ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/OOPSE-4/src/integrators/LDForceManager.cpp
Revision: 3450
Committed: Sun Sep 14 01:32:26 2008 UTC (16 years, 7 months ago) by chuckv
File size: 19525 byte(s)
Log Message:
Added large quantities of code for convex hull and constant pressure langevin dynamics.

File Contents

# Content
1 /*
2 * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3 *
4 * The University of Notre Dame grants you ("Licensee") a
5 * non-exclusive, royalty free, license to use, modify and
6 * redistribute this software in source and binary code form, provided
7 * that the following conditions are met:
8 *
9 * 1. Acknowledgement of the program authors must be made in any
10 * publication of scientific results based in part on use of the
11 * program. An acceptable form of acknowledgement is citation of
12 * the article in which the program was described (Matthew
13 * A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14 * J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15 * Parallel Simulation Engine for Molecular Dynamics,"
16 * J. Comput. Chem. 26, pp. 252-271 (2005))
17 *
18 * 2. Redistributions of source code must retain the above copyright
19 * notice, this list of conditions and the following disclaimer.
20 *
21 * 3. Redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the
24 * distribution.
25 *
26 * This software is provided "AS IS," without a warranty of any
27 * kind. All express or implied conditions, representations and
28 * warranties, including any implied warranty of merchantability,
29 * fitness for a particular purpose or non-infringement, are hereby
30 * excluded. The University of Notre Dame and its licensors shall not
31 * be liable for any damages suffered by licensee as a result of
32 * using, modifying or distributing the software or its
33 * derivatives. In no event will the University of Notre Dame or its
34 * licensors be liable for any lost revenue, profit or data, or for
35 * direct, indirect, special, consequential, incidental or punitive
36 * damages, however caused and regardless of the theory of liability,
37 * arising out of the use of or inability to use software, even if the
38 * University of Notre Dame has been advised of the possibility of
39 * such damages.
40 */
41 #include <fstream>
42 #include <iostream>
43 #include "integrators/LDForceManager.hpp"
44 #include "math/CholeskyDecomposition.hpp"
45 #include "utils/OOPSEConstant.hpp"
46 #include "hydrodynamics/Sphere.hpp"
47 #include "hydrodynamics/Ellipsoid.hpp"
48 #include "utils/ElementsTable.hpp"
49
50 namespace oopse {
51
52 LDForceManager::LDForceManager(SimInfo* info) : ForceManager(info), forceTolerance_(1e-6), maxIterNum_(4) {
53 simParams = info->getSimParams();
54 veloMunge = new Velocitizer(info);
55
56 sphericalBoundaryConditions_ = false;
57 if (simParams->getUseSphericalBoundaryConditions()) {
58 sphericalBoundaryConditions_ = true;
59 if (simParams->haveLangevinBufferRadius()) {
60 langevinBufferRadius_ = simParams->getLangevinBufferRadius();
61 } else {
62 sprintf( painCave.errMsg,
63 "langevinBufferRadius must be specified "
64 "when useSphericalBoundaryConditions is turned on.\n");
65 painCave.severity = OOPSE_ERROR;
66 painCave.isFatal = 1;
67 simError();
68 }
69
70 if (simParams->haveFrozenBufferRadius()) {
71 frozenBufferRadius_ = simParams->getFrozenBufferRadius();
72 } else {
73 sprintf( painCave.errMsg,
74 "frozenBufferRadius must be specified "
75 "when useSphericalBoundaryConditions is turned on.\n");
76 painCave.severity = OOPSE_ERROR;
77 painCave.isFatal = 1;
78 simError();
79 }
80
81 if (frozenBufferRadius_ < langevinBufferRadius_) {
82 sprintf( painCave.errMsg,
83 "frozenBufferRadius has been set smaller than the "
84 "langevinBufferRadius. This is probably an error.\n");
85 painCave.severity = OOPSE_WARNING;
86 painCave.isFatal = 0;
87 simError();
88 }
89 }
90
91 // Build the hydroProp map:
92 std::map<std::string, HydroProp*> hydroPropMap;
93
94 Molecule* mol;
95 StuntDouble* integrableObject;
96 SimInfo::MoleculeIterator i;
97 Molecule::IntegrableObjectIterator j;
98 bool needHydroPropFile = false;
99
100 for (mol = info->beginMolecule(i); mol != NULL;
101 mol = info->nextMolecule(i)) {
102 for (integrableObject = mol->beginIntegrableObject(j);
103 integrableObject != NULL;
104 integrableObject = mol->nextIntegrableObject(j)) {
105
106 if (integrableObject->isRigidBody()) {
107 RigidBody* rb = static_cast<RigidBody*>(integrableObject);
108 if (rb->getNumAtoms() > 1) needHydroPropFile = true;
109 }
110
111 }
112 }
113
114
115 if (needHydroPropFile) {
116 if (simParams->haveHydroPropFile()) {
117 hydroPropMap = parseFrictionFile(simParams->getHydroPropFile());
118 } else {
119 sprintf( painCave.errMsg,
120 "HydroPropFile must be set to a file name if Langevin Dynamics\n"
121 "\tis specified for rigidBodies which contain more than one atom\n"
122 "\tTo create a HydroPropFile, run the \"Hydro\" program.\n");
123 painCave.severity = OOPSE_ERROR;
124 painCave.isFatal = 1;
125 simError();
126 }
127
128 for (mol = info->beginMolecule(i); mol != NULL;
129 mol = info->nextMolecule(i)) {
130 for (integrableObject = mol->beginIntegrableObject(j);
131 integrableObject != NULL;
132 integrableObject = mol->nextIntegrableObject(j)) {
133
134 std::map<std::string, HydroProp*>::iterator iter = hydroPropMap.find(integrableObject->getType());
135 if (iter != hydroPropMap.end()) {
136 hydroProps_.push_back(iter->second);
137 } else {
138 sprintf( painCave.errMsg,
139 "Can not find resistance tensor for atom [%s]\n", integrableObject->getType().c_str());
140 painCave.severity = OOPSE_ERROR;
141 painCave.isFatal = 1;
142 simError();
143 }
144 }
145 }
146 } else {
147
148 std::map<std::string, HydroProp*> hydroPropMap;
149 for (mol = info->beginMolecule(i); mol != NULL;
150 mol = info->nextMolecule(i)) {
151 for (integrableObject = mol->beginIntegrableObject(j);
152 integrableObject != NULL;
153 integrableObject = mol->nextIntegrableObject(j)) {
154 Shape* currShape = NULL;
155
156 if (integrableObject->isAtom()){
157 Atom* atom = static_cast<Atom*>(integrableObject);
158 AtomType* atomType = atom->getAtomType();
159 if (atomType->isGayBerne()) {
160 DirectionalAtomType* dAtomType = dynamic_cast<DirectionalAtomType*>(atomType);
161 GenericData* data = dAtomType->getPropertyByName("GayBerne");
162 if (data != NULL) {
163 GayBerneParamGenericData* gayBerneData = dynamic_cast<GayBerneParamGenericData*>(data);
164
165 if (gayBerneData != NULL) {
166 GayBerneParam gayBerneParam = gayBerneData->getData();
167 currShape = new Ellipsoid(V3Zero,
168 gayBerneParam.GB_l / 2.0,
169 gayBerneParam.GB_d / 2.0,
170 Mat3x3d::identity());
171 } else {
172 sprintf( painCave.errMsg,
173 "Can not cast GenericData to GayBerneParam\n");
174 painCave.severity = OOPSE_ERROR;
175 painCave.isFatal = 1;
176 simError();
177 }
178 } else {
179 sprintf( painCave.errMsg, "Can not find Parameters for GayBerne\n");
180 painCave.severity = OOPSE_ERROR;
181 painCave.isFatal = 1;
182 simError();
183 }
184 } else {
185 if (atomType->isLennardJones()){
186 GenericData* data = atomType->getPropertyByName("LennardJones");
187 if (data != NULL) {
188 LJParamGenericData* ljData = dynamic_cast<LJParamGenericData*>(data);
189 if (ljData != NULL) {
190 LJParam ljParam = ljData->getData();
191 currShape = new Sphere(atom->getPos(), ljParam.sigma/2.0);
192 } else {
193 sprintf( painCave.errMsg,
194 "Can not cast GenericData to LJParam\n");
195 painCave.severity = OOPSE_ERROR;
196 painCave.isFatal = 1;
197 simError();
198 }
199 }
200 } else {
201 int aNum = etab.GetAtomicNum((atom->getType()).c_str());
202 if (aNum != 0) {
203 currShape = new Sphere(atom->getPos(), etab.GetVdwRad(aNum));
204 } else {
205 sprintf( painCave.errMsg,
206 "Could not find atom type in default element.txt\n");
207 painCave.severity = OOPSE_ERROR;
208 painCave.isFatal = 1;
209 simError();
210 }
211 }
212 }
213 }
214
215 if (!simParams->haveTargetTemp()) {
216 sprintf(painCave.errMsg, "You can't use LangevinDynamics without a targetTemp!\n");
217 painCave.isFatal = 1;
218 painCave.severity = OOPSE_ERROR;
219 simError();
220 }
221
222 if (!simParams->haveViscosity()) {
223 sprintf(painCave.errMsg, "You can't use LangevinDynamics without a viscosity!\n");
224 painCave.isFatal = 1;
225 painCave.severity = OOPSE_ERROR;
226 simError();
227 }
228
229
230 HydroProp* currHydroProp = currShape->getHydroProp(simParams->getViscosity(),simParams->getTargetTemp());
231 std::map<std::string, HydroProp*>::iterator iter = hydroPropMap.find(integrableObject->getType());
232 if (iter != hydroPropMap.end())
233 hydroProps_.push_back(iter->second);
234 else {
235 currHydroProp->complete();
236 hydroPropMap.insert(std::map<std::string, HydroProp*>::value_type(integrableObject->getType(), currHydroProp));
237 hydroProps_.push_back(currHydroProp);
238 }
239 }
240 }
241 }
242 variance_ = 2.0 * OOPSEConstant::kb*simParams->getTargetTemp()/simParams->getDt();
243 }
244
245 std::map<std::string, HydroProp*> LDForceManager::parseFrictionFile(const std::string& filename) {
246 std::map<std::string, HydroProp*> props;
247 std::ifstream ifs(filename.c_str());
248 if (ifs.is_open()) {
249
250 }
251
252 const unsigned int BufferSize = 65535;
253 char buffer[BufferSize];
254 while (ifs.getline(buffer, BufferSize)) {
255 HydroProp* currProp = new HydroProp(buffer);
256 props.insert(std::map<std::string, HydroProp*>::value_type(currProp->getName(), currProp));
257 }
258
259 return props;
260 }
261
262 void LDForceManager::postCalculation(bool needStress){
263 SimInfo::MoleculeIterator i;
264 Molecule::IntegrableObjectIterator j;
265 Molecule* mol;
266 StuntDouble* integrableObject;
267 RealType mass;
268 Vector3d pos;
269 Vector3d frc;
270 Mat3x3d A;
271 Mat3x3d Atrans;
272 Vector3d Tb;
273 Vector3d ji;
274 unsigned int index = 0;
275 bool doLangevinForces;
276 bool freezeMolecule;
277 int fdf;
278
279 fdf = 0;
280
281 for (mol = info_->beginMolecule(i); mol != NULL; mol = info_->nextMolecule(i)) {
282
283 doLangevinForces = true;
284 freezeMolecule = false;
285
286 if (sphericalBoundaryConditions_) {
287
288 Vector3d molPos = mol->getCom();
289 RealType molRad = molPos.length();
290
291 doLangevinForces = false;
292
293 if (molRad > langevinBufferRadius_) {
294 doLangevinForces = true;
295 freezeMolecule = false;
296 }
297 if (molRad > frozenBufferRadius_) {
298 doLangevinForces = false;
299 freezeMolecule = true;
300 }
301 }
302
303 for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
304 integrableObject = mol->nextIntegrableObject(j)) {
305
306 if (freezeMolecule)
307 fdf += integrableObject->freeze();
308
309 if (doLangevinForces) {
310 mass = integrableObject->getMass();
311 if (integrableObject->isDirectional()){
312
313 // preliminaries for directional objects:
314
315 A = integrableObject->getA();
316 Atrans = A.transpose();
317 Vector3d rcrLab = Atrans * hydroProps_[index]->getCOR();
318
319 //apply random force and torque at center of resistance
320
321 Vector3d randomForceBody;
322 Vector3d randomTorqueBody;
323 genRandomForceAndTorque(randomForceBody, randomTorqueBody, index, variance_);
324 Vector3d randomForceLab = Atrans * randomForceBody;
325 Vector3d randomTorqueLab = Atrans * randomTorqueBody;
326 integrableObject->addFrc(randomForceLab);
327 integrableObject->addTrq(randomTorqueLab + cross(rcrLab, randomForceLab ));
328
329 Mat3x3d I = integrableObject->getI();
330 Vector3d omegaBody;
331
332 // What remains contains velocity explicitly, but the velocity required
333 // is at the full step: v(t + h), while we have initially the velocity
334 // at the half step: v(t + h/2). We need to iterate to converge the
335 // friction force and friction torque vectors.
336
337 // this is the velocity at the half-step:
338
339 Vector3d vel =integrableObject->getVel();
340 Vector3d angMom = integrableObject->getJ();
341
342 //estimate velocity at full-step using everything but friction forces:
343
344 frc = integrableObject->getFrc();
345 Vector3d velStep = vel + (dt2_ /mass * OOPSEConstant::energyConvert) * frc;
346
347 Tb = integrableObject->lab2Body(integrableObject->getTrq());
348 Vector3d angMomStep = angMom + (dt2_ * OOPSEConstant::energyConvert) * Tb;
349
350 Vector3d omegaLab;
351 Vector3d vcdLab;
352 Vector3d vcdBody;
353 Vector3d frictionForceBody;
354 Vector3d frictionForceLab(0.0);
355 Vector3d oldFFL; // used to test for convergence
356 Vector3d frictionTorqueBody(0.0);
357 Vector3d oldFTB; // used to test for convergence
358 Vector3d frictionTorqueLab;
359 RealType fdot;
360 RealType tdot;
361
362 //iteration starts here:
363
364 for (int k = 0; k < maxIterNum_; k++) {
365
366 if (integrableObject->isLinear()) {
367 int linearAxis = integrableObject->linearAxis();
368 int l = (linearAxis +1 )%3;
369 int m = (linearAxis +2 )%3;
370 omegaBody[l] = angMomStep[l] /I(l, l);
371 omegaBody[m] = angMomStep[m] /I(m, m);
372
373 } else {
374 omegaBody[0] = angMomStep[0] /I(0, 0);
375 omegaBody[1] = angMomStep[1] /I(1, 1);
376 omegaBody[2] = angMomStep[2] /I(2, 2);
377 }
378
379 omegaLab = Atrans * omegaBody;
380
381 // apply friction force and torque at center of resistance
382
383 vcdLab = velStep + cross(omegaLab, rcrLab);
384 vcdBody = A * vcdLab;
385 frictionForceBody = -(hydroProps_[index]->getXitt() * vcdBody + hydroProps_[index]->getXirt() * omegaBody);
386 oldFFL = frictionForceLab;
387 frictionForceLab = Atrans * frictionForceBody;
388 oldFTB = frictionTorqueBody;
389 frictionTorqueBody = -(hydroProps_[index]->getXitr() * vcdBody + hydroProps_[index]->getXirr() * omegaBody);
390 frictionTorqueLab = Atrans * frictionTorqueBody;
391
392 // re-estimate velocities at full-step using friction forces:
393
394 velStep = vel + (dt2_ / mass * OOPSEConstant::energyConvert) * (frc + frictionForceLab);
395 angMomStep = angMom + (dt2_ * OOPSEConstant::energyConvert) * (Tb + frictionTorqueBody);
396
397 // check for convergence (if the vectors have converged, fdot and tdot will both be 1.0):
398
399 fdot = dot(frictionForceLab, oldFFL) / frictionForceLab.lengthSquare();
400 tdot = dot(frictionTorqueBody, oldFTB) / frictionTorqueBody.lengthSquare();
401
402 if (fabs(1.0 - fdot) <= forceTolerance_ && fabs(1.0 - tdot) <= forceTolerance_)
403 break; // iteration ends here
404 }
405
406 integrableObject->addFrc(frictionForceLab);
407 integrableObject->addTrq(frictionTorqueLab + cross(rcrLab, frictionForceLab));
408
409
410 } else {
411 //spherical atom
412
413 Vector3d randomForce;
414 Vector3d randomTorque;
415 genRandomForceAndTorque(randomForce, randomTorque, index, variance_);
416 integrableObject->addFrc(randomForce);
417
418 // What remains contains velocity explicitly, but the velocity required
419 // is at the full step: v(t + h), while we have initially the velocity
420 // at the half step: v(t + h/2). We need to iterate to converge the
421 // friction force vector.
422
423 // this is the velocity at the half-step:
424
425 Vector3d vel =integrableObject->getVel();
426
427 //estimate velocity at full-step using everything but friction forces:
428
429 frc = integrableObject->getFrc();
430 Vector3d velStep = vel + (dt2_ / mass * OOPSEConstant::energyConvert) * frc;
431
432 Vector3d frictionForce(0.0);
433 Vector3d oldFF; // used to test for convergence
434 RealType fdot;
435
436 //iteration starts here:
437
438 for (int k = 0; k < maxIterNum_; k++) {
439
440 oldFF = frictionForce;
441 frictionForce = -hydroProps_[index]->getXitt() * velStep;
442
443 // re-estimate velocities at full-step using friction forces:
444
445 velStep = vel + (dt2_ / mass * OOPSEConstant::energyConvert) * (frc + frictionForce);
446
447 // check for convergence (if the vector has converged, fdot will be 1.0):
448
449 fdot = dot(frictionForce, oldFF) / frictionForce.lengthSquare();
450
451 if (fabs(1.0 - fdot) <= forceTolerance_)
452 break; // iteration ends here
453 }
454
455 integrableObject->addFrc(frictionForce);
456
457 }
458 }
459
460 ++index;
461
462 }
463 }
464
465 info_->setFdf(fdf);
466 veloMunge->removeComDrift();
467 // Remove angular drift if we are not using periodic boundary conditions.
468 if(!simParams->getUsePeriodicBoundaryConditions())
469 veloMunge->removeAngularDrift();
470
471 ForceManager::postCalculation(needStress);
472 }
473
474 void LDForceManager::genRandomForceAndTorque(Vector3d& force, Vector3d& torque, unsigned int index, RealType variance) {
475
476
477 Vector<RealType, 6> Z;
478 Vector<RealType, 6> generalForce;
479
480 Z[0] = randNumGen_.randNorm(0, variance);
481 Z[1] = randNumGen_.randNorm(0, variance);
482 Z[2] = randNumGen_.randNorm(0, variance);
483 Z[3] = randNumGen_.randNorm(0, variance);
484 Z[4] = randNumGen_.randNorm(0, variance);
485 Z[5] = randNumGen_.randNorm(0, variance);
486
487 generalForce = hydroProps_[index]->getS()*Z;
488
489 force[0] = generalForce[0];
490 force[1] = generalForce[1];
491 force[2] = generalForce[2];
492 torque[0] = generalForce[3];
493 torque[1] = generalForce[4];
494 torque[2] = generalForce[5];
495
496 }
497
498 }

Properties

Name Value
svn:executable *