1 |
|
#include "ConjugateMinimizer.hpp" |
2 |
+ |
#include "Utility.hpp" |
3 |
+ |
|
4 |
|
bool ConjugateMinimizerBase::isSolvable(){ |
5 |
|
|
6 |
|
//conjuage gradient can only solve unconstrained nonlinear model |
7 |
|
|
8 |
< |
if (!model->hasConstraint()) |
8 |
> |
if (!model->hasConstraints()) |
9 |
|
return true; |
10 |
|
else |
11 |
|
return false; |
21 |
|
|
22 |
|
void ConjugateMinimizerBase::Minimize(){ |
23 |
|
int maxIteration; |
24 |
< |
int nextRestIter; |
24 |
> |
int nextResetIter; |
25 |
|
int resetFrq; |
26 |
|
int nextWriteIter; |
27 |
|
int writeFrq; |
28 |
+ |
int lsStatus; |
29 |
+ |
double gamma; |
30 |
+ |
double lamda; |
31 |
|
|
32 |
+ |
|
33 |
|
if (!isSolvable()){ |
34 |
< |
cout << "ConjugateMinimizerBase Error: This nonlinear model can not be solved by " << methodName <<endl; |
34 |
> |
cout << "ConjugateMinimizerBase Error: This nonlinear model can not be solved by " << minimizerName <<endl; |
35 |
|
|
36 |
|
exit(1); |
37 |
|
} |
39 |
|
printMinizerInfo(); |
40 |
|
|
41 |
|
resetFrq = paramSet->getResetFrq(); |
42 |
< |
nextRestIter = resetFrq; |
42 |
> |
nextResetIter = resetFrq; |
43 |
|
|
44 |
|
writeFrq = paramSet->getWriteFrq(); |
45 |
|
nextWriteIter = writeFrq; |
46 |
|
|
47 |
|
prevGrad = model->calcGrad(); |
48 |
|
|
49 |
< |
direction = preGrad; |
49 |
> |
direction = prevGrad; |
50 |
|
|
51 |
|
maxIteration = paramSet->getMaxIteration(); |
52 |
|
|
63 |
|
} |
64 |
|
|
65 |
|
prevMinX = minX; |
66 |
< |
minX = minX + lsMinimizer->getMinVar() * direction; |
66 |
> |
lamda = lsMinimizer->getMinVar(); |
67 |
|
|
68 |
+ |
for(int i = 0; i < direction.size(); i++) |
69 |
+ |
minX[i] = minX[i] + lamda * direction[i]; |
70 |
+ |
|
71 |
|
//calculate the gradient |
72 |
|
prevGrad = gradient; |
73 |
|
|
74 |
|
gradient = model->calcGrad(); |
75 |
|
|
76 |
|
// stop if converge |
77 |
< |
convStatus = checkConvergence(); |
69 |
< |
if (convStatus == ){ |
77 |
> |
if (checkConvergence() > 0){ |
78 |
|
writeOut(minX, currentIter); |
79 |
|
|
80 |
|
minStatus = MINSTATUS_CONVERGE; |
83 |
|
|
84 |
|
|
85 |
|
//calculate the |
86 |
< |
gamma = calcGamma(grad, preGrad); |
86 |
> |
gamma = calcGamma(gradient, prevGrad); |
87 |
|
|
88 |
|
// update new direction |
89 |
|
prevDirection = direction; |
82 |
– |
direction += gamma * direction; |
90 |
|
|
91 |
+ |
for(int i = 0; i < direction.size(); i++) |
92 |
+ |
direction[i] += gamma * direction[i]; |
93 |
+ |
|
94 |
|
// |
95 |
|
if (currentIter == nextWriteIter){ |
96 |
|
nextWriteIter += writeFrq; |
117 |
|
|
118 |
|
//test absolute gradient tolerance |
119 |
|
|
120 |
< |
if (norm2(gradient) < paramSet->absGradTol) |
120 |
> |
if (sqrt(dot(gradient, gradient)) < paramSet->getGradTol()) |
121 |
|
return 1; |
122 |
|
else |
123 |
|
return -1; |
128 |
|
} |
129 |
|
|
130 |
|
double FRCGMinimizer::calcGamma(vector<double>& newGrad, vector<double>& oldGrad){ |
131 |
< |
return norm2(newGrad) / norm2(oldGrad); |
131 |
> |
return dot(newGrad, newGrad) / dot(oldGrad, newGrad); |
132 |
|
} |
133 |
|
|
134 |
|
double PRCGMinimizer::calcGamma(vector<double>& newGrad, vector<double>& oldGrad){ |
135 |
|
double gamma; |
136 |
|
vector<double> deltaGrad; |
137 |
+ |
|
138 |
+ |
for(int i = 0; i < newGrad.size(); i++) |
139 |
+ |
deltaGrad.push_back(newGrad[i] - oldGrad[i]); |
140 |
|
|
141 |
< |
deltaGrad = newGrad - oldGrad; |
129 |
< |
|
130 |
< |
return norm(deltaGrad, newGrad) / norm2(oldGrad); |
141 |
> |
return dot(deltaGrad, newGrad) / dot(oldGrad, oldGrad); |
142 |
|
|
143 |
|
} |