1 |
#include "ConjugateMinimizer.hpp"
|
2 |
#include "Utility.hpp"
|
3 |
ConjugateMinimizerBase::ConjugateMinimizerBase(NLModel1* nlmodel, MinimizerParameterSet* param)
|
4 |
: MinimizerUsingLineSearch(param){
|
5 |
int dim;
|
6 |
|
7 |
model = nlmodel;
|
8 |
//set the dimension
|
9 |
|
10 |
#ifndef IS_MPI
|
11 |
dim = model->getDim();
|
12 |
#else
|
13 |
|
14 |
#endif
|
15 |
prevGrad.resize(dim);
|
16 |
gradient.resize(dim);
|
17 |
prevDirection.resize(dim);
|
18 |
direction.resize(dim);
|
19 |
}
|
20 |
|
21 |
bool ConjugateMinimizerBase::isSolvable(){
|
22 |
|
23 |
//conjuage gradient can only solve unconstrained nonlinear model
|
24 |
|
25 |
if (!model->hasConstraints())
|
26 |
return true;
|
27 |
else
|
28 |
return false;
|
29 |
}
|
30 |
|
31 |
void ConjugateMinimizerBase::printMinizerInfo(){
|
32 |
|
33 |
}
|
34 |
|
35 |
void ConjugateMinimizerBase::minimize(){
|
36 |
int maxIteration;
|
37 |
int nextResetIter;
|
38 |
int resetFrq;
|
39 |
int nextWriteIter;
|
40 |
int writeFrq;
|
41 |
int lsStatus;
|
42 |
double gamma;
|
43 |
double lamda;
|
44 |
|
45 |
|
46 |
if (!isSolvable()){
|
47 |
cout << "ConjugateMinimizerBase Error: This nonlinear model can not be solved by " << minimizerName <<endl;
|
48 |
|
49 |
exit(1);
|
50 |
}
|
51 |
|
52 |
printMinizerInfo();
|
53 |
|
54 |
resetFrq = paramSet->getResetFrq();
|
55 |
nextResetIter = resetFrq;
|
56 |
|
57 |
writeFrq = paramSet->getWriteFrq();
|
58 |
nextWriteIter = writeFrq;
|
59 |
|
60 |
minX = model->getX();
|
61 |
gradient = model->calcGrad();
|
62 |
|
63 |
for(int i = 0; i < direction.size(); i++)
|
64 |
direction[i] = -gradient[i];
|
65 |
|
66 |
maxIteration = paramSet->getMaxIteration();
|
67 |
|
68 |
for(currentIter = 1;currentIter <= maxIteration; currentIter++){
|
69 |
|
70 |
// perform line search to minimize f(x + lamda * direction) where stepSize > 0
|
71 |
lsMinimizer->minimize(direction, 0.0, 1.0);
|
72 |
|
73 |
lsStatus = lsMinimizer->getMinimizationStatus();
|
74 |
|
75 |
if(lsStatus ==MINSTATUS_ERROR){
|
76 |
minStatus = MINSTATUS_ERROR;
|
77 |
return;
|
78 |
}
|
79 |
|
80 |
prevMinX = minX;
|
81 |
lamda = lsMinimizer->getMinVar();
|
82 |
|
83 |
for(int i = 0; i < direction.size(); i++)
|
84 |
minX[i] = minX[i] + lamda * direction[i];
|
85 |
|
86 |
//calculate the gradient
|
87 |
prevGrad = gradient;
|
88 |
|
89 |
model->setX(minX);
|
90 |
gradient = model->calcGrad();
|
91 |
|
92 |
// stop if converge
|
93 |
if (checkConvergence() > 0){
|
94 |
writeOut(minX, currentIter);
|
95 |
|
96 |
minStatus = MINSTATUS_CONVERGE;
|
97 |
return;
|
98 |
}
|
99 |
|
100 |
|
101 |
//calculate the
|
102 |
gamma = calcGamma(gradient, prevGrad);
|
103 |
|
104 |
// update new direction
|
105 |
prevDirection = direction;
|
106 |
|
107 |
for(int i = 0; i < direction.size(); i++)
|
108 |
direction[i] = -gradient[i] + gamma * direction[i];
|
109 |
|
110 |
//
|
111 |
if (currentIter == nextWriteIter){
|
112 |
nextWriteIter += writeFrq;
|
113 |
writeOut(minX, currentIter);
|
114 |
}
|
115 |
|
116 |
if (currentIter == nextResetIter){
|
117 |
reset();
|
118 |
nextResetIter += resetFrq;
|
119 |
}
|
120 |
|
121 |
}
|
122 |
|
123 |
// if writeFrq is not a multipiler of maxIteration, we need to write the final result
|
124 |
// otherwise, we already write it inside the loop, just skip it
|
125 |
if(currentIter != (nextWriteIter - writeFrq))
|
126 |
writeOut(minX, currentIter);
|
127 |
|
128 |
minStatus = MINSTATUS_MAXITER;
|
129 |
return;
|
130 |
}
|
131 |
|
132 |
int ConjugateMinimizerBase::checkConvergence(){
|
133 |
|
134 |
//test absolute gradient tolerance
|
135 |
|
136 |
if (sqrt(dotProduct(gradient, gradient)) < paramSet->getGTol())
|
137 |
return 1;
|
138 |
else
|
139 |
return -1;
|
140 |
}
|
141 |
|
142 |
void ConjugateMinimizerBase::reset(){
|
143 |
|
144 |
}
|
145 |
|
146 |
double FRCGMinimizer::calcGamma(vector<double>& newGrad, vector<double>& oldGrad){
|
147 |
return dotProduct(newGrad, newGrad) / dotProduct(oldGrad, newGrad);
|
148 |
}
|
149 |
|
150 |
double PRCGMinimizer::calcGamma(vector<double>& newGrad, vector<double>& oldGrad){
|
151 |
double gamma;
|
152 |
vector<double> deltaGrad;
|
153 |
|
154 |
for(int i = 0; i < newGrad.size(); i++)
|
155 |
deltaGrad.push_back(newGrad[i] - oldGrad[i]);
|
156 |
|
157 |
return dotProduct(deltaGrad, newGrad) / dotProduct(oldGrad, oldGrad);
|
158 |
|
159 |
}
|