| 1 |
|
/* |
| 2 |
< |
* Copyright (c) 2008 The University of Notre Dame. All Rights Reserved. |
| 2 |
> |
* Copyright (c) 2008, 2009 The University of Notre Dame. All Rights Reserved. |
| 3 |
|
* |
| 4 |
|
* The University of Notre Dame grants you ("Licensee") a |
| 5 |
|
* non-exclusive, royalty free, license to use, modify and |
| 46 |
|
#include "math/Triangle.hpp" |
| 47 |
|
|
| 48 |
|
namespace oopse { |
| 49 |
< |
|
| 49 |
> |
|
| 50 |
|
SMIPDForceManager::SMIPDForceManager(SimInfo* info) : ForceManager(info) { |
| 51 |
|
|
| 52 |
|
simParams = info->getSimParams(); |
| 53 |
+ |
veloMunge = new Velocitizer(info); |
| 54 |
|
|
| 55 |
|
// Create Hull, Convex Hull for now, other options later. |
| 56 |
|
|
| 57 |
|
surfaceMesh_ = new ConvexHull(); |
| 58 |
|
|
| 59 |
|
/* Check that the simulation has target pressure and target |
| 60 |
< |
temperature set*/ |
| 60 |
> |
temperature set */ |
| 61 |
|
|
| 62 |
|
if (!simParams->haveTargetTemp()) { |
| 63 |
|
sprintf(painCave.errMsg, |
| 64 |
|
"SMIPDynamics error: You can't use the SMIPD integrator\n" |
| 65 |
< |
" without a targetTemp!\n"); |
| 65 |
> |
"\twithout a targetTemp (K)!\n"); |
| 66 |
|
painCave.isFatal = 1; |
| 67 |
|
painCave.severity = OOPSE_ERROR; |
| 68 |
|
simError(); |
| 73 |
|
if (!simParams->haveTargetPressure()) { |
| 74 |
|
sprintf(painCave.errMsg, |
| 75 |
|
"SMIPDynamics error: You can't use the SMIPD integrator\n" |
| 76 |
< |
" without a targetPressure!\n"); |
| 76 |
> |
"\twithout a targetPressure (atm)!\n"); |
| 77 |
|
painCave.isFatal = 1; |
| 78 |
|
simError(); |
| 79 |
|
} else { |
| 85 |
|
if (simParams->getUsePeriodicBoundaryConditions()) { |
| 86 |
|
sprintf(painCave.errMsg, |
| 87 |
|
"SMIPDynamics error: You can't use the SMIPD integrator\n" |
| 88 |
< |
" with periodic boundary conditions!\n"); |
| 88 |
> |
"\twith periodic boundary conditions!\n"); |
| 89 |
|
painCave.isFatal = 1; |
| 90 |
|
simError(); |
| 91 |
|
} |
| 92 |
|
|
| 93 |
< |
if (!simParams->haveViscosity()) { |
| 93 |
> |
if (!simParams->haveThermalConductivity()) { |
| 94 |
|
sprintf(painCave.errMsg, |
| 95 |
|
"SMIPDynamics error: You can't use the SMIPD integrator\n" |
| 96 |
< |
" without a viscosity!\n"); |
| 96 |
> |
"\twithout a thermalConductivity (W m^-1 K^-1)!\n"); |
| 97 |
|
painCave.isFatal = 1; |
| 98 |
|
painCave.severity = OOPSE_ERROR; |
| 99 |
|
simError(); |
| 100 |
|
}else{ |
| 101 |
< |
viscosity_ = simParams->getViscosity(); |
| 101 |
> |
thermalConductivity_ = simParams->getThermalConductivity() * |
| 102 |
> |
OOPSEConstant::thermalConductivityConvert; |
| 103 |
|
} |
| 104 |
+ |
|
| 105 |
+ |
if (!simParams->haveThermalLength()) { |
| 106 |
+ |
sprintf(painCave.errMsg, |
| 107 |
+ |
"SMIPDynamics error: You can't use the SMIPD integrator\n" |
| 108 |
+ |
"\twithout a thermalLength (Angstroms)!\n"); |
| 109 |
+ |
painCave.isFatal = 1; |
| 110 |
+ |
painCave.severity = OOPSE_ERROR; |
| 111 |
+ |
simError(); |
| 112 |
+ |
}else{ |
| 113 |
+ |
thermalLength_ = simParams->getThermalLength(); |
| 114 |
+ |
} |
| 115 |
|
|
| 116 |
|
dt_ = simParams->getDt(); |
| 117 |
|
|
| 118 |
|
variance_ = 2.0 * OOPSEConstant::kb * targetTemp_ / dt_; |
| 119 |
|
|
| 120 |
+ |
// Build a vector of integrable objects to determine if the are |
| 121 |
+ |
// surface atoms |
| 122 |
|
Molecule* mol; |
| 123 |
|
StuntDouble* integrableObject; |
| 124 |
|
SimInfo::MoleculeIterator i; |
| 125 |
< |
Molecule::IntegrableObjectIterator j; |
| 125 |
> |
Molecule::IntegrableObjectIterator j; |
| 126 |
|
|
| 112 |
– |
// Build a vector of integrable objects to determine if the are |
| 113 |
– |
// surface atoms |
| 114 |
– |
|
| 127 |
|
for (mol = info_->beginMolecule(i); mol != NULL; |
| 128 |
|
mol = info_->nextMolecule(i)) { |
| 129 |
|
for (integrableObject = mol->beginIntegrableObject(j); |
| 133 |
|
} |
| 134 |
|
} |
| 135 |
|
} |
| 136 |
< |
|
| 136 |
> |
|
| 137 |
|
void SMIPDForceManager::postCalculation(bool needStress){ |
| 138 |
|
SimInfo::MoleculeIterator i; |
| 139 |
|
Molecule::IntegrableObjectIterator j; |
| 140 |
|
Molecule* mol; |
| 141 |
|
StuntDouble* integrableObject; |
| 142 |
< |
|
| 142 |
> |
|
| 143 |
|
// Compute surface Mesh |
| 144 |
|
surfaceMesh_->computeHull(localSites_); |
| 145 |
< |
|
| 145 |
> |
|
| 146 |
|
// Get total area and number of surface stunt doubles |
| 147 |
|
RealType area = surfaceMesh_->getArea(); |
| 136 |
– |
int nSurfaceSDs = surfaceMesh_->getNs(); |
| 148 |
|
std::vector<Triangle> sMesh = surfaceMesh_->getMesh(); |
| 149 |
|
int nTriangles = sMesh.size(); |
| 150 |
< |
|
| 150 |
> |
|
| 151 |
|
// Generate all of the necessary random forces |
| 152 |
|
std::vector<RealType> randNums = genTriangleForces(nTriangles, variance_); |
| 153 |
|
|
| 154 |
< |
// Loop over the mesh faces and apply random force to each of the faces |
| 154 |
> |
// Loop over the mesh faces and apply external pressure to each |
| 155 |
> |
// of the faces |
| 156 |
|
std::vector<Triangle>::iterator face; |
| 157 |
|
std::vector<StuntDouble*>::iterator vertex; |
| 158 |
< |
int thisNumber = 0; |
| 158 |
> |
int thisFacet = 0; |
| 159 |
|
for (face = sMesh.begin(); face != sMesh.end(); ++face){ |
| 148 |
– |
|
| 160 |
|
Triangle thisTriangle = *face; |
| 161 |
|
std::vector<StuntDouble*> vertexSDs = thisTriangle.getVertices(); |
| 162 |
|
RealType thisArea = thisTriangle.getArea(); |
| 163 |
|
Vector3d unitNormal = thisTriangle.getNormal(); |
| 164 |
|
unitNormal.normalize(); |
| 154 |
– |
|
| 165 |
|
Vector3d centroid = thisTriangle.getCentroid(); |
| 166 |
|
Vector3d facetVel = thisTriangle.getFacetVelocity(); |
| 167 |
< |
RealType hydroLength = thisTriangle.getIncircleRadius() * 2.0 / |
| 168 |
< |
NumericConstant::PI; |
| 159 |
< |
|
| 167 |
> |
RealType thisMass = thisTriangle.getFacetMass(); |
| 168 |
> |
|
| 169 |
|
// gamma is the drag coefficient normal to the face of the triangle |
| 170 |
< |
RealType gamma = viscosity_ * hydroLength * |
| 171 |
< |
OOPSEConstant::viscoConvert; |
| 170 |
> |
RealType gamma = thermalConductivity_ * thisMass * thisArea |
| 171 |
> |
/ (2.0 * thermalLength_ * OOPSEConstant::kB); |
| 172 |
|
|
| 173 |
|
RealType extPressure = - (targetPressure_ * thisArea) / |
| 174 |
|
OOPSEConstant::energyConvert; |
| 175 |
< |
|
| 167 |
< |
RealType randomForce = randNums[thisNumber++] * sqrt(gamma); |
| 175 |
> |
RealType randomForce = randNums[thisFacet++] * sqrt(gamma); |
| 176 |
|
RealType dragForce = -gamma * dot(facetVel, unitNormal); |
| 177 |
|
|
| 178 |
< |
Vector3d langevinForce = (extPressure + randomForce + dragForce) * unitNormal; |
| 178 |
> |
Vector3d langevinForce = (extPressure + randomForce + dragForce) * |
| 179 |
> |
unitNormal; |
| 180 |
|
|
| 181 |
< |
// Apply triangle force to stuntdouble vertices |
| 182 |
< |
for (vertex = vertexSDs.begin(); vertex != vertexSDs.end(); ++vertex) { |
| 183 |
< |
if ((*vertex) != NULL) { |
| 181 |
> |
// Apply triangle force to stuntdouble vertices |
| 182 |
> |
for (vertex = vertexSDs.begin(); vertex != vertexSDs.end(); ++vertex){ |
| 183 |
> |
if ((*vertex) != NULL){ |
| 184 |
|
Vector3d vertexForce = langevinForce / 3.0; |
| 185 |
< |
(*vertex)->addFrc(vertexForce); |
| 177 |
< |
if ((*vertex)->isDirectional()) { |
| 178 |
< |
Vector3d vertexPos = (*vertex)->getPos(); |
| 179 |
< |
Vector3d vertexCentroidVector = vertexPos - centroid; |
| 180 |
< |
(*vertex)->addTrq(cross(vertexCentroidVector,vertexForce)); |
| 181 |
< |
} |
| 185 |
> |
(*vertex)->addFrc(vertexForce); |
| 186 |
|
} |
| 187 |
|
} |
| 188 |
|
} |
| 189 |
|
|
| 190 |
+ |
veloMunge->removeComDrift(); |
| 191 |
+ |
veloMunge->removeAngularDrift(); |
| 192 |
+ |
|
| 193 |
|
Snapshot* currSnapshot = info_->getSnapshotManager()->getCurrentSnapshot(); |
| 194 |
|
currSnapshot->setVolume(surfaceMesh_->getVolume()); |
| 195 |
|
ForceManager::postCalculation(needStress); |
| 196 |
|
} |
| 197 |
< |
|
| 197 |
> |
|
| 198 |
> |
|
| 199 |
|
std::vector<RealType> SMIPDForceManager::genTriangleForces(int nTriangles, |
| 200 |
< |
RealType variance) { |
| 201 |
< |
|
| 200 |
> |
RealType variance) |
| 201 |
> |
{ |
| 202 |
> |
|
| 203 |
|
// zero fill the random vector before starting: |
| 204 |
|
std::vector<RealType> gaussRand; |
| 205 |
|
gaussRand.resize(nTriangles); |
| 206 |
|
std::fill(gaussRand.begin(), gaussRand.end(), 0.0); |
| 207 |
< |
|
| 207 |
> |
|
| 208 |
|
#ifdef IS_MPI |
| 209 |
|
if (worldRank == 0) { |
| 210 |
|
#endif |
| 211 |
|
for (int i = 0; i < nTriangles; i++) { |
| 212 |
< |
gaussRand[i] = randNumGen_.randNorm(0.0, variance); |
| 212 |
> |
gaussRand[i] = randNumGen_.randNorm(0.0, variance); |
| 213 |
|
} |
| 214 |
|
#ifdef IS_MPI |
| 215 |
|
} |
| 216 |
|
#endif |
| 217 |
< |
|
| 217 |
> |
|
| 218 |
|
// push these out to the other processors |
| 219 |
< |
|
| 219 |
> |
|
| 220 |
|
#ifdef IS_MPI |
| 221 |
|
if (worldRank == 0) { |
| 222 |
< |
MPI_Bcast(&gaussRand[0], nTriangles, MPI_REALTYPE, 0, MPI_COMM_WORLD); |
| 222 |
> |
MPI::COMM_WORLD.Bcast(&gaussRand[0], nTriangles, MPI::REALTYPE, 0); |
| 223 |
|
} else { |
| 224 |
< |
MPI_Bcast(&gaussRand[0], nTriangles, MPI_REALTYPE, 0, MPI_COMM_WORLD); |
| 224 |
> |
MPI::COMM_WORLD.Bcast(&gaussRand[0], nTriangles, MPI::REALTYPE, 0); |
| 225 |
|
} |
| 226 |
|
#endif |
| 227 |
< |
|
| 227 |
> |
|
| 228 |
|
return gaussRand; |
| 229 |
|
} |
| 230 |
|
} |