575 <        // null terminate the string before sending (just in case):
506 <        MPIatomTypeString[MINIBUFFERSIZE-1] = '\0';
575 >            if( sd->isDirectional() ){
576  
577 <        MPI_Send(MPIatomTypeString, MINIBUFFERSIZE, MPI_CHAR, 0,
578 <                 myPotato, MPI_COMM_WORLD);
579 <        
580 <        myPotato++;
577 >                isDirectional = 1;
578 >                
579 >                sd->getQ( q );
580 >                sd->getJ( ji );
581 >                
582 >                
583 >                atomData[6] = q[0];
584 >                atomData[7] = q[1];
585 >                atomData[8] = q[2];
586 >                atomData[9] = q[3];
587 >      
588 >                atomData[10] = ji[0];
589 >                atomData[11] = ji[1];
590 >                atomData[12] = ji[2];
591 >              }
592  
593 <        MPI_Send(&isDirectional, 1, MPI_INT, 0,
594 <                 myPotato, MPI_COMM_WORLD);
515 <        
516 <        myPotato++;
517 <        
518 <        if (isDirectional) {
593 >            
594 >            strncpy(MPIatomTypeString, atomTypeString, MINIBUFFERSIZE);
595  
596 <          MPI_Send(atomData13, 13, MPI_DOUBLE, 0,
597 <                   myPotato, MPI_COMM_WORLD);
522 <          
523 <        } else {
596 >            // null terminate the string before sending (just in case):
597 >            MPIatomTypeString[MINIBUFFERSIZE-1] = '\0';
598  
599 <          MPI_Send(atomData6, 6, MPI_DOUBLE, 0,
600 <                   myPotato, MPI_COMM_WORLD);
601 <        }
599 >            MPI_Send(MPIatomTypeString, MINIBUFFERSIZE, MPI_CHAR, 0,
600 >                             myPotato, MPI_COMM_WORLD);
601 >            
602 >            myPotato++;
603 >            
604 >            if (isDirectional) {
605  
606 <        myPotato++;  
607 <        currentIndex++;    
606 >              MPI_Send(atomData, 13, MPI_DOUBLE, 0,
607 >                       myPotato, MPI_COMM_WORLD);
608 >              
609 >            } else {
610 >
611 >              MPI_Send(atomData, 6, MPI_DOUBLE, 0,
612 >                       myPotato, MPI_COMM_WORLD);
613 >            }
614 >
615 >            myPotato++;  
616 >
617 >          }
618 >
619 >          currentIndex++;    
620 >          
621 >        }
622 >      
623        }
532    }
624  
625      sprintf( checkPointMsg,
626               "Sucessfully took a dump.\n");
627 <    MPIcheckPoint();        
627 >    MPIcheckPoint();                
628      
629 <  }
629 >    }
630 >
631 >
632    
633   #endif // is_mpi
634   }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines