6 |
|
|
7 |
|
model = nlmodel; |
8 |
|
//set the dimension |
9 |
< |
|
9 |
> |
|
10 |
|
#ifndef IS_MPI |
11 |
|
dim = model->getDim(); |
12 |
|
#else |
13 |
< |
|
13 |
> |
dim = model->getDim(); |
14 |
|
#endif |
15 |
|
prevGrad.resize(dim); |
16 |
|
gradient.resize(dim); |
68 |
|
for(currentIter = 1;currentIter <= maxIteration; currentIter++){ |
69 |
|
|
70 |
|
// perform line search to minimize f(x + lamda * direction) where stepSize > 0 |
71 |
< |
lsMinimizer->minimize(direction, 0.0, 1.0); |
71 |
> |
lsMinimizer->minimize(direction, 0.0, 0.01); |
72 |
|
|
73 |
|
lsStatus = lsMinimizer->getMinimizationStatus(); |
74 |
+ |
|
75 |
+ |
lamda = lsMinimizer->getMinVar(); |
76 |
|
|
77 |
|
if(lsStatus ==MINSTATUS_ERROR){ |
78 |
< |
minStatus = MINSTATUS_ERROR; |
78 |
> |
if (lamda == 0){ |
79 |
> |
|
80 |
> |
for(int i = 0; i < direction.size(); i++) |
81 |
> |
direction[i] = -prevGrad[i]; |
82 |
> |
|
83 |
> |
continue; |
84 |
> |
} |
85 |
> |
minStatus = MINSTATUS_ERROR; |
86 |
|
return; |
87 |
|
} |
88 |
< |
|
89 |
< |
prevMinX = minX; |
90 |
< |
lamda = lsMinimizer->getMinVar(); |
88 |
> |
else{ |
89 |
> |
prevMinX = minX; |
90 |
> |
} |
91 |
|
|
92 |
|
for(int i = 0; i < direction.size(); i++) |
93 |
|
minX[i] = minX[i] + lamda * direction[i]; |
98 |
|
model->setX(minX); |
99 |
|
gradient = model->calcGrad(); |
100 |
|
|
101 |
+ |
minX = model->getX(); |
102 |
|
// stop if converge |
103 |
|
if (checkConvergence() > 0){ |
104 |
|
writeOut(minX, currentIter); |
132 |
|
|
133 |
|
// if writeFrq is not a multipiler of maxIteration, we need to write the final result |
134 |
|
// otherwise, we already write it inside the loop, just skip it |
135 |
< |
if(currentIter != (nextWriteIter - writeFrq)) |
135 |
> |
if(currentIter - 1 != (nextWriteIter - writeFrq)) |
136 |
|
writeOut(minX, currentIter); |
137 |
|
|
138 |
|
minStatus = MINSTATUS_MAXITER; |