1 |
/* |
2 |
* Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. |
3 |
* |
4 |
* The University of Notre Dame grants you ("Licensee") a |
5 |
* non-exclusive, royalty free, license to use, modify and |
6 |
* redistribute this software in source and binary code form, provided |
7 |
* that the following conditions are met: |
8 |
* |
9 |
* 1. Acknowledgement of the program authors must be made in any |
10 |
* publication of scientific results based in part on use of the |
11 |
* program. An acceptable form of acknowledgement is citation of |
12 |
* the article in which the program was described (Matthew |
13 |
* A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher |
14 |
* J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented |
15 |
* Parallel Simulation Engine for Molecular Dynamics," |
16 |
* J. Comput. Chem. 26, pp. 252-271 (2005)) |
17 |
* |
18 |
* 2. Redistributions of source code must retain the above copyright |
19 |
* notice, this list of conditions and the following disclaimer. |
20 |
* |
21 |
* 3. Redistributions in binary form must reproduce the above copyright |
22 |
* notice, this list of conditions and the following disclaimer in the |
23 |
* documentation and/or other materials provided with the |
24 |
* distribution. |
25 |
* |
26 |
* This software is provided "AS IS," without a warranty of any |
27 |
* kind. All express or implied conditions, representations and |
28 |
* warranties, including any implied warranty of merchantability, |
29 |
* fitness for a particular purpose or non-infringement, are hereby |
30 |
* excluded. The University of Notre Dame and its licensors shall not |
31 |
* be liable for any damages suffered by licensee as a result of |
32 |
* using, modifying or distributing the software or its |
33 |
* derivatives. In no event will the University of Notre Dame or its |
34 |
* licensors be liable for any lost revenue, profit or data, or for |
35 |
* direct, indirect, special, consequential, incidental or punitive |
36 |
* damages, however caused and regardless of the theory of liability, |
37 |
* arising out of the use of or inability to use software, even if the |
38 |
* University of Notre Dame has been advised of the possibility of |
39 |
* such damages. |
40 |
*/ |
41 |
#include <fstream> |
42 |
#include <iostream> |
43 |
#include "integrators/LDForceManager.hpp" |
44 |
#include "math/CholeskyDecomposition.hpp" |
45 |
#include "utils/OOPSEConstant.hpp" |
46 |
#include "hydrodynamics/Sphere.hpp" |
47 |
#include "hydrodynamics/Ellipsoid.hpp" |
48 |
#include "utils/ElementsTable.hpp" |
49 |
|
50 |
namespace oopse { |
51 |
|
52 |
LDForceManager::LDForceManager(SimInfo* info) : ForceManager(info), forceTolerance_(1e-6), maxIterNum_(4) { |
53 |
simParams = info->getSimParams(); |
54 |
veloMunge = new Velocitizer(info); |
55 |
|
56 |
sphericalBoundaryConditions_ = false; |
57 |
if (simParams->getUseSphericalBoundaryConditions()) { |
58 |
sphericalBoundaryConditions_ = true; |
59 |
if (simParams->haveLangevinBufferRadius()) { |
60 |
langevinBufferRadius_ = simParams->getLangevinBufferRadius(); |
61 |
} else { |
62 |
sprintf( painCave.errMsg, |
63 |
"langevinBufferRadius must be specified " |
64 |
"when useSphericalBoundaryConditions is turned on.\n"); |
65 |
painCave.severity = OOPSE_ERROR; |
66 |
painCave.isFatal = 1; |
67 |
simError(); |
68 |
} |
69 |
|
70 |
if (simParams->haveFrozenBufferRadius()) { |
71 |
frozenBufferRadius_ = simParams->getFrozenBufferRadius(); |
72 |
} else { |
73 |
sprintf( painCave.errMsg, |
74 |
"frozenBufferRadius must be specified " |
75 |
"when useSphericalBoundaryConditions is turned on.\n"); |
76 |
painCave.severity = OOPSE_ERROR; |
77 |
painCave.isFatal = 1; |
78 |
simError(); |
79 |
} |
80 |
|
81 |
if (frozenBufferRadius_ < langevinBufferRadius_) { |
82 |
sprintf( painCave.errMsg, |
83 |
"frozenBufferRadius has been set smaller than the " |
84 |
"langevinBufferRadius. This is probably an error.\n"); |
85 |
painCave.severity = OOPSE_WARNING; |
86 |
painCave.isFatal = 0; |
87 |
simError(); |
88 |
} |
89 |
} |
90 |
|
91 |
// Build the hydroProp map: |
92 |
std::map<std::string, HydroProp*> hydroPropMap; |
93 |
|
94 |
Molecule* mol; |
95 |
StuntDouble* integrableObject; |
96 |
SimInfo::MoleculeIterator i; |
97 |
Molecule::IntegrableObjectIterator j; |
98 |
bool needHydroPropFile = false; |
99 |
|
100 |
for (mol = info->beginMolecule(i); mol != NULL; |
101 |
mol = info->nextMolecule(i)) { |
102 |
for (integrableObject = mol->beginIntegrableObject(j); |
103 |
integrableObject != NULL; |
104 |
integrableObject = mol->nextIntegrableObject(j)) { |
105 |
|
106 |
if (integrableObject->isRigidBody()) { |
107 |
RigidBody* rb = static_cast<RigidBody*>(integrableObject); |
108 |
if (rb->getNumAtoms() > 1) needHydroPropFile = true; |
109 |
} |
110 |
|
111 |
} |
112 |
} |
113 |
|
114 |
|
115 |
if (needHydroPropFile) { |
116 |
if (simParams->haveHydroPropFile()) { |
117 |
hydroPropMap = parseFrictionFile(simParams->getHydroPropFile()); |
118 |
} else { |
119 |
sprintf( painCave.errMsg, |
120 |
"HydroPropFile must be set to a file name if Langevin Dynamics\n" |
121 |
"\tis specified for rigidBodies which contain more than one atom\n" |
122 |
"\tTo create a HydroPropFile, run the \"Hydro\" program.\n"); |
123 |
painCave.severity = OOPSE_ERROR; |
124 |
painCave.isFatal = 1; |
125 |
simError(); |
126 |
} |
127 |
|
128 |
for (mol = info->beginMolecule(i); mol != NULL; |
129 |
mol = info->nextMolecule(i)) { |
130 |
for (integrableObject = mol->beginIntegrableObject(j); |
131 |
integrableObject != NULL; |
132 |
integrableObject = mol->nextIntegrableObject(j)) { |
133 |
|
134 |
std::map<std::string, HydroProp*>::iterator iter = hydroPropMap.find(integrableObject->getType()); |
135 |
if (iter != hydroPropMap.end()) { |
136 |
hydroProps_.push_back(iter->second); |
137 |
} else { |
138 |
sprintf( painCave.errMsg, |
139 |
"Can not find resistance tensor for atom [%s]\n", integrableObject->getType().c_str()); |
140 |
painCave.severity = OOPSE_ERROR; |
141 |
painCave.isFatal = 1; |
142 |
simError(); |
143 |
} |
144 |
} |
145 |
} |
146 |
} else { |
147 |
|
148 |
std::map<std::string, HydroProp*> hydroPropMap; |
149 |
for (mol = info->beginMolecule(i); mol != NULL; |
150 |
mol = info->nextMolecule(i)) { |
151 |
for (integrableObject = mol->beginIntegrableObject(j); |
152 |
integrableObject != NULL; |
153 |
integrableObject = mol->nextIntegrableObject(j)) { |
154 |
Shape* currShape = NULL; |
155 |
|
156 |
if (integrableObject->isAtom()){ |
157 |
Atom* atom = static_cast<Atom*>(integrableObject); |
158 |
AtomType* atomType = atom->getAtomType(); |
159 |
if (atomType->isGayBerne()) { |
160 |
DirectionalAtomType* dAtomType = dynamic_cast<DirectionalAtomType*>(atomType); |
161 |
GenericData* data = dAtomType->getPropertyByName("GayBerne"); |
162 |
if (data != NULL) { |
163 |
GayBerneParamGenericData* gayBerneData = dynamic_cast<GayBerneParamGenericData*>(data); |
164 |
|
165 |
if (gayBerneData != NULL) { |
166 |
GayBerneParam gayBerneParam = gayBerneData->getData(); |
167 |
currShape = new Ellipsoid(V3Zero, |
168 |
gayBerneParam.GB_l / 2.0, |
169 |
gayBerneParam.GB_d / 2.0, |
170 |
Mat3x3d::identity()); |
171 |
} else { |
172 |
sprintf( painCave.errMsg, |
173 |
"Can not cast GenericData to GayBerneParam\n"); |
174 |
painCave.severity = OOPSE_ERROR; |
175 |
painCave.isFatal = 1; |
176 |
simError(); |
177 |
} |
178 |
} else { |
179 |
sprintf( painCave.errMsg, "Can not find Parameters for GayBerne\n"); |
180 |
painCave.severity = OOPSE_ERROR; |
181 |
painCave.isFatal = 1; |
182 |
simError(); |
183 |
} |
184 |
} else { |
185 |
if (atomType->isLennardJones()){ |
186 |
GenericData* data = atomType->getPropertyByName("LennardJones"); |
187 |
if (data != NULL) { |
188 |
LJParamGenericData* ljData = dynamic_cast<LJParamGenericData*>(data); |
189 |
if (ljData != NULL) { |
190 |
LJParam ljParam = ljData->getData(); |
191 |
currShape = new Sphere(atom->getPos(), ljParam.sigma/2.0); |
192 |
} else { |
193 |
sprintf( painCave.errMsg, |
194 |
"Can not cast GenericData to LJParam\n"); |
195 |
painCave.severity = OOPSE_ERROR; |
196 |
painCave.isFatal = 1; |
197 |
simError(); |
198 |
} |
199 |
} |
200 |
} else { |
201 |
int aNum = etab.GetAtomicNum((atom->getType()).c_str()); |
202 |
if (aNum != 0) { |
203 |
currShape = new Sphere(atom->getPos(), etab.GetVdwRad(aNum)); |
204 |
} else { |
205 |
sprintf( painCave.errMsg, |
206 |
"Could not find atom type in default element.txt\n"); |
207 |
painCave.severity = OOPSE_ERROR; |
208 |
painCave.isFatal = 1; |
209 |
simError(); |
210 |
} |
211 |
} |
212 |
} |
213 |
} |
214 |
|
215 |
if (!simParams->haveTargetTemp()) { |
216 |
sprintf(painCave.errMsg, "You can't use LangevinDynamics without a targetTemp!\n"); |
217 |
painCave.isFatal = 1; |
218 |
painCave.severity = OOPSE_ERROR; |
219 |
simError(); |
220 |
} |
221 |
|
222 |
if (!simParams->haveViscosity()) { |
223 |
sprintf(painCave.errMsg, "You can't use LangevinDynamics without a viscosity!\n"); |
224 |
painCave.isFatal = 1; |
225 |
painCave.severity = OOPSE_ERROR; |
226 |
simError(); |
227 |
} |
228 |
|
229 |
|
230 |
HydroProp* currHydroProp = currShape->getHydroProp(simParams->getViscosity(),simParams->getTargetTemp()); |
231 |
std::map<std::string, HydroProp*>::iterator iter = hydroPropMap.find(integrableObject->getType()); |
232 |
if (iter != hydroPropMap.end()) |
233 |
hydroProps_.push_back(iter->second); |
234 |
else { |
235 |
currHydroProp->complete(); |
236 |
hydroPropMap.insert(std::map<std::string, HydroProp*>::value_type(integrableObject->getType(), currHydroProp)); |
237 |
hydroProps_.push_back(currHydroProp); |
238 |
} |
239 |
} |
240 |
} |
241 |
} |
242 |
variance_ = 2.0 * OOPSEConstant::kb*simParams->getTargetTemp()/simParams->getDt(); |
243 |
} |
244 |
|
245 |
std::map<std::string, HydroProp*> LDForceManager::parseFrictionFile(const std::string& filename) { |
246 |
std::map<std::string, HydroProp*> props; |
247 |
std::ifstream ifs(filename.c_str()); |
248 |
if (ifs.is_open()) { |
249 |
|
250 |
} |
251 |
|
252 |
const unsigned int BufferSize = 65535; |
253 |
char buffer[BufferSize]; |
254 |
while (ifs.getline(buffer, BufferSize)) { |
255 |
HydroProp* currProp = new HydroProp(buffer); |
256 |
props.insert(std::map<std::string, HydroProp*>::value_type(currProp->getName(), currProp)); |
257 |
} |
258 |
|
259 |
return props; |
260 |
} |
261 |
|
262 |
void LDForceManager::postCalculation(bool needStress){ |
263 |
SimInfo::MoleculeIterator i; |
264 |
Molecule::IntegrableObjectIterator j; |
265 |
Molecule* mol; |
266 |
StuntDouble* integrableObject; |
267 |
RealType mass; |
268 |
Vector3d pos; |
269 |
Vector3d frc; |
270 |
Mat3x3d A; |
271 |
Mat3x3d Atrans; |
272 |
Vector3d Tb; |
273 |
Vector3d ji; |
274 |
unsigned int index = 0; |
275 |
bool doLangevinForces; |
276 |
bool freezeMolecule; |
277 |
int fdf; |
278 |
|
279 |
fdf = 0; |
280 |
|
281 |
for (mol = info_->beginMolecule(i); mol != NULL; mol = info_->nextMolecule(i)) { |
282 |
|
283 |
doLangevinForces = true; |
284 |
freezeMolecule = false; |
285 |
|
286 |
if (sphericalBoundaryConditions_) { |
287 |
|
288 |
Vector3d molPos = mol->getCom(); |
289 |
RealType molRad = molPos.length(); |
290 |
|
291 |
doLangevinForces = false; |
292 |
|
293 |
if (molRad > langevinBufferRadius_) { |
294 |
doLangevinForces = true; |
295 |
freezeMolecule = false; |
296 |
} |
297 |
if (molRad > frozenBufferRadius_) { |
298 |
doLangevinForces = false; |
299 |
freezeMolecule = true; |
300 |
} |
301 |
} |
302 |
|
303 |
for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL; |
304 |
integrableObject = mol->nextIntegrableObject(j)) { |
305 |
|
306 |
if (freezeMolecule) |
307 |
fdf += integrableObject->freeze(); |
308 |
|
309 |
if (doLangevinForces) { |
310 |
mass = integrableObject->getMass(); |
311 |
if (integrableObject->isDirectional()){ |
312 |
|
313 |
// preliminaries for directional objects: |
314 |
|
315 |
A = integrableObject->getA(); |
316 |
Atrans = A.transpose(); |
317 |
Vector3d rcrLab = Atrans * hydroProps_[index]->getCOR(); |
318 |
|
319 |
//apply random force and torque at center of resistance |
320 |
|
321 |
Vector3d randomForceBody; |
322 |
Vector3d randomTorqueBody; |
323 |
genRandomForceAndTorque(randomForceBody, randomTorqueBody, index, variance_); |
324 |
Vector3d randomForceLab = Atrans * randomForceBody; |
325 |
Vector3d randomTorqueLab = Atrans * randomTorqueBody; |
326 |
integrableObject->addFrc(randomForceLab); |
327 |
integrableObject->addTrq(randomTorqueLab + cross(rcrLab, randomForceLab )); |
328 |
|
329 |
Mat3x3d I = integrableObject->getI(); |
330 |
Vector3d omegaBody; |
331 |
|
332 |
// What remains contains velocity explicitly, but the velocity required |
333 |
// is at the full step: v(t + h), while we have initially the velocity |
334 |
// at the half step: v(t + h/2). We need to iterate to converge the |
335 |
// friction force and friction torque vectors. |
336 |
|
337 |
// this is the velocity at the half-step: |
338 |
|
339 |
Vector3d vel =integrableObject->getVel(); |
340 |
Vector3d angMom = integrableObject->getJ(); |
341 |
|
342 |
//estimate velocity at full-step using everything but friction forces: |
343 |
|
344 |
frc = integrableObject->getFrc(); |
345 |
Vector3d velStep = vel + (dt2_ /mass * OOPSEConstant::energyConvert) * frc; |
346 |
|
347 |
Tb = integrableObject->lab2Body(integrableObject->getTrq()); |
348 |
Vector3d angMomStep = angMom + (dt2_ * OOPSEConstant::energyConvert) * Tb; |
349 |
|
350 |
Vector3d omegaLab; |
351 |
Vector3d vcdLab; |
352 |
Vector3d vcdBody; |
353 |
Vector3d frictionForceBody; |
354 |
Vector3d frictionForceLab(0.0); |
355 |
Vector3d oldFFL; // used to test for convergence |
356 |
Vector3d frictionTorqueBody(0.0); |
357 |
Vector3d oldFTB; // used to test for convergence |
358 |
Vector3d frictionTorqueLab; |
359 |
RealType fdot; |
360 |
RealType tdot; |
361 |
|
362 |
//iteration starts here: |
363 |
|
364 |
for (int k = 0; k < maxIterNum_; k++) { |
365 |
|
366 |
if (integrableObject->isLinear()) { |
367 |
int linearAxis = integrableObject->linearAxis(); |
368 |
int l = (linearAxis +1 )%3; |
369 |
int m = (linearAxis +2 )%3; |
370 |
omegaBody[l] = angMomStep[l] /I(l, l); |
371 |
omegaBody[m] = angMomStep[m] /I(m, m); |
372 |
|
373 |
} else { |
374 |
omegaBody[0] = angMomStep[0] /I(0, 0); |
375 |
omegaBody[1] = angMomStep[1] /I(1, 1); |
376 |
omegaBody[2] = angMomStep[2] /I(2, 2); |
377 |
} |
378 |
|
379 |
omegaLab = Atrans * omegaBody; |
380 |
|
381 |
// apply friction force and torque at center of resistance |
382 |
|
383 |
vcdLab = velStep + cross(omegaLab, rcrLab); |
384 |
vcdBody = A * vcdLab; |
385 |
frictionForceBody = -(hydroProps_[index]->getXitt() * vcdBody + hydroProps_[index]->getXirt() * omegaBody); |
386 |
oldFFL = frictionForceLab; |
387 |
frictionForceLab = Atrans * frictionForceBody; |
388 |
oldFTB = frictionTorqueBody; |
389 |
frictionTorqueBody = -(hydroProps_[index]->getXitr() * vcdBody + hydroProps_[index]->getXirr() * omegaBody); |
390 |
frictionTorqueLab = Atrans * frictionTorqueBody; |
391 |
|
392 |
// re-estimate velocities at full-step using friction forces: |
393 |
|
394 |
velStep = vel + (dt2_ / mass * OOPSEConstant::energyConvert) * (frc + frictionForceLab); |
395 |
angMomStep = angMom + (dt2_ * OOPSEConstant::energyConvert) * (Tb + frictionTorqueBody); |
396 |
|
397 |
// check for convergence (if the vectors have converged, fdot and tdot will both be 1.0): |
398 |
|
399 |
fdot = dot(frictionForceLab, oldFFL) / frictionForceLab.lengthSquare(); |
400 |
tdot = dot(frictionTorqueBody, oldFTB) / frictionTorqueBody.lengthSquare(); |
401 |
|
402 |
if (fabs(1.0 - fdot) <= forceTolerance_ && fabs(1.0 - tdot) <= forceTolerance_) |
403 |
break; // iteration ends here |
404 |
} |
405 |
|
406 |
integrableObject->addFrc(frictionForceLab); |
407 |
integrableObject->addTrq(frictionTorqueLab + cross(rcrLab, frictionForceLab)); |
408 |
|
409 |
|
410 |
} else { |
411 |
//spherical atom |
412 |
|
413 |
Vector3d randomForce; |
414 |
Vector3d randomTorque; |
415 |
genRandomForceAndTorque(randomForce, randomTorque, index, variance_); |
416 |
integrableObject->addFrc(randomForce); |
417 |
|
418 |
// What remains contains velocity explicitly, but the velocity required |
419 |
// is at the full step: v(t + h), while we have initially the velocity |
420 |
// at the half step: v(t + h/2). We need to iterate to converge the |
421 |
// friction force vector. |
422 |
|
423 |
// this is the velocity at the half-step: |
424 |
|
425 |
Vector3d vel =integrableObject->getVel(); |
426 |
|
427 |
//estimate velocity at full-step using everything but friction forces: |
428 |
|
429 |
frc = integrableObject->getFrc(); |
430 |
Vector3d velStep = vel + (dt2_ / mass * OOPSEConstant::energyConvert) * frc; |
431 |
|
432 |
Vector3d frictionForce(0.0); |
433 |
Vector3d oldFF; // used to test for convergence |
434 |
RealType fdot; |
435 |
|
436 |
//iteration starts here: |
437 |
|
438 |
for (int k = 0; k < maxIterNum_; k++) { |
439 |
|
440 |
oldFF = frictionForce; |
441 |
frictionForce = -hydroProps_[index]->getXitt() * velStep; |
442 |
|
443 |
// re-estimate velocities at full-step using friction forces: |
444 |
|
445 |
velStep = vel + (dt2_ / mass * OOPSEConstant::energyConvert) * (frc + frictionForce); |
446 |
|
447 |
// check for convergence (if the vector has converged, fdot will be 1.0): |
448 |
|
449 |
fdot = dot(frictionForce, oldFF) / frictionForce.lengthSquare(); |
450 |
|
451 |
if (fabs(1.0 - fdot) <= forceTolerance_) |
452 |
break; // iteration ends here |
453 |
} |
454 |
|
455 |
integrableObject->addFrc(frictionForce); |
456 |
|
457 |
} |
458 |
} |
459 |
|
460 |
++index; |
461 |
|
462 |
} |
463 |
} |
464 |
|
465 |
info_->setFdf(fdf); |
466 |
veloMunge->removeComDrift(); |
467 |
// Remove angular drift if we are not using periodic boundary conditions. |
468 |
if(!simParams->getUsePeriodicBoundaryConditions()) |
469 |
veloMunge->removeAngularDrift(); |
470 |
|
471 |
ForceManager::postCalculation(needStress); |
472 |
} |
473 |
|
474 |
void LDForceManager::genRandomForceAndTorque(Vector3d& force, Vector3d& torque, unsigned int index, RealType variance) { |
475 |
|
476 |
|
477 |
Vector<RealType, 6> Z; |
478 |
Vector<RealType, 6> generalForce; |
479 |
|
480 |
Z[0] = randNumGen_.randNorm(0, variance); |
481 |
Z[1] = randNumGen_.randNorm(0, variance); |
482 |
Z[2] = randNumGen_.randNorm(0, variance); |
483 |
Z[3] = randNumGen_.randNorm(0, variance); |
484 |
Z[4] = randNumGen_.randNorm(0, variance); |
485 |
Z[5] = randNumGen_.randNorm(0, variance); |
486 |
|
487 |
generalForce = hydroProps_[index]->getS()*Z; |
488 |
|
489 |
force[0] = generalForce[0]; |
490 |
force[1] = generalForce[1]; |
491 |
force[2] = generalForce[2]; |
492 |
torque[0] = generalForce[3]; |
493 |
torque[1] = generalForce[4]; |
494 |
torque[2] = generalForce[5]; |
495 |
|
496 |
} |
497 |
|
498 |
} |