1 |
/* |
2 |
* Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. |
3 |
* |
4 |
* The University of Notre Dame grants you ("Licensee") a |
5 |
* non-exclusive, royalty free, license to use, modify and |
6 |
* redistribute this software in source and binary code form, provided |
7 |
* that the following conditions are met: |
8 |
* |
9 |
* 1. Acknowledgement of the program authors must be made in any |
10 |
* publication of scientific results based in part on use of the |
11 |
* program. An acceptable form of acknowledgement is citation of |
12 |
* the article in which the program was described (Matthew |
13 |
* A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher |
14 |
* J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented |
15 |
* Parallel Simulation Engine for Molecular Dynamics," |
16 |
* J. Comput. Chem. 26, pp. 252-271 (2005)) |
17 |
* |
18 |
* 2. Redistributions of source code must retain the above copyright |
19 |
* notice, this list of conditions and the following disclaimer. |
20 |
* |
21 |
* 3. Redistributions in binary form must reproduce the above copyright |
22 |
* notice, this list of conditions and the following disclaimer in the |
23 |
* documentation and/or other materials provided with the |
24 |
* distribution. |
25 |
* |
26 |
* This software is provided "AS IS," without a warranty of any |
27 |
* kind. All express or implied conditions, representations and |
28 |
* warranties, including any implied warranty of merchantability, |
29 |
* fitness for a particular purpose or non-infringement, are hereby |
30 |
* excluded. The University of Notre Dame and its licensors shall not |
31 |
* be liable for any damages suffered by licensee as a result of |
32 |
* using, modifying or distributing the software or its |
33 |
* derivatives. In no event will the University of Notre Dame or its |
34 |
* licensors be liable for any lost revenue, profit or data, or for |
35 |
* direct, indirect, special, consequential, incidental or punitive |
36 |
* damages, however caused and regardless of the theory of liability, |
37 |
* arising out of the use of or inability to use software, even if the |
38 |
* University of Notre Dame has been advised of the possibility of |
39 |
* such damages. |
40 |
*/ |
41 |
|
42 |
#include <cmath> |
43 |
#include "restraints/ThermoIntegrationForceManager.hpp" |
44 |
#include "integrators/Integrator.hpp" |
45 |
#include "math/SquareMatrix3.hpp" |
46 |
#include "primitives/Molecule.hpp" |
47 |
#include "utils/simError.h" |
48 |
#include "utils/OOPSEConstant.hpp" |
49 |
#include "utils/StringUtils.hpp" |
50 |
|
51 |
#ifdef IS_MPI |
52 |
#include <mpi.h> |
53 |
#define TAKE_THIS_TAG_REAL 2 |
54 |
#endif //is_mpi |
55 |
|
56 |
namespace oopse { |
57 |
|
58 |
ThermoIntegrationForceManager::ThermoIntegrationForceManager(SimInfo* info): |
59 |
ForceManager(info){ |
60 |
currSnapshot_ = info_->getSnapshotManager()->getCurrentSnapshot(); |
61 |
simParam = info_->getSimParams(); |
62 |
|
63 |
if (simParam->haveThermodynamicIntegrationLambda()){ |
64 |
tIntLambda_ = simParam->getThermodynamicIntegrationLambda(); |
65 |
} |
66 |
else{ |
67 |
tIntLambda_ = 1.0; |
68 |
sprintf(painCave.errMsg, |
69 |
"ThermoIntegration error: the transformation parameter\n" |
70 |
"\t(lambda) was not specified. OOPSE will use a default\n" |
71 |
"\tvalue of %f. To set lambda, use the \n" |
72 |
"\tthermodynamicIntegrationLambda variable.\n", |
73 |
tIntLambda_); |
74 |
painCave.isFatal = 0; |
75 |
simError(); |
76 |
} |
77 |
|
78 |
if (simParam->haveThermodynamicIntegrationK()){ |
79 |
tIntK_ = simParam->getThermodynamicIntegrationK(); |
80 |
} |
81 |
else{ |
82 |
tIntK_ = 1.0; |
83 |
sprintf(painCave.errMsg, |
84 |
"ThermoIntegration Warning: the tranformation parameter\n" |
85 |
"\texponent (k) was not specified. OOPSE will use a default\n" |
86 |
"\tvalue of %f. To set k, use the thermodynamicIntegrationK\n" |
87 |
"\tvariable.\n", |
88 |
tIntK_); |
89 |
painCave.isFatal = 0; |
90 |
simError(); |
91 |
} |
92 |
|
93 |
if (simParam->getUseSolidThermInt()) { |
94 |
// build a restraint object |
95 |
restraint_ = new Restraints(info_, tIntLambda_, tIntK_); |
96 |
|
97 |
} |
98 |
|
99 |
// build the scaling factor used to modulate the forces and torques |
100 |
factor_ = pow(tIntLambda_, tIntK_); |
101 |
|
102 |
} |
103 |
|
104 |
ThermoIntegrationForceManager::~ThermoIntegrationForceManager(){ |
105 |
} |
106 |
|
107 |
void ThermoIntegrationForceManager::calcForces(bool needPotential, |
108 |
bool needStress){ |
109 |
Snapshot* curSnapshot; |
110 |
SimInfo::MoleculeIterator mi; |
111 |
Molecule* mol; |
112 |
Molecule::IntegrableObjectIterator ii; |
113 |
StuntDouble* integrableObject; |
114 |
Vector3d frc; |
115 |
Vector3d trq; |
116 |
Mat3x3d tempTau; |
117 |
|
118 |
// perform the standard calcForces first |
119 |
ForceManager::calcForces(needPotential, needStress); |
120 |
|
121 |
curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot(); |
122 |
|
123 |
// now scale forces and torques of all the integrableObjects |
124 |
|
125 |
for (mol = info_->beginMolecule(mi); mol != NULL; |
126 |
mol = info_->nextMolecule(mi)) { |
127 |
for (integrableObject = mol->beginIntegrableObject(ii); |
128 |
integrableObject != NULL; |
129 |
integrableObject = mol->nextIntegrableObject(ii)) { |
130 |
frc = integrableObject->getFrc(); |
131 |
frc *= factor_; |
132 |
integrableObject->setFrc(frc); |
133 |
|
134 |
if (integrableObject->isDirectional()){ |
135 |
trq = integrableObject->getTrq(); |
136 |
trq *= factor_; |
137 |
integrableObject->setTrq(trq); |
138 |
} |
139 |
} |
140 |
} |
141 |
|
142 |
// set vraw to be the unmodulated potential |
143 |
lrPot_ = curSnapshot->statData[Stats::LONG_RANGE_POTENTIAL]; |
144 |
curSnapshot->statData[Stats::VRAW] = lrPot_; |
145 |
|
146 |
// modulate the potential and update the snapshot |
147 |
lrPot_ *= factor_; |
148 |
curSnapshot->statData[Stats::LONG_RANGE_POTENTIAL] = lrPot_; |
149 |
|
150 |
// scale the pressure tensor |
151 |
tempTau = curSnapshot->statData.getTau(); |
152 |
tempTau *= factor_; |
153 |
curSnapshot->statData.setTau(tempTau); |
154 |
#ifndef IS_MPI |
155 |
// do the single processor crystal restraint forces for |
156 |
// thermodynamic integration |
157 |
if (simParam->getUseSolidThermInt()) { |
158 |
|
159 |
lrPot_ += restraint_->Calc_Restraint_Forces(); |
160 |
curSnapshot->statData[Stats::LONG_RANGE_POTENTIAL] = lrPot_; |
161 |
|
162 |
vHarm_ = restraint_->getVharm(); |
163 |
curSnapshot->statData[Stats::VHARM] = vHarm_; |
164 |
} |
165 |
#else |
166 |
double tempLRPot = 0.0; |
167 |
double tempVHarm = 0.0; |
168 |
MPI_Status ierr; |
169 |
int nproc; |
170 |
MPI_Comm_size(MPI_COMM_WORLD, &nproc); |
171 |
vHarm_ = 0.0; |
172 |
|
173 |
// do the MPI crystal restraint forces for each processor |
174 |
if (simParam->getUseSolidThermInt()) { |
175 |
tempLRPot = restraint_->Calc_Restraint_Forces(); |
176 |
tempVHarm = restraint_->getVharm(); |
177 |
} |
178 |
|
179 |
// master receives and accumulates the restraint info |
180 |
if (worldRank == 0) { |
181 |
for(int i = 0 ; i < nproc; ++i) { |
182 |
if (i == worldRank) { |
183 |
lrPot_ += tempLRPot; |
184 |
vHarm_ += tempVHarm; |
185 |
} else { |
186 |
MPI_Recv(&tempLRPot, 1, MPI_REALTYPE, i, |
187 |
TAKE_THIS_TAG_REAL, MPI_COMM_WORLD, &ierr); |
188 |
MPI_Recv(&tempVHarm, 1, MPI_REALTYPE, i, |
189 |
TAKE_THIS_TAG_REAL, MPI_COMM_WORLD, &ierr); |
190 |
lrPot_ += tempLRPot; |
191 |
vHarm_ += tempVHarm; |
192 |
} |
193 |
} |
194 |
|
195 |
// give the final values to stats |
196 |
curSnapshot->statData[Stats::LONG_RANGE_POTENTIAL] = lrPot_; |
197 |
curSnapshot->statData[Stats::VHARM] = vHarm_; |
198 |
|
199 |
} else { |
200 |
// pack up and send the appropriate info to the master node |
201 |
for(int j = 1; j < nproc; ++j) { |
202 |
if (worldRank == j) { |
203 |
|
204 |
MPI_Send(&tempLRPot, 1, MPI_REALTYPE, 0, |
205 |
TAKE_THIS_TAG_REAL, MPI_COMM_WORLD); |
206 |
MPI_Send(&tempVHarm, 1, MPI_REALTYPE, 0, |
207 |
TAKE_THIS_TAG_REAL, MPI_COMM_WORLD); |
208 |
} |
209 |
} |
210 |
} |
211 |
#endif //is_mpi |
212 |
} |
213 |
|
214 |
} |