| 1 | /* | 
| 2 | * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. | 
| 3 | * | 
| 4 | * The University of Notre Dame grants you ("Licensee") a | 
| 5 | * non-exclusive, royalty free, license to use, modify and | 
| 6 | * redistribute this software in source and binary code form, provided | 
| 7 | * that the following conditions are met: | 
| 8 | * | 
| 9 | * 1. Acknowledgement of the program authors must be made in any | 
| 10 | *    publication of scientific results based in part on use of the | 
| 11 | *    program.  An acceptable form of acknowledgement is citation of | 
| 12 | *    the article in which the program was described (Matthew | 
| 13 | *    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher | 
| 14 | *    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented | 
| 15 | *    Parallel Simulation Engine for Molecular Dynamics," | 
| 16 | *    J. Comput. Chem. 26, pp. 252-271 (2005)) | 
| 17 | * | 
| 18 | * 2. Redistributions of source code must retain the above copyright | 
| 19 | *    notice, this list of conditions and the following disclaimer. | 
| 20 | * | 
| 21 | * 3. Redistributions in binary form must reproduce the above copyright | 
| 22 | *    notice, this list of conditions and the following disclaimer in the | 
| 23 | *    documentation and/or other materials provided with the | 
| 24 | *    distribution. | 
| 25 | * | 
| 26 | * This software is provided "AS IS," without a warranty of any | 
| 27 | * kind. All express or implied conditions, representations and | 
| 28 | * warranties, including any implied warranty of merchantability, | 
| 29 | * fitness for a particular purpose or non-infringement, are hereby | 
| 30 | * excluded.  The University of Notre Dame and its licensors shall not | 
| 31 | * be liable for any damages suffered by licensee as a result of | 
| 32 | * using, modifying or distributing the software or its | 
| 33 | * derivatives. In no event will the University of Notre Dame or its | 
| 34 | * licensors be liable for any lost revenue, profit or data, or for | 
| 35 | * direct, indirect, special, consequential, incidental or punitive | 
| 36 | * damages, however caused and regardless of the theory of liability, | 
| 37 | * arising out of the use of or inability to use software, even if the | 
| 38 | * University of Notre Dame has been advised of the possibility of | 
| 39 | * such damages. | 
| 40 | */ | 
| 41 |  | 
| 42 | #include <math.h> | 
| 43 | #include <iostream> | 
| 44 |  | 
| 45 | #ifdef IS_MPI | 
| 46 | #include <mpi.h> | 
| 47 | #endif //is_mpi | 
| 48 |  | 
| 49 | #include "brains/Thermo.hpp" | 
| 50 | #include "primitives/Molecule.hpp" | 
| 51 | #include "utils/simError.h" | 
| 52 | #include "utils/OOPSEConstant.hpp" | 
| 53 |  | 
| 54 | namespace oopse { | 
| 55 |  | 
| 56 | double Thermo::getKinetic() { | 
| 57 | SimInfo::MoleculeIterator miter; | 
| 58 | std::vector<StuntDouble*>::iterator iiter; | 
| 59 | Molecule* mol; | 
| 60 | StuntDouble* integrableObject; | 
| 61 | Vector3d vel; | 
| 62 | Vector3d angMom; | 
| 63 | Mat3x3d I; | 
| 64 | int i; | 
| 65 | int j; | 
| 66 | int k; | 
| 67 | double kinetic = 0.0; | 
| 68 | double kinetic_global = 0.0; | 
| 69 |  | 
| 70 | for (mol = info_->beginMolecule(miter); mol != NULL; mol = info_->nextMolecule(miter)) { | 
| 71 | for (integrableObject = mol->beginIntegrableObject(iiter); integrableObject != NULL; | 
| 72 | integrableObject = mol->nextIntegrableObject(iiter)) { | 
| 73 |  | 
| 74 | double mass = integrableObject->getMass(); | 
| 75 | Vector3d vel = integrableObject->getVel(); | 
| 76 |  | 
| 77 | kinetic += mass * (vel[0]*vel[0] + vel[1]*vel[1] + vel[2]*vel[2]); | 
| 78 |  | 
| 79 | if (integrableObject->isDirectional()) { | 
| 80 | angMom = integrableObject->getJ(); | 
| 81 | I = integrableObject->getI(); | 
| 82 |  | 
| 83 | if (integrableObject->isLinear()) { | 
| 84 | i = integrableObject->linearAxis(); | 
| 85 | j = (i + 1) % 3; | 
| 86 | k = (i + 2) % 3; | 
| 87 | kinetic += angMom[j] * angMom[j] / I(j, j) + angMom[k] * angMom[k] / I(k, k); | 
| 88 | } else { | 
| 89 | kinetic += angMom[0]*angMom[0]/I(0, 0) + angMom[1]*angMom[1]/I(1, 1) | 
| 90 | + angMom[2]*angMom[2]/I(2, 2); | 
| 91 | } | 
| 92 | } | 
| 93 |  | 
| 94 | } | 
| 95 | } | 
| 96 |  | 
| 97 | #ifdef IS_MPI | 
| 98 |  | 
| 99 | MPI_Allreduce(&kinetic, &kinetic_global, 1, MPI_DOUBLE, MPI_SUM, | 
| 100 | MPI_COMM_WORLD); | 
| 101 | kinetic = kinetic_global; | 
| 102 |  | 
| 103 | #endif //is_mpi | 
| 104 |  | 
| 105 | kinetic = kinetic * 0.5 / OOPSEConstant::energyConvert; | 
| 106 |  | 
| 107 | return kinetic; | 
| 108 | } | 
| 109 |  | 
| 110 | double Thermo::getPotential() { | 
| 111 | double potential = 0.0; | 
| 112 | Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot(); | 
| 113 | double shortRangePot_local =  curSnapshot->statData[Stats::SHORT_RANGE_POTENTIAL] ; | 
| 114 |  | 
| 115 | // Get total potential for entire system from MPI. | 
| 116 |  | 
| 117 | #ifdef IS_MPI | 
| 118 |  | 
| 119 | MPI_Allreduce(&shortRangePot_local, &potential, 1, MPI_DOUBLE, MPI_SUM, | 
| 120 | MPI_COMM_WORLD); | 
| 121 | potential += curSnapshot->statData[Stats::LONG_RANGE_POTENTIAL]; | 
| 122 |  | 
| 123 | #else | 
| 124 |  | 
| 125 | potential = shortRangePot_local + curSnapshot->statData[Stats::LONG_RANGE_POTENTIAL]; | 
| 126 |  | 
| 127 | #endif // is_mpi | 
| 128 |  | 
| 129 | return potential; | 
| 130 | } | 
| 131 |  | 
| 132 | double Thermo::getTotalE() { | 
| 133 | double total; | 
| 134 |  | 
| 135 | total = this->getKinetic() + this->getPotential(); | 
| 136 | return total; | 
| 137 | } | 
| 138 |  | 
| 139 | double Thermo::getTemperature() { | 
| 140 |  | 
| 141 | double temperature = ( 2.0 * this->getKinetic() ) / (info_->getNdf()* OOPSEConstant::kb ); | 
| 142 | return temperature; | 
| 143 | } | 
| 144 |  | 
| 145 | double Thermo::getVolume() { | 
| 146 | Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot(); | 
| 147 | return curSnapshot->getVolume(); | 
| 148 | } | 
| 149 |  | 
| 150 | double Thermo::getPressure() { | 
| 151 |  | 
| 152 | // Relies on the calculation of the full molecular pressure tensor | 
| 153 |  | 
| 154 |  | 
| 155 | Mat3x3d tensor; | 
| 156 | double pressure; | 
| 157 |  | 
| 158 | tensor = getPressureTensor(); | 
| 159 |  | 
| 160 | pressure = OOPSEConstant::pressureConvert * (tensor(0, 0) + tensor(1, 1) + tensor(2, 2)) / 3.0; | 
| 161 |  | 
| 162 | return pressure; | 
| 163 | } | 
| 164 |  | 
| 165 | double Thermo::getPressure(int direction) { | 
| 166 |  | 
| 167 | // Relies on the calculation of the full molecular pressure tensor | 
| 168 |  | 
| 169 |  | 
| 170 | Mat3x3d tensor; | 
| 171 | double pressure; | 
| 172 |  | 
| 173 | tensor = getPressureTensor(); | 
| 174 |  | 
| 175 | pressure = OOPSEConstant::pressureConvert * tensor(direction, direction); | 
| 176 |  | 
| 177 | return pressure; | 
| 178 | } | 
| 179 |  | 
| 180 |  | 
| 181 |  | 
| 182 | Mat3x3d Thermo::getPressureTensor() { | 
| 183 | // returns pressure tensor in units amu*fs^-2*Ang^-1 | 
| 184 | // routine derived via viral theorem description in: | 
| 185 | // Paci, E. and Marchi, M. J.Phys.Chem. 1996, 100, 4314-4322 | 
| 186 | Mat3x3d pressureTensor; | 
| 187 | Mat3x3d p_local(0.0); | 
| 188 | Mat3x3d p_global(0.0); | 
| 189 |  | 
| 190 | SimInfo::MoleculeIterator i; | 
| 191 | std::vector<StuntDouble*>::iterator j; | 
| 192 | Molecule* mol; | 
| 193 | StuntDouble* integrableObject; | 
| 194 | for (mol = info_->beginMolecule(i); mol != NULL; mol = info_->nextMolecule(i)) { | 
| 195 | for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL; | 
| 196 | integrableObject = mol->nextIntegrableObject(j)) { | 
| 197 |  | 
| 198 | double mass = integrableObject->getMass(); | 
| 199 | Vector3d vcom = integrableObject->getVel(); | 
| 200 | p_local += mass * outProduct(vcom, vcom); | 
| 201 | } | 
| 202 | } | 
| 203 |  | 
| 204 | #ifdef IS_MPI | 
| 205 | MPI_Allreduce(p_local.getArrayPointer(), p_global.getArrayPointer(), 9, MPI_DOUBLE, MPI_SUM, MPI_COMM_WORLD); | 
| 206 | #else | 
| 207 | p_global = p_local; | 
| 208 | #endif // is_mpi | 
| 209 |  | 
| 210 | double volume = this->getVolume(); | 
| 211 | Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot(); | 
| 212 | Mat3x3d tau = curSnapshot->statData.getTau(); | 
| 213 |  | 
| 214 | pressureTensor =  (p_global + OOPSEConstant::energyConvert* tau)/volume; | 
| 215 |  | 
| 216 | return pressureTensor; | 
| 217 | } | 
| 218 |  | 
| 219 | void Thermo::saveStat(){ | 
| 220 | Snapshot* currSnapshot = info_->getSnapshotManager()->getCurrentSnapshot(); | 
| 221 | Stats& stat = currSnapshot->statData; | 
| 222 |  | 
| 223 | stat[Stats::KINETIC_ENERGY] = getKinetic(); | 
| 224 | stat[Stats::POTENTIAL_ENERGY] = getPotential(); | 
| 225 | stat[Stats::TOTAL_ENERGY] = stat[Stats::KINETIC_ENERGY]  + stat[Stats::POTENTIAL_ENERGY] ; | 
| 226 | stat[Stats::TEMPERATURE] = getTemperature(); | 
| 227 | stat[Stats::PRESSURE] = getPressure(); | 
| 228 | stat[Stats::VOLUME] = getVolume(); | 
| 229 |  | 
| 230 | Mat3x3d tensor =getPressureTensor(); | 
| 231 | stat[Stats::PRESSURE_TENSOR_X] = tensor(0, 0); | 
| 232 | stat[Stats::PRESSURE_TENSOR_Y] = tensor(1, 1); | 
| 233 | stat[Stats::PRESSURE_TENSOR_Z] = tensor(2, 2); | 
| 234 |  | 
| 235 |  | 
| 236 | /**@todo need refactorying*/ | 
| 237 | //Conserved Quantity is set by integrator and time is set by setTime | 
| 238 |  | 
| 239 | } | 
| 240 |  | 
| 241 | } //end namespace oopse |