ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/OOPSE-4/src/integrators/SMIPDForceManager.cpp
(Generate patch)

Comparing trunk/OOPSE-4/src/integrators/SMIPDForceManager.cpp (file contents):
Revision 3463 by chuckv, Thu Oct 16 18:25:36 2008 UTC vs.
Revision 3481 by gezelter, Wed Nov 26 14:26:17 2008 UTC

# Line 41 | Line 41
41   #include <fstream>
42   #include <iostream>
43   #include "integrators/SMIPDForceManager.hpp"
44 #include "math/CholeskyDecomposition.hpp"
44   #include "utils/OOPSEConstant.hpp"
46 #include "hydrodynamics/Sphere.hpp"
47 #include "hydrodynamics/Ellipsoid.hpp"
48 #include "utils/ElementsTable.hpp"
45   #include "math/ConvexHull.hpp"
46   #include "math/Triangle.hpp"
47  
52
48   namespace oopse {
49 +  
50 +  SMIPDForceManager::SMIPDForceManager(SimInfo* info) : ForceManager(info) {
51  
55  SMIPDForceManager::SMIPDForceManager(SimInfo* info) : ForceManager(info), forceTolerance_(1e-6), maxIterNum_(4) {
52      simParams = info->getSimParams();
57    veloMunge = new Velocitizer(info);
53      
54      // Create Hull, Convex Hull for now, other options later.
55 +    
56      surfaceMesh_ = new ConvexHull();
57      
62    
58      /* Check that the simulation has target pressure and target
59         temperature set*/
60 <
60 >    
61      if (!simParams->haveTargetTemp()) {
62 <      sprintf(painCave.errMsg, "You can't use the SMIPDynamics integrator without a targetTemp!\n");
62 >      sprintf(painCave.errMsg,
63 >              "SMIPDynamics error: You can't use the SMIPD integrator\n"
64 >              "   without a targetTemp!\n");      
65        painCave.isFatal = 1;
66        painCave.severity = OOPSE_ERROR;
67        simError();
68      } else {
69        targetTemp_ = simParams->getTargetTemp();
70      }
71 <
71 >    
72      if (!simParams->haveTargetPressure()) {
73 <      sprintf(painCave.errMsg, "SMIPDynamics error: You can't use the SMIPD integrator\n"
74 <              "   without a targetPressure!\n");
75 <      
73 >      sprintf(painCave.errMsg,
74 >              "SMIPDynamics error: You can't use the SMIPD integrator\n"
75 >              "   without a targetPressure!\n");      
76        painCave.isFatal = 1;
77        simError();
78      } else {
79 <      targetPressure_ = simParams->getTargetPressure();
79 >      // Convert pressure from atm -> amu/(fs^2*Ang)
80 >      targetPressure_ = simParams->getTargetPressure() /
81 >        OOPSEConstant::pressureConvert;
82      }
84
83    
84      if (simParams->getUsePeriodicBoundaryConditions()) {
85 <      sprintf(painCave.errMsg, "SMIPDynamics error: You can't use the SMIPD integrator\n"
86 <              "   with periodic boundary conditions !\n");
87 <      
85 >      sprintf(painCave.errMsg,
86 >              "SMIPDynamics error: You can't use the SMIPD integrator\n"
87 >              "   with periodic boundary conditions!\n");    
88        painCave.isFatal = 1;
89        simError();
90      }
91 +    
92 +    if (!simParams->haveViscosity()) {
93 +      sprintf(painCave.errMsg,
94 +              "SMIPDynamics error: You can't use the SMIPD integrator\n"
95 +              "   without a viscosity!\n");
96 +      painCave.isFatal = 1;
97 +      painCave.severity = OOPSE_ERROR;
98 +      simError();
99 +    }else{
100 +      viscosity_ = simParams->getViscosity();
101 +    }
102 +    
103 +    dt_ = simParams->getDt();
104 +  
105 +    variance_ = 2.0 * OOPSEConstant::kb * targetTemp_ / dt_;
106  
94
95    // Build the hydroProp map:
96    std::map<std::string, HydroProp*> hydroPropMap;
97
107      Molecule* mol;
108      StuntDouble* integrableObject;
109      SimInfo::MoleculeIterator i;
110 <    Molecule::IntegrableObjectIterator  j;              
102 <    bool needHydroPropFile = false;
103 <    
104 <    for (mol = info->beginMolecule(i); mol != NULL;
105 <         mol = info->nextMolecule(i)) {
106 <      for (integrableObject = mol->beginIntegrableObject(j);
107 <           integrableObject != NULL;
108 <           integrableObject = mol->nextIntegrableObject(j)) {
109 <        
110 <        if (integrableObject->isRigidBody()) {
111 <          RigidBody* rb = static_cast<RigidBody*>(integrableObject);
112 <          if (rb->getNumAtoms() > 1) needHydroPropFile = true;
113 <        }
114 <        
115 <      }
116 <    }
117 <        
110 >    Molecule::IntegrableObjectIterator  j;              
111  
112 <    if (needHydroPropFile) {              
113 <      if (simParams->haveHydroPropFile()) {
121 <        hydroPropMap = parseFrictionFile(simParams->getHydroPropFile());
122 <      } else {              
123 <        sprintf( painCave.errMsg,
124 <                 "HydroPropFile must be set to a file name if SMIPDynamics\n"
125 <                 "\tis specified for rigidBodies which contain more than one atom\n"
126 <                 "\tTo create a HydroPropFile, run the \"Hydro\" program.\n\n"
127 <                 "\tFor use with SMIPD, the default viscosity in Hydro should be\n"
128 <                 "\tset to 1.0 because the friction and random forces will be\n"
129 <                 "\tdynamically re-set assuming this is true.\n");
130 <        painCave.severity = OOPSE_ERROR;
131 <        painCave.isFatal = 1;
132 <        simError();  
133 <      }      
112 >    // Build a vector of integrable objects to determine if the are
113 >    // surface atoms
114  
115 <      for (mol = info->beginMolecule(i); mol != NULL;
116 <           mol = info->nextMolecule(i)) {
117 <        for (integrableObject = mol->beginIntegrableObject(j);
118 <             integrableObject != NULL;
139 <             integrableObject = mol->nextIntegrableObject(j)) {
140 <
141 <          std::map<std::string, HydroProp*>::iterator iter = hydroPropMap.find(integrableObject->getType());
142 <          if (iter != hydroPropMap.end()) {
143 <            hydroProps_.push_back(iter->second);
144 <          } else {
145 <            sprintf( painCave.errMsg,
146 <                     "Can not find resistance tensor for atom [%s]\n", integrableObject->getType().c_str());
147 <            painCave.severity = OOPSE_ERROR;
148 <            painCave.isFatal = 1;
149 <            simError();  
150 <          }        
151 <        }
152 <      }
153 <    } else {
154 <      
155 <      std::map<std::string, HydroProp*> hydroPropMap;
156 <      for (mol = info->beginMolecule(i); mol != NULL;
157 <           mol = info->nextMolecule(i)) {
158 <        for (integrableObject = mol->beginIntegrableObject(j);
159 <             integrableObject != NULL;
160 <             integrableObject = mol->nextIntegrableObject(j)) {
161 <          Shape* currShape = NULL;
162 <
163 <          if (integrableObject->isAtom()){
164 <            Atom* atom = static_cast<Atom*>(integrableObject);
165 <            AtomType* atomType = atom->getAtomType();
166 <            if (atomType->isGayBerne()) {
167 <              DirectionalAtomType* dAtomType = dynamic_cast<DirectionalAtomType*>(atomType);              
168 <              GenericData* data = dAtomType->getPropertyByName("GayBerne");
169 <              if (data != NULL) {
170 <                GayBerneParamGenericData* gayBerneData = dynamic_cast<GayBerneParamGenericData*>(data);
171 <                
172 <                if (gayBerneData != NULL) {  
173 <                  GayBerneParam gayBerneParam = gayBerneData->getData();
174 <                  currShape = new Ellipsoid(V3Zero,
175 <                                            gayBerneParam.GB_l / 2.0,
176 <                                            gayBerneParam.GB_d / 2.0,
177 <                                            Mat3x3d::identity());
178 <                } else {
179 <                  sprintf( painCave.errMsg,
180 <                           "Can not cast GenericData to GayBerneParam\n");
181 <                  painCave.severity = OOPSE_ERROR;
182 <                  painCave.isFatal = 1;
183 <                  simError();  
184 <                }
185 <              } else {
186 <                sprintf( painCave.errMsg, "Can not find Parameters for GayBerne\n");
187 <                painCave.severity = OOPSE_ERROR;
188 <                painCave.isFatal = 1;
189 <                simError();    
190 <              }
191 <            } else {
192 <              if (atomType->isLennardJones()){
193 <                GenericData* data = atomType->getPropertyByName("LennardJones");
194 <                if (data != NULL) {
195 <                  LJParamGenericData* ljData = dynamic_cast<LJParamGenericData*>(data);
196 <                  if (ljData != NULL) {
197 <                    LJParam ljParam = ljData->getData();
198 <                    currShape = new Sphere(atom->getPos(), ljParam.sigma/2.0);
199 <                  } else {
200 <                    sprintf( painCave.errMsg,
201 <                             "Can not cast GenericData to LJParam\n");
202 <                    painCave.severity = OOPSE_ERROR;
203 <                    painCave.isFatal = 1;
204 <                    simError();          
205 <                  }      
206 <                }
207 <              } else {
208 <                int aNum = etab.GetAtomicNum((atom->getType()).c_str());
209 <                if (aNum != 0) {
210 <                  currShape = new Sphere(atom->getPos(), etab.GetVdwRad(aNum));
211 <                } else {
212 <                  sprintf( painCave.errMsg,
213 <                           "Could not find atom type in default element.txt\n");
214 <                  painCave.severity = OOPSE_ERROR;
215 <                  painCave.isFatal = 1;
216 <                  simError();          
217 <                }
218 <              }
219 <            }
220 <          }
221 <          HydroProp* currHydroProp = currShape->getHydroProp(simParams->getViscosity(),simParams->getTargetTemp());
222 <          std::map<std::string, HydroProp*>::iterator iter = hydroPropMap.find(integrableObject->getType());
223 <          if (iter != hydroPropMap.end())
224 <            hydroProps_.push_back(iter->second);
225 <          else {
226 <            currHydroProp->complete();
227 <            hydroPropMap.insert(std::map<std::string, HydroProp*>::value_type(integrableObject->getType(), currHydroProp));
228 <            hydroProps_.push_back(currHydroProp);
229 <          }
230 <        }
231 <      }
232 <    }
233 <
234 <    /* Compute hull first time through to get the area of t=0*/
235 <
236 <    /* Build a vector of integrable objects to determine if the are surface atoms */
237 <    for (mol = info_->beginMolecule(i); mol != NULL; mol = info_->nextMolecule(i)) {          
238 <      for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
115 >    for (mol = info_->beginMolecule(i); mol != NULL;
116 >         mol = info_->nextMolecule(i)) {          
117 >      for (integrableObject = mol->beginIntegrableObject(j);
118 >           integrableObject != NULL;
119             integrableObject = mol->nextIntegrableObject(j)) {  
120          localSites_.push_back(integrableObject);
121        }
122 <    }
243 <
244 <    surfaceMesh_->computeHull(localSites_);
245 <    Area0_ = surfaceMesh_->getArea();
246 <    variance_ = 2.0 * OOPSEConstant::kb*simParams->getTargetTemp()/simParams->getDt();
247 <    
122 >    }  
123    }  
124 <
250 <  std::map<std::string, HydroProp*> SMIPDForceManager::parseFrictionFile(const std::string& filename) {
251 <    std::map<std::string, HydroProp*> props;
252 <    std::ifstream ifs(filename.c_str());
253 <    if (ifs.is_open()) {
254 <      
255 <    }
256 <    
257 <    const unsigned int BufferSize = 65535;
258 <    char buffer[BufferSize];  
259 <    while (ifs.getline(buffer, BufferSize)) {
260 <      HydroProp* currProp = new HydroProp(buffer);
261 <      props.insert(std::map<std::string, HydroProp*>::value_type(currProp->getName(), currProp));
262 <    }
263 <
264 <    return props;
265 <  }
266 <  
124 >  
125    void SMIPDForceManager::postCalculation(bool needStress){
126      SimInfo::MoleculeIterator i;
127      Molecule::IntegrableObjectIterator  j;
128      Molecule* mol;
129      StuntDouble* integrableObject;
272    RealType mass;
273    Vector3d pos;
274    Vector3d frc;
275    Mat3x3d A;
276    Mat3x3d Atrans;
277    Vector3d Tb;
278    Vector3d ji;
279    unsigned int index = 0;
280    int fdf;
130    
131 <    fdf = 0;
283 <  
284 <    /*Compute surface Mesh*/
131 >    // Compute surface Mesh
132      surfaceMesh_->computeHull(localSites_);
286
287    /* Get area and number of surface stunt doubles and compute new variance */
288     RealType area = surfaceMesh_->getArea();
289     int nSurfaceSDs = surfaceMesh_->getNs();
290
291     /* Compute variance for random forces */
133      
134 <     RealType TD_variance = sqrt(2.0*NumericConstant::PI)*((targetPressure_/OOPSEConstant::pressureConvert)*area/nSurfaceSDs)
135 <       /OOPSEConstant::energyConvert;
136 <    
137 <    std::vector<Triangle*> sMesh = surfaceMesh_->getMesh();
138 <    std::vector<RealType>  randNums = genTriangleForces(sMesh.size(),TD_variance);
139 <    
140 <    /* Loop over the mesh faces and apply random force to each of the faces*/
141 <    
142 <    
143 <    std::vector<Triangle*>::iterator face;
134 >    // Get total area and number of surface stunt doubles
135 >    RealType area = surfaceMesh_->getArea();
136 >    int nSurfaceSDs = surfaceMesh_->getNs();        
137 >    std::vector<Triangle> sMesh = surfaceMesh_->getMesh();
138 >    int nTriangles = sMesh.size();
139 >        
140 >    // Generate all of the necessary random forces
141 >    std::vector<RealType>  randNums = genTriangleForces(nTriangles, variance_);
142 >
143 >    // Loop over the mesh faces and apply random force to each of the faces
144 >    std::vector<Triangle>::iterator face;
145      std::vector<StuntDouble*>::iterator vertex;
146      int thisNumber = 0;
147      for (face = sMesh.begin(); face != sMesh.end(); ++face){
148      
149 <      Triangle* thisTriangle = *face;
150 <      std::vector<StuntDouble*> vertexSDs = thisTriangle->getVertices();
151 <      
152 <      /* Get Random Force */
311 <      Vector3d unitNormal = thisTriangle->getNormal();
149 >      Triangle thisTriangle = *face;
150 >      std::vector<StuntDouble*> vertexSDs = thisTriangle.getVertices();
151 >      RealType thisArea = thisTriangle.getArea();
152 >      Vector3d unitNormal = thisTriangle.getNormal();
153        unitNormal.normalize();
313      Vector3d randomForce = -randNums[thisNumber] * unitNormal;
314      Vector3d centroid = thisTriangle->getCentroid();
154  
155 <      for (vertex = vertexSDs.begin(); vertex != vertexSDs.end(); ++vertex){
155 >      Vector3d centroid = thisTriangle.getCentroid();
156 >      Vector3d facetVel = thisTriangle.getFacetVelocity();
157 >      RealType hydroLength = thisTriangle.getIncircleRadius() * 2.0 /
158 >        NumericConstant::PI;
159 >      
160 >      // gamma is the drag coefficient normal to the face of the triangle      
161 >      RealType gamma = viscosity_ * hydroLength *
162 >        OOPSEConstant::viscoConvert;
163  
164 <         // mass = integrableObject->getMass();
165 <        Vector3d vertexForce = randomForce/3.0;
320 <        (*vertex)->addFrc(vertexForce);
321 <        if (integrableObject->isDirectional()){
322 <          Vector3d vertexPos = (*vertex)->getPos();
323 <          Vector3d vertexCentroidVector = vertexPos - centroid;
324 <          (*vertex)->addTrq(cross(vertexCentroidVector,vertexForce));
325 <        }
326 <          
327 <      }
328 <    }
164 >      RealType extPressure = - (targetPressure_ * thisArea) /
165 >        OOPSEConstant::energyConvert;
166  
167 <    /* Now loop over all surface particles and apply the drag*/
167 >      RealType randomForce = randNums[thisNumber++] * sqrt(gamma);
168 >      RealType dragForce = -gamma * dot(facetVel, unitNormal);
169  
170 <    std::vector<StuntDouble*> surfaceSDs = surfaceMesh_->getSurfaceAtoms();
171 <    for (vertex = surfaceSDs.begin(); vertex != surfaceSDs.end(); ++vertex){
172 <      integrableObject = *vertex;
173 <      mass = integrableObject->getMass();
174 <      if (integrableObject->isDirectional()){
175 <        
176 <        // preliminaries for directional objects:
177 <        
178 <        A = integrableObject->getA();
179 <        Atrans = A.transpose();
180 <        Vector3d rcrLab = Atrans * hydroProps_[index]->getCOR();  
343 <        //apply random force and torque at center of resistance
344 <
345 <        Vector3d randomForceBody;
346 <        Vector3d randomTorqueBody;
347 <        genRandomForceAndTorque(randomForceBody, randomTorqueBody, index, variance_);
348 <        Vector3d randomForceLab = Atrans * randomForceBody;
349 <        Vector3d randomTorqueLab = Atrans * randomTorqueBody;
350 <        integrableObject->addFrc(randomForceLab);            
351 <        integrableObject->addTrq(randomTorqueLab + cross(rcrLab, randomForceLab ));            
352 <        
353 <
354 <        
355 <        Mat3x3d I = integrableObject->getI();
356 <        Vector3d omegaBody;
357 <        
358 <        // What remains contains velocity explicitly, but the velocity required
359 <        // is at the full step: v(t + h), while we have initially the velocity
360 <        // at the half step: v(t + h/2).  We need to iterate to converge the
361 <        // friction force and friction torque vectors.
362 <        
363 <        // this is the velocity at the half-step:
364 <        
365 <        Vector3d vel =integrableObject->getVel();
366 <        Vector3d angMom = integrableObject->getJ();
367 <        
368 <        //estimate velocity at full-step using everything but friction forces:          
369 <        
370 <        frc = integrableObject->getFrc();
371 <        Vector3d velStep = vel + (dt2_ /mass * OOPSEConstant::energyConvert) * frc;
372 <        
373 <        Tb = integrableObject->lab2Body(integrableObject->getTrq());
374 <        Vector3d angMomStep = angMom + (dt2_ * OOPSEConstant::energyConvert) * Tb;                            
375 <        
376 <        Vector3d omegaLab;
377 <        Vector3d vcdLab;
378 <        Vector3d vcdBody;
379 <        Vector3d frictionForceBody;
380 <        Vector3d frictionForceLab(0.0);
381 <        Vector3d oldFFL;  // used to test for convergence
382 <        Vector3d frictionTorqueBody(0.0);
383 <        Vector3d oldFTB;  // used to test for convergence
384 <        Vector3d frictionTorqueLab;
385 <        RealType fdot;
386 <        RealType tdot;
387 <
388 <        //iteration starts here:
389 <        
390 <        for (int k = 0; k < maxIterNum_; k++) {
391 <          
392 <          if (integrableObject->isLinear()) {
393 <            int linearAxis = integrableObject->linearAxis();
394 <            int l = (linearAxis +1 )%3;
395 <            int m = (linearAxis +2 )%3;
396 <            omegaBody[l] = angMomStep[l] /I(l, l);
397 <            omegaBody[m] = angMomStep[m] /I(m, m);
398 <            
399 <          } else {
400 <            omegaBody[0] = angMomStep[0] /I(0, 0);
401 <            omegaBody[1] = angMomStep[1] /I(1, 1);
402 <            omegaBody[2] = angMomStep[2] /I(2, 2);
170 >      Vector3d langevinForce = (extPressure + randomForce + dragForce) * unitNormal;
171 >      
172 >      // Apply triangle force to stuntdouble vertices
173 >      for (vertex = vertexSDs.begin(); vertex != vertexSDs.end(); ++vertex) {
174 >        if ((*vertex) != NULL) {
175 >          Vector3d vertexForce = langevinForce / 3.0;
176 >          (*vertex)->addFrc(vertexForce);          
177 >          if ((*vertex)->isDirectional()) {
178 >            Vector3d vertexPos = (*vertex)->getPos();
179 >            Vector3d vertexCentroidVector = vertexPos - centroid;
180 >            (*vertex)->addTrq(cross(vertexCentroidVector,vertexForce));
181            }
182 <          
405 <          omegaLab = Atrans * omegaBody;
406 <          
407 <          // apply friction force and torque at center of resistance
408 <          
409 <          vcdLab = velStep + cross(omegaLab, rcrLab);      
410 <          vcdBody = A * vcdLab;
411 <          frictionForceBody = -(hydroProps_[index]->getXitt() * vcdBody + hydroProps_[index]->getXirt() * omegaBody);
412 <          oldFFL = frictionForceLab;
413 <          frictionForceLab = Atrans * frictionForceBody;
414 <          oldFTB = frictionTorqueBody;
415 <          frictionTorqueBody = -(hydroProps_[index]->getXitr() * vcdBody + hydroProps_[index]->getXirr() * omegaBody);
416 <          frictionTorqueLab = Atrans * frictionTorqueBody;
417 <          
418 <          // re-estimate velocities at full-step using friction forces:
419 <              
420 <          velStep = vel + (dt2_ / mass * OOPSEConstant::energyConvert) * (frc + frictionForceLab);
421 <          angMomStep = angMom + (dt2_ * OOPSEConstant::energyConvert) * (Tb + frictionTorqueBody);
422 <
423 <          // check for convergence (if the vectors have converged, fdot and tdot will both be 1.0):
424 <              
425 <          fdot = dot(frictionForceLab, oldFFL) / frictionForceLab.lengthSquare();
426 <          tdot = dot(frictionTorqueBody, oldFTB) / frictionTorqueBody.lengthSquare();
427 <          
428 <          if (fabs(1.0 - fdot) <= forceTolerance_ && fabs(1.0 - tdot) <= forceTolerance_)
429 <            break; // iteration ends here
430 <        }
431 <        
432 <        integrableObject->addFrc(frictionForceLab);
433 <        integrableObject->addTrq(frictionTorqueLab + cross(rcrLab, frictionForceLab));
434 <
435 <            
436 <      } else {
437 <        //spherical atom
438 <
439 <        Vector3d randomForce;
440 <        Vector3d randomTorque;
441 <        genRandomForceAndTorque(randomForce, randomTorque, index, variance_);
442 <        integrableObject->addFrc(randomForce);  
443 <        
444 <        // What remains contains velocity explicitly, but the velocity required
445 <        // is at the full step: v(t + h), while we have initially the velocity
446 <        // at the half step: v(t + h/2).  We need to iterate to converge the
447 <        // friction force vector.
448 <        
449 <        // this is the velocity at the half-step:
450 <        
451 <        Vector3d vel =integrableObject->getVel();
452 <        
453 <        //estimate velocity at full-step using everything but friction forces:          
454 <        
455 <        frc = integrableObject->getFrc();
456 <        Vector3d velStep = vel + (dt2_ / mass * OOPSEConstant::energyConvert) * frc;
457 <        
458 <        Vector3d frictionForce(0.0);
459 <        Vector3d oldFF;  // used to test for convergence
460 <        RealType fdot;
461 <        
462 <        //iteration starts here:
463 <        
464 <        for (int k = 0; k < maxIterNum_; k++) {
465 <          
466 <          oldFF = frictionForce;                            
467 <          frictionForce = -hydroProps_[index]->getXitt() * velStep;
468 <          
469 <          // re-estimate velocities at full-step using friction forces:
470 <          
471 <          velStep = vel + (dt2_ / mass * OOPSEConstant::energyConvert) * (frc + frictionForce);
472 <          
473 <          // check for convergence (if the vector has converged, fdot will be 1.0):
474 <          
475 <          fdot = dot(frictionForce, oldFF) / frictionForce.lengthSquare();
476 <          
477 <          if (fabs(1.0 - fdot) <= forceTolerance_)
478 <            break; // iteration ends here
479 <        }
480 <        
481 <        integrableObject->addFrc(frictionForce);
482 <        
483 <        
182 >        }  
183        }
184 <      
486 <      
487 <    }
488 <    Snapshot* currSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
489 <    currSnapshot->setVolume(surfaceMesh_->getVolume());
184 >    }
185      
186 +    Snapshot* currSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
187 +    currSnapshot->setVolume(surfaceMesh_->getVolume());    
188      ForceManager::postCalculation(needStress);  
189    }
190  
191 <  void SMIPDForceManager::genRandomForceAndTorque(Vector3d& force, Vector3d& torque, unsigned int index, RealType variance) {
191 >  std::vector<RealType> SMIPDForceManager::genTriangleForces(int nTriangles,
192 >                                                             RealType variance) {
193  
496    
497    Vector<RealType, 6> Z;
498    Vector<RealType, 6> generalForce;
499    
500
501    Z[0] = randNumGen_.randNorm(0, variance);
502    Z[1] = randNumGen_.randNorm(0, variance);
503    Z[2] = randNumGen_.randNorm(0, variance);
504    Z[3] = randNumGen_.randNorm(0, variance);
505    Z[4] = randNumGen_.randNorm(0, variance);
506    Z[5] = randNumGen_.randNorm(0, variance);
507    
508    generalForce = hydroProps_[index]->getS()*Z;
509    
510    force[0] = generalForce[0];
511    force[1] = generalForce[1];
512    force[2] = generalForce[2];
513    torque[0] = generalForce[3];
514    torque[1] = generalForce[4];
515    torque[2] = generalForce[5];
516    
517 }
518  std::vector<RealType> SMIPDForceManager::genTriangleForces(int nTriangles, RealType variance) {
519
194      // zero fill the random vector before starting:
195      std::vector<RealType> gaussRand;
196      gaussRand.resize(nTriangles);
197      std::fill(gaussRand.begin(), gaussRand.end(), 0.0);
198 <
525 <
198 >  
199   #ifdef IS_MPI
200      if (worldRank == 0) {
201   #endif
202        for (int i = 0; i < nTriangles; i++) {
203 <        gaussRand[i] = fabs(randNumGen_.randNorm(0.0, 1.0));    
203 >        gaussRand[i] = randNumGen_.randNorm(0.0, variance);
204        }
205   #ifdef IS_MPI
206      }
# Line 537 | Line 210 | namespace oopse {
210  
211   #ifdef IS_MPI
212      if (worldRank == 0) {
213 <      MPI_Bcast(&gaussRand[0], nTriangles, MPI_REAL, 0, MPI_COMM_WORLD);
213 >      MPI_Bcast(&gaussRand[0], nTriangles, MPI_REALTYPE, 0, MPI_COMM_WORLD);
214      } else {
215 <      MPI_Bcast(&gaussRand[0], nTriangles, MPI_REAL, 0, MPI_COMM_WORLD);
215 >      MPI_Bcast(&gaussRand[0], nTriangles, MPI_REALTYPE, 0, MPI_COMM_WORLD);
216      }
217   #endif
218 <
546 <    for (int i = 0; i < nTriangles; i++) {
547 <      gaussRand[i] = gaussRand[i] * variance;
548 <    }
549 <
218 >  
219      return gaussRand;
220    }
552
553
554
555
556
221   }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines