1 |
< |
#include <cmath> |
1 |
> |
#include <math.h> |
2 |
|
|
3 |
|
#include "Atom.hpp" |
4 |
+ |
#include "DirectionalAtom.hpp" |
5 |
|
#include "simError.h" |
6 |
+ |
#include "MatVec3.h" |
7 |
|
|
8 |
|
void DirectionalAtom::zeroForces() { |
9 |
|
if( hasCoords ){ |
10 |
< |
frc[offsetX] = 0.0; |
11 |
< |
frc[offsetY] = 0.0; |
10 |
< |
frc[offsetZ] = 0.0; |
10 |
> |
|
11 |
> |
Atom::zeroForces(); |
12 |
|
|
13 |
|
trq[offsetX] = 0.0; |
14 |
|
trq[offsetY] = 0.0; |
47 |
|
|
48 |
|
hasCoords = true; |
49 |
|
|
49 |
– |
*mu = myMu; |
50 |
– |
|
50 |
|
} |
51 |
|
|
53 |
– |
double DirectionalAtom::getMu( void ) { |
54 |
– |
|
55 |
– |
if( hasCoords ){ |
56 |
– |
return *mu; |
57 |
– |
} |
58 |
– |
else{ |
59 |
– |
return myMu; |
60 |
– |
} |
61 |
– |
} |
62 |
– |
|
63 |
– |
void DirectionalAtom::setMu( double the_mu ) { |
64 |
– |
|
65 |
– |
if( hasCoords ){ |
66 |
– |
*mu = the_mu; |
67 |
– |
myMu = the_mu; |
68 |
– |
} |
69 |
– |
else{ |
70 |
– |
myMu = the_mu; |
71 |
– |
} |
72 |
– |
} |
73 |
– |
|
52 |
|
void DirectionalAtom::setA( double the_A[3][3] ){ |
53 |
|
|
54 |
|
if( hasCoords ){ |
68 |
|
} |
69 |
|
} |
70 |
|
|
71 |
< |
void DirectionalAtom::setI( double the_I[3][3] ){ |
71 |
> |
void DirectionalAtom::setI( double the_I[3][3] ){ |
72 |
|
|
73 |
|
Ixx = the_I[0][0]; Ixy = the_I[0][1]; Ixz = the_I[0][2]; |
74 |
|
Iyx = the_I[1][0]; Iyy = the_I[1][1]; Iyz = the_I[1][2]; |
158 |
|
|
159 |
|
void DirectionalAtom::getU( double the_u[3] ){ |
160 |
|
|
161 |
< |
the_u[0] = sux; |
162 |
< |
the_u[1] = suy; |
163 |
< |
the_u[2] = suz; |
164 |
< |
|
161 |
> |
the_u[0] = sU[2][0]; |
162 |
> |
the_u[1] = sU[2][1]; |
163 |
> |
the_u[2] = sU[2][2]; |
164 |
> |
|
165 |
|
this->body2Lab( the_u ); |
166 |
|
} |
167 |
|
|
222 |
|
simError(); |
223 |
|
} |
224 |
|
} |
225 |
+ |
|
226 |
+ |
void DirectionalAtom::setUnitFrameFromEuler(double phi, |
227 |
+ |
double theta, |
228 |
+ |
double psi) { |
229 |
+ |
|
230 |
+ |
double myA[3][3]; |
231 |
+ |
double uFrame[3][3]; |
232 |
+ |
double len; |
233 |
+ |
int i, j; |
234 |
+ |
|
235 |
+ |
myA[0][0] = (cos(phi) * cos(psi)) - (sin(phi) * cos(theta) * sin(psi)); |
236 |
+ |
myA[0][1] = (sin(phi) * cos(psi)) + (cos(phi) * cos(theta) * sin(psi)); |
237 |
+ |
myA[0][2] = sin(theta) * sin(psi); |
238 |
+ |
|
239 |
+ |
myA[1][0] = -(cos(phi) * sin(psi)) - (sin(phi) * cos(theta) * cos(psi)); |
240 |
+ |
myA[1][1] = -(sin(phi) * sin(psi)) + (cos(phi) * cos(theta) * cos(psi)); |
241 |
+ |
myA[1][2] = sin(theta) * cos(psi); |
242 |
+ |
|
243 |
+ |
myA[2][0] = sin(phi) * sin(theta); |
244 |
+ |
myA[2][1] = -cos(phi) * sin(theta); |
245 |
+ |
myA[2][2] = cos(theta); |
246 |
+ |
|
247 |
+ |
// Make the unit Frame: |
248 |
+ |
|
249 |
+ |
for (i=0; i < 3; i++) |
250 |
+ |
for (j=0; j < 3; j++) |
251 |
+ |
uFrame[i][j] = 0.0; |
252 |
|
|
253 |
+ |
for (i=0; i < 3; i++) |
254 |
+ |
uFrame[i][i] = 1.0; |
255 |
|
|
256 |
+ |
// rotate by the given rotation matrix: |
257 |
+ |
|
258 |
+ |
matMul3(myA, uFrame, sU); |
259 |
+ |
|
260 |
+ |
// renormalize column vectors: |
261 |
+ |
|
262 |
+ |
for (i=0; i < 3; i++) { |
263 |
+ |
len = 0.0; |
264 |
+ |
for (j = 0; j < 3; j++) { |
265 |
+ |
len += sU[i][j]*sU[i][j]; |
266 |
+ |
} |
267 |
+ |
len = sqrt(len); |
268 |
+ |
for (j = 0; j < 3; j++) { |
269 |
+ |
sU[i][j] /= len; |
270 |
+ |
} |
271 |
+ |
} |
272 |
+ |
|
273 |
+ |
// sU now contains the coordinates of the 'special' frame; |
274 |
+ |
|
275 |
+ |
} |
276 |
+ |
|
277 |
|
void DirectionalAtom::setEuler( double phi, double theta, double psi ){ |
278 |
|
|
279 |
|
if( hasCoords ){ |
326 |
|
|
327 |
|
} |
328 |
|
|
329 |
+ |
void DirectionalAtom::rotateBy( double by_A[3][3]) { |
330 |
+ |
|
331 |
+ |
// Check this |
332 |
+ |
|
333 |
+ |
double r00, r01, r02, r10, r11, r12, r20, r21, r22; |
334 |
+ |
|
335 |
+ |
if( hasCoords ){ |
336 |
+ |
|
337 |
+ |
r00 = by_A[0][0]*Amat[Axx] + by_A[0][1]*Amat[Ayx] + by_A[0][2]*Amat[Azx]; |
338 |
+ |
r01 = by_A[0][0]*Amat[Axy] + by_A[0][1]*Amat[Ayy] + by_A[0][2]*Amat[Azy]; |
339 |
+ |
r02 = by_A[0][0]*Amat[Axz] + by_A[0][1]*Amat[Ayz] + by_A[0][2]*Amat[Azz]; |
340 |
+ |
|
341 |
+ |
r10 = by_A[1][0]*Amat[Axx] + by_A[1][1]*Amat[Ayx] + by_A[1][2]*Amat[Azx]; |
342 |
+ |
r11 = by_A[1][0]*Amat[Axy] + by_A[1][1]*Amat[Ayy] + by_A[1][2]*Amat[Azy]; |
343 |
+ |
r12 = by_A[1][0]*Amat[Axz] + by_A[1][1]*Amat[Ayz] + by_A[1][2]*Amat[Azz]; |
344 |
+ |
|
345 |
+ |
r20 = by_A[2][0]*Amat[Axx] + by_A[2][1]*Amat[Ayx] + by_A[2][2]*Amat[Azx]; |
346 |
+ |
r21 = by_A[2][0]*Amat[Axy] + by_A[2][1]*Amat[Ayy] + by_A[2][2]*Amat[Azy]; |
347 |
+ |
r22 = by_A[2][0]*Amat[Axz] + by_A[2][1]*Amat[Ayz] + by_A[2][2]*Amat[Azz]; |
348 |
+ |
|
349 |
+ |
Amat[Axx] = r00; Amat[Axy] = r01; Amat[Axz] = r02; |
350 |
+ |
Amat[Ayx] = r10; Amat[Ayy] = r11; Amat[Ayz] = r12; |
351 |
+ |
Amat[Azx] = r20; Amat[Azy] = r21; Amat[Azz] = r22; |
352 |
+ |
|
353 |
+ |
} |
354 |
+ |
else{ |
355 |
+ |
|
356 |
+ |
sprintf( painCave.errMsg, |
357 |
+ |
"Attempt to rotate frame for atom %d before coords set.\n", |
358 |
+ |
index ); |
359 |
+ |
painCave.isFatal = 1; |
360 |
+ |
simError(); |
361 |
+ |
} |
362 |
+ |
|
363 |
+ |
} |
364 |
+ |
|
365 |
+ |
|
366 |
|
void DirectionalAtom::body2Lab( double r[3] ){ |
367 |
|
|
368 |
|
double rb[3]; // the body frame vector |
389 |
|
void DirectionalAtom::updateU( void ){ |
390 |
|
|
391 |
|
if( hasCoords ){ |
392 |
< |
ul[offsetX] = (Amat[Axx] * sux) + (Amat[Ayx] * suy) + (Amat[Azx] * suz); |
393 |
< |
ul[offsetY] = (Amat[Axy] * sux) + (Amat[Ayy] * suy) + (Amat[Azy] * suz); |
394 |
< |
ul[offsetZ] = (Amat[Axz] * sux) + (Amat[Ayz] * suy) + (Amat[Azz] * suz); |
392 |
> |
ul[offsetX] = (Amat[Axx] * sU[2][0]) + |
393 |
> |
(Amat[Ayx] * sU[2][1]) + (Amat[Azx] * sU[2][2]); |
394 |
> |
ul[offsetY] = (Amat[Axy] * sU[2][0]) + |
395 |
> |
(Amat[Ayy] * sU[2][1]) + (Amat[Azy] * sU[2][2]); |
396 |
> |
ul[offsetZ] = (Amat[Axz] * sU[2][0]) + |
397 |
> |
(Amat[Ayz] * sU[2][1]) + (Amat[Azz] * sU[2][2]); |
398 |
|
} |
399 |
|
else{ |
400 |
|
|
469 |
|
the_I[2][1] = Izy; |
470 |
|
the_I[2][2] = Izz; |
471 |
|
} |
472 |
+ |
|
473 |
+ |
void DirectionalAtom::getGrad( double grad[6] ) { |
474 |
+ |
|
475 |
+ |
double myEuler[3]; |
476 |
+ |
double phi, theta, psi; |
477 |
+ |
double cphi, sphi, ctheta, stheta; |
478 |
+ |
double ephi[3]; |
479 |
+ |
double etheta[3]; |
480 |
+ |
double epsi[3]; |
481 |
+ |
|
482 |
+ |
this->getEulerAngles(myEuler); |
483 |
+ |
|
484 |
+ |
phi = myEuler[0]; |
485 |
+ |
theta = myEuler[1]; |
486 |
+ |
psi = myEuler[2]; |
487 |
+ |
|
488 |
+ |
cphi = cos(phi); |
489 |
+ |
sphi = sin(phi); |
490 |
+ |
ctheta = cos(theta); |
491 |
+ |
stheta = sin(theta); |
492 |
+ |
|
493 |
+ |
// get unit vectors along the phi, theta and psi rotation axes |
494 |
+ |
|
495 |
+ |
ephi[0] = 0.0; |
496 |
+ |
ephi[1] = 0.0; |
497 |
+ |
ephi[2] = 1.0; |
498 |
+ |
|
499 |
+ |
etheta[0] = cphi; |
500 |
+ |
etheta[1] = sphi; |
501 |
+ |
etheta[2] = 0.0; |
502 |
+ |
|
503 |
+ |
epsi[0] = stheta * cphi; |
504 |
+ |
epsi[1] = stheta * sphi; |
505 |
+ |
epsi[2] = ctheta; |
506 |
+ |
|
507 |
+ |
for (int j = 0 ; j<3; j++) |
508 |
+ |
grad[j] = frc[j]; |
509 |
+ |
|
510 |
+ |
grad[3] = 0; |
511 |
+ |
grad[4] = 0; |
512 |
+ |
grad[5] = 0; |
513 |
+ |
|
514 |
+ |
for (int j = 0; j < 3; j++ ) { |
515 |
+ |
|
516 |
+ |
grad[3] += trq[j]*ephi[j]; |
517 |
+ |
grad[4] += trq[j]*etheta[j]; |
518 |
+ |
grad[5] += trq[j]*epsi[j]; |
519 |
+ |
|
520 |
+ |
} |
521 |
+ |
|
522 |
+ |
} |
523 |
+ |
|
524 |
+ |
/** |
525 |
+ |
* getEulerAngles computes a set of Euler angle values consistent |
526 |
+ |
* with an input rotation matrix. They are returned in the following |
527 |
+ |
* order: |
528 |
+ |
* myEuler[0] = phi; |
529 |
+ |
* myEuler[1] = theta; |
530 |
+ |
* myEuler[2] = psi; |
531 |
+ |
*/ |
532 |
+ |
void DirectionalAtom::getEulerAngles(double myEuler[3]) { |
533 |
+ |
|
534 |
+ |
// We use so-called "x-convention", which is the most common definition. |
535 |
+ |
// In this convention, the rotation given by Euler angles (phi, theta, psi), where the first |
536 |
+ |
// rotation is by an angle phi about the z-axis, the second is by an angle |
537 |
+ |
// theta (0 <= theta <= 180)about the x-axis, and thethird is by an angle psi about the |
538 |
+ |
//z-axis (again). |
539 |
+ |
|
540 |
+ |
|
541 |
+ |
double phi,theta,psi,eps; |
542 |
+ |
double pi; |
543 |
+ |
double cphi,ctheta,cpsi; |
544 |
+ |
double sphi,stheta,spsi; |
545 |
+ |
double b[3]; |
546 |
+ |
int flip[3]; |
547 |
+ |
|
548 |
+ |
// set the tolerance for Euler angles and rotation elements |
549 |
+ |
|
550 |
+ |
eps = 1.0e-8; |
551 |
+ |
|
552 |
+ |
theta = acos(min(1.0,max(-1.0,Amat[Azz]))); |
553 |
+ |
ctheta = Amat[Azz]; |
554 |
+ |
stheta = sqrt(1.0 - ctheta * ctheta); |
555 |
+ |
|
556 |
+ |
// when sin(theta) is close to 0, we need to consider singularity |
557 |
+ |
// In this case, we can assign an arbitary value to phi (or psi), and then determine |
558 |
+ |
// the psi (or phi) or vice-versa. We'll assume that phi always gets the rotation, and psi is 0 |
559 |
+ |
// in cases of singularity. |
560 |
+ |
// we use atan2 instead of atan, since atan2 will give us -Pi to Pi. |
561 |
+ |
// Since 0 <= theta <= 180, sin(theta) will be always non-negative. Therefore, it never |
562 |
+ |
// change the sign of both of the parameters passed to atan2. |
563 |
+ |
|
564 |
+ |
if (fabs(stheta) <= eps){ |
565 |
+ |
psi = 0.0; |
566 |
+ |
phi = atan2(-Amat[Ayx], Amat[Axx]); |
567 |
+ |
} |
568 |
+ |
// we only have one unique solution |
569 |
+ |
else{ |
570 |
+ |
phi = atan2(Amat[Azx], -Amat[Azy]); |
571 |
+ |
psi = atan2(Amat[Axz], Amat[Ayz]); |
572 |
+ |
} |
573 |
+ |
|
574 |
+ |
//wrap phi and psi, make sure they are in the range from 0 to 2*Pi |
575 |
+ |
//if (phi < 0) |
576 |
+ |
// phi += M_PI; |
577 |
+ |
|
578 |
+ |
//if (psi < 0) |
579 |
+ |
// psi += M_PI; |
580 |
+ |
|
581 |
+ |
myEuler[0] = phi; |
582 |
+ |
myEuler[1] = theta; |
583 |
+ |
myEuler[2] = psi; |
584 |
+ |
|
585 |
+ |
return; |
586 |
+ |
} |
587 |
+ |
|
588 |
+ |
double DirectionalAtom::max(double x, double y) { |
589 |
+ |
return (x > y) ? x : y; |
590 |
+ |
} |
591 |
+ |
|
592 |
+ |
double DirectionalAtom::min(double x, double y) { |
593 |
+ |
return (x > y) ? y : x; |
594 |
+ |
} |