ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/OOPSE-4/src/primitives/DirectionalAtom.cpp
Revision: 3520
Committed: Mon Sep 7 16:31:51 2009 UTC (15 years, 10 months ago) by cli2
File size: 5370 byte(s)
Log Message:
Added new restraint infrastructure
Added MolecularRestraints
Added ObjectRestraints
Added RestraintStamp
Updated thermodynamic integration to use ObjectRestraints
Added Quaternion mathematics for twist swing decompositions
Significantly updated RestWriter and RestReader to use dump-like files
Added selections for x, y, and z coordinates of atoms
Removed monolithic Restraints class
Fixed a few bugs in gradients of Euler angles in DirectionalAtom and RigidBody
Added some rotational capabilities to prinicpalAxisCalculator

File Contents

# User Rev Content
1 gezelter 2204 /*
2 gezelter 1930 * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3     *
4     * The University of Notre Dame grants you ("Licensee") a
5     * non-exclusive, royalty free, license to use, modify and
6     * redistribute this software in source and binary code form, provided
7     * that the following conditions are met:
8     *
9     * 1. Acknowledgement of the program authors must be made in any
10     * publication of scientific results based in part on use of the
11     * program. An acceptable form of acknowledgement is citation of
12     * the article in which the program was described (Matthew
13     * A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14     * J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15     * Parallel Simulation Engine for Molecular Dynamics,"
16     * J. Comput. Chem. 26, pp. 252-271 (2005))
17     *
18     * 2. Redistributions of source code must retain the above copyright
19     * notice, this list of conditions and the following disclaimer.
20     *
21     * 3. Redistributions in binary form must reproduce the above copyright
22     * notice, this list of conditions and the following disclaimer in the
23     * documentation and/or other materials provided with the
24     * distribution.
25     *
26     * This software is provided "AS IS," without a warranty of any
27     * kind. All express or implied conditions, representations and
28     * warranties, including any implied warranty of merchantability,
29     * fitness for a particular purpose or non-infringement, are hereby
30     * excluded. The University of Notre Dame and its licensors shall not
31     * be liable for any damages suffered by licensee as a result of
32     * using, modifying or distributing the software or its
33     * derivatives. In no event will the University of Notre Dame or its
34     * licensors be liable for any lost revenue, profit or data, or for
35     * direct, indirect, special, consequential, incidental or punitive
36     * damages, however caused and regardless of the theory of liability,
37     * arising out of the use of or inability to use software, even if the
38     * University of Notre Dame has been advised of the possibility of
39     * such damages.
40     */
41    
42 tim 1492 #include "primitives/DirectionalAtom.hpp"
43 tim 1957 #include "utils/simError.h"
44 gezelter 1930 namespace oopse {
45 gezelter 3320
46 gezelter 2204 DirectionalAtom::DirectionalAtom(DirectionalAtomType* dAtomType)
47     : Atom(dAtomType){
48 gezelter 3320 objType_= otDAtom;
49     if (dAtomType->isMultipole()) {
50     electroBodyFrame_ = dAtomType->getElectroBodyFrame();
51     }
52    
53     // Check if one of the diagonal inertia tensor of this directional
54     // atom is zero:
55     int nLinearAxis = 0;
56     Mat3x3d inertiaTensor = getI();
57     for (int i = 0; i < 3; i++) {
58     if (fabs(inertiaTensor(i, i)) < oopse::epsilon) {
59     linear_ = true;
60     linearAxis_ = i;
61     ++ nLinearAxis;
62 gezelter 2204 }
63 tim 1957 }
64 gezelter 1490
65 gezelter 3320 if (nLinearAxis > 1) {
66     sprintf( painCave.errMsg,
67     "Directional Atom warning.\n"
68     "\tOOPSE found more than one axis in this directional atom with a vanishing \n"
69     "\tmoment of inertia.");
70     painCave.isFatal = 0;
71     simError();
72     }
73     }
74    
75 gezelter 2204 Mat3x3d DirectionalAtom::getI() {
76 gezelter 1930 return static_cast<DirectionalAtomType*>(getAtomType())->getI();
77 gezelter 2204 }
78 gezelter 3320
79 gezelter 2204 void DirectionalAtom::setPrevA(const RotMat3x3d& a) {
80 gezelter 1930 ((snapshotMan_->getPrevSnapshot())->*storage_).aMat[localIndex_] = a;
81     if (atomType_->isMultipole()) {
82 gezelter 2204 ((snapshotMan_->getPrevSnapshot())->*storage_).electroFrame[localIndex_] = a.transpose() * electroBodyFrame_;
83 gezelter 1709 }
84 gezelter 2204 }
85 gezelter 3320
86    
87 gezelter 2204 void DirectionalAtom::setA(const RotMat3x3d& a) {
88 gezelter 1930 ((snapshotMan_->getCurrentSnapshot())->*storage_).aMat[localIndex_] = a;
89 gezelter 3320
90 gezelter 1930 if (atomType_->isMultipole()) {
91 gezelter 2204 ((snapshotMan_->getCurrentSnapshot())->*storage_).electroFrame[localIndex_] = a.transpose() * electroBodyFrame_;
92 gezelter 1490 }
93 gezelter 2204 }
94 gezelter 3320
95 gezelter 2204 void DirectionalAtom::setA(const RotMat3x3d& a, int snapshotNo) {
96 gezelter 1930 ((snapshotMan_->getSnapshot(snapshotNo))->*storage_).aMat[localIndex_] = a;
97 gezelter 3320
98 gezelter 1930 if (atomType_->isMultipole()) {
99 gezelter 2204 ((snapshotMan_->getSnapshot(snapshotNo))->*storage_).electroFrame[localIndex_] = a.transpose() * electroBodyFrame_;
100 gezelter 1490 }
101 gezelter 2204 }
102 gezelter 3320
103 gezelter 2204 void DirectionalAtom::rotateBy(const RotMat3x3d& m) {
104 gezelter 1930 setA(m *getA());
105 gezelter 2204 }
106 gezelter 3320
107 tim 2759 std::vector<RealType> DirectionalAtom::getGrad() {
108     std::vector<RealType> grad(6, 0.0);
109 gezelter 1930 Vector3d force;
110     Vector3d torque;
111     Vector3d myEuler;
112 tim 2759 RealType phi, theta, psi;
113     RealType cphi, sphi, ctheta, stheta;
114 gezelter 1930 Vector3d ephi;
115     Vector3d etheta;
116     Vector3d epsi;
117 gezelter 3320
118 gezelter 1930 force = getFrc();
119     torque =getTrq();
120     myEuler = getA().toEulerAngles();
121 gezelter 3320
122 gezelter 1930 phi = myEuler[0];
123     theta = myEuler[1];
124     psi = myEuler[2];
125 gezelter 3320
126 gezelter 1930 cphi = cos(phi);
127     sphi = sin(phi);
128     ctheta = cos(theta);
129     stheta = sin(theta);
130 gezelter 3320
131 gezelter 1930 // get unit vectors along the phi, theta and psi rotation axes
132 gezelter 3320
133 gezelter 1930 ephi[0] = 0.0;
134     ephi[1] = 0.0;
135     ephi[2] = 1.0;
136 gezelter 3320
137 cli2 3520 etheta[0] = -sphi;
138     etheta[1] = cphi;
139     etheta[2] = 0.0;
140 gezelter 3320
141 gezelter 1930 epsi[0] = stheta * cphi;
142     epsi[1] = stheta * sphi;
143     epsi[2] = ctheta;
144 gezelter 3320
145 gezelter 1930 //gradient is equal to -force
146     for (int j = 0 ; j<3; j++)
147 gezelter 2204 grad[j] = -force[j];
148 gezelter 3320
149     for (int j = 0; j < 3; j++ ) {
150 tim 2341 grad[3] -= torque[j]*ephi[j];
151     grad[4] -= torque[j]*etheta[j];
152 gezelter 3320 grad[5] -= torque[j]*epsi[j];
153 gezelter 1930 }
154 gezelter 1490
155 gezelter 1930 return grad;
156 gezelter 2204 }
157 gezelter 3320
158 gezelter 2204 void DirectionalAtom::accept(BaseVisitor* v) {
159 gezelter 1930 v->visit(this);
160 gezelter 3320 }
161 gezelter 1490 }
162