| 1 |
|
#include "ConjugateMinimizer.hpp" |
| 2 |
+ |
#include "Utility.hpp" |
| 3 |
+ |
|
| 4 |
|
bool ConjugateMinimizerBase::isSolvable(){ |
| 5 |
|
|
| 6 |
|
//conjuage gradient can only solve unconstrained nonlinear model |
| 7 |
|
|
| 8 |
< |
if (!model->hasConstraint()) |
| 8 |
> |
if (!model->hasConstraints()) |
| 9 |
|
return true; |
| 10 |
|
else |
| 11 |
|
return false; |
| 21 |
|
|
| 22 |
|
void ConjugateMinimizerBase::Minimize(){ |
| 23 |
|
int maxIteration; |
| 24 |
< |
int nextRestIter; |
| 24 |
> |
int nextResetIter; |
| 25 |
|
int resetFrq; |
| 26 |
|
int nextWriteIter; |
| 27 |
|
int writeFrq; |
| 28 |
+ |
int lsStatus; |
| 29 |
+ |
double gamma; |
| 30 |
+ |
double lamda; |
| 31 |
|
|
| 32 |
+ |
|
| 33 |
|
if (!isSolvable()){ |
| 34 |
< |
cout << "ConjugateMinimizerBase Error: This nonlinear model can not be solved by " << methodName <<endl; |
| 34 |
> |
cout << "ConjugateMinimizerBase Error: This nonlinear model can not be solved by " << minimizerName <<endl; |
| 35 |
|
|
| 36 |
|
exit(1); |
| 37 |
|
} |
| 39 |
|
printMinizerInfo(); |
| 40 |
|
|
| 41 |
|
resetFrq = paramSet->getResetFrq(); |
| 42 |
< |
nextRestIter = resetFrq; |
| 42 |
> |
nextResetIter = resetFrq; |
| 43 |
|
|
| 44 |
|
writeFrq = paramSet->getWriteFrq(); |
| 45 |
|
nextWriteIter = writeFrq; |
| 46 |
|
|
| 47 |
|
prevGrad = model->calcGrad(); |
| 48 |
|
|
| 49 |
< |
direction = preGrad; |
| 49 |
> |
direction = prevGrad; |
| 50 |
|
|
| 51 |
|
maxIteration = paramSet->getMaxIteration(); |
| 52 |
|
|
| 63 |
|
} |
| 64 |
|
|
| 65 |
|
prevMinX = minX; |
| 66 |
< |
minX = minX + lsMinimizer->getMinVar() * direction; |
| 66 |
> |
lamda = lsMinimizer->getMinVar(); |
| 67 |
|
|
| 68 |
+ |
for(int i = 0; i < direction.size(); i++) |
| 69 |
+ |
minX[i] = minX[i] + lamda * direction[i]; |
| 70 |
+ |
|
| 71 |
|
//calculate the gradient |
| 72 |
|
prevGrad = gradient; |
| 73 |
|
|
| 74 |
|
gradient = model->calcGrad(); |
| 75 |
|
|
| 76 |
|
// stop if converge |
| 77 |
< |
convStatus = checkConvergence(); |
| 69 |
< |
if (convStatus == ){ |
| 77 |
> |
if (checkConvergence() > 0){ |
| 78 |
|
writeOut(minX, currentIter); |
| 79 |
|
|
| 80 |
|
minStatus = MINSTATUS_CONVERGE; |
| 83 |
|
|
| 84 |
|
|
| 85 |
|
//calculate the |
| 86 |
< |
gamma = calcGamma(grad, preGrad); |
| 86 |
> |
gamma = calcGamma(gradient, prevGrad); |
| 87 |
|
|
| 88 |
|
// update new direction |
| 89 |
|
prevDirection = direction; |
| 82 |
– |
direction += gamma * direction; |
| 90 |
|
|
| 91 |
+ |
for(int i = 0; i < direction.size(); i++) |
| 92 |
+ |
direction[i] += gamma * direction[i]; |
| 93 |
+ |
|
| 94 |
|
// |
| 95 |
|
if (currentIter == nextWriteIter){ |
| 96 |
|
nextWriteIter += writeFrq; |
| 117 |
|
|
| 118 |
|
//test absolute gradient tolerance |
| 119 |
|
|
| 120 |
< |
if (norm2(gradient) < paramSet->absGradTol) |
| 120 |
> |
if (sqrt(dot(gradient, gradient)) < paramSet->getGradTol()) |
| 121 |
|
return 1; |
| 122 |
|
else |
| 123 |
|
return -1; |
| 128 |
|
} |
| 129 |
|
|
| 130 |
|
double FRCGMinimizer::calcGamma(vector<double>& newGrad, vector<double>& oldGrad){ |
| 131 |
< |
return norm2(newGrad) / norm2(oldGrad); |
| 131 |
> |
return dot(newGrad, newGrad) / dot(oldGrad, newGrad); |
| 132 |
|
} |
| 133 |
|
|
| 134 |
|
double PRCGMinimizer::calcGamma(vector<double>& newGrad, vector<double>& oldGrad){ |
| 135 |
|
double gamma; |
| 136 |
|
vector<double> deltaGrad; |
| 137 |
+ |
|
| 138 |
+ |
for(int i = 0; i < newGrad.size(); i++) |
| 139 |
+ |
deltaGrad.push_back(newGrad[i] - oldGrad[i]); |
| 140 |
|
|
| 141 |
< |
deltaGrad = newGrad - oldGrad; |
| 129 |
< |
|
| 130 |
< |
return norm(deltaGrad, newGrad) / norm2(oldGrad); |
| 141 |
> |
return dot(deltaGrad, newGrad) / dot(oldGrad, oldGrad); |
| 142 |
|
|
| 143 |
|
} |