| 1 | gezelter | 1490 | #include <math.h> | 
| 2 |  |  | #include <iostream> | 
| 3 |  |  | using namespace std; | 
| 4 |  |  |  | 
| 5 |  |  | #ifdef IS_MPI | 
| 6 |  |  | #include <mpi.h> | 
| 7 |  |  | #endif //is_mpi | 
| 8 |  |  |  | 
| 9 | tim | 1492 | #include "brains/Thermo.hpp" | 
| 10 |  |  | #include "primitives/SRI.hpp" | 
| 11 |  |  | #include "integrators/Integrator.hpp" | 
| 12 |  |  | #include "utils/simError.h" | 
| 13 |  |  | #include "math/MatVec3.h" | 
| 14 | gezelter | 1490 |  | 
| 15 |  |  | #ifdef IS_MPI | 
| 16 |  |  | #define __C | 
| 17 | tim | 1492 | #include "brains/mpiSimulation.hpp" | 
| 18 | gezelter | 1490 | #endif // is_mpi | 
| 19 |  |  |  | 
| 20 |  |  | inline double roundMe( double x ){ | 
| 21 |  |  | return ( x >= 0 ) ? floor( x + 0.5 ) : ceil( x - 0.5 ); | 
| 22 |  |  | } | 
| 23 |  |  |  | 
| 24 |  |  | Thermo::Thermo( SimInfo* the_info ) { | 
| 25 |  |  | info = the_info; | 
| 26 |  |  | int baseSeed = the_info->getSeed(); | 
| 27 |  |  |  | 
| 28 |  |  | gaussStream = new gaussianSPRNG( baseSeed ); | 
| 29 |  |  | } | 
| 30 |  |  |  | 
| 31 |  |  | Thermo::~Thermo(){ | 
| 32 |  |  | delete gaussStream; | 
| 33 |  |  | } | 
| 34 |  |  |  | 
| 35 |  |  | double Thermo::getKinetic(){ | 
| 36 |  |  |  | 
| 37 |  |  | const double e_convert = 4.184E-4; // convert kcal/mol -> (amu A^2)/fs^2 | 
| 38 |  |  | double kinetic; | 
| 39 |  |  | double amass; | 
| 40 |  |  | double aVel[3], aJ[3], I[3][3]; | 
| 41 |  |  | int i, j, k, kl; | 
| 42 |  |  |  | 
| 43 |  |  | double kinetic_global; | 
| 44 |  |  | vector<StuntDouble *> integrableObjects = info->integrableObjects; | 
| 45 |  |  |  | 
| 46 |  |  | kinetic = 0.0; | 
| 47 |  |  | kinetic_global = 0.0; | 
| 48 |  |  |  | 
| 49 |  |  | for (kl=0; kl<integrableObjects.size(); kl++) { | 
| 50 |  |  | integrableObjects[kl]->getVel(aVel); | 
| 51 |  |  | amass = integrableObjects[kl]->getMass(); | 
| 52 |  |  |  | 
| 53 |  |  | for(j=0; j<3; j++) | 
| 54 |  |  | kinetic += amass*aVel[j]*aVel[j]; | 
| 55 |  |  |  | 
| 56 |  |  | if (integrableObjects[kl]->isDirectional()){ | 
| 57 |  |  |  | 
| 58 |  |  | integrableObjects[kl]->getJ( aJ ); | 
| 59 |  |  | integrableObjects[kl]->getI( I ); | 
| 60 |  |  |  | 
| 61 |  |  | if (integrableObjects[kl]->isLinear()) { | 
| 62 |  |  | i = integrableObjects[kl]->linearAxis(); | 
| 63 |  |  | j = (i+1)%3; | 
| 64 |  |  | k = (i+2)%3; | 
| 65 |  |  | kinetic += aJ[j]*aJ[j]/I[j][j] + aJ[k]*aJ[k]/I[k][k]; | 
| 66 |  |  | } else { | 
| 67 |  |  | for (j=0; j<3; j++) | 
| 68 |  |  | kinetic += aJ[j]*aJ[j] / I[j][j]; | 
| 69 |  |  | } | 
| 70 |  |  | } | 
| 71 |  |  | } | 
| 72 |  |  | #ifdef IS_MPI | 
| 73 |  |  | MPI_Allreduce(&kinetic,&kinetic_global,1,MPI_DOUBLE, | 
| 74 |  |  | MPI_SUM, MPI_COMM_WORLD); | 
| 75 |  |  | kinetic = kinetic_global; | 
| 76 |  |  | #endif //is_mpi | 
| 77 |  |  |  | 
| 78 |  |  | kinetic = kinetic * 0.5 / e_convert; | 
| 79 |  |  |  | 
| 80 |  |  | return kinetic; | 
| 81 |  |  | } | 
| 82 |  |  |  | 
| 83 |  |  | double Thermo::getPotential(){ | 
| 84 |  |  |  | 
| 85 |  |  | double potential_local; | 
| 86 |  |  | double potential; | 
| 87 |  |  | int el, nSRI; | 
| 88 |  |  | Molecule* molecules; | 
| 89 |  |  |  | 
| 90 |  |  | molecules = info->molecules; | 
| 91 |  |  | nSRI = info->n_SRI; | 
| 92 |  |  |  | 
| 93 |  |  | potential_local = 0.0; | 
| 94 |  |  | potential = 0.0; | 
| 95 |  |  | potential_local += info->lrPot; | 
| 96 |  |  |  | 
| 97 |  |  | for( el=0; el<info->n_mol; el++ ){ | 
| 98 |  |  | potential_local += molecules[el].getPotential(); | 
| 99 |  |  | } | 
| 100 |  |  |  | 
| 101 |  |  | // Get total potential for entire system from MPI. | 
| 102 |  |  | #ifdef IS_MPI | 
| 103 |  |  | MPI_Allreduce(&potential_local,&potential,1,MPI_DOUBLE, | 
| 104 |  |  | MPI_SUM, MPI_COMM_WORLD); | 
| 105 |  |  | #else | 
| 106 |  |  | potential = potential_local; | 
| 107 |  |  | #endif // is_mpi | 
| 108 |  |  |  | 
| 109 |  |  | return potential; | 
| 110 |  |  | } | 
| 111 |  |  |  | 
| 112 |  |  | double Thermo::getTotalE(){ | 
| 113 |  |  |  | 
| 114 |  |  | double total; | 
| 115 |  |  |  | 
| 116 |  |  | total = this->getKinetic() + this->getPotential(); | 
| 117 |  |  | return total; | 
| 118 |  |  | } | 
| 119 |  |  |  | 
| 120 |  |  | double Thermo::getTemperature(){ | 
| 121 |  |  |  | 
| 122 |  |  | const double kb = 1.9872156E-3; // boltzman's constant in kcal/(mol K) | 
| 123 |  |  | double temperature; | 
| 124 |  |  |  | 
| 125 |  |  | temperature = ( 2.0 * this->getKinetic() ) / ((double)info->ndf * kb ); | 
| 126 |  |  | return temperature; | 
| 127 |  |  | } | 
| 128 |  |  |  | 
| 129 |  |  | double Thermo::getVolume() { | 
| 130 |  |  |  | 
| 131 |  |  | return info->boxVol; | 
| 132 |  |  | } | 
| 133 |  |  |  | 
| 134 |  |  | double Thermo::getPressure() { | 
| 135 |  |  |  | 
| 136 |  |  | // Relies on the calculation of the full molecular pressure tensor | 
| 137 |  |  |  | 
| 138 |  |  | const double p_convert = 1.63882576e8; | 
| 139 |  |  | double press[3][3]; | 
| 140 |  |  | double pressure; | 
| 141 |  |  |  | 
| 142 |  |  | this->getPressureTensor(press); | 
| 143 |  |  |  | 
| 144 |  |  | pressure = p_convert * (press[0][0] + press[1][1] + press[2][2]) / 3.0; | 
| 145 |  |  |  | 
| 146 |  |  | return pressure; | 
| 147 |  |  | } | 
| 148 |  |  |  | 
| 149 |  |  | double Thermo::getPressureX() { | 
| 150 |  |  |  | 
| 151 |  |  | // Relies on the calculation of the full molecular pressure tensor | 
| 152 |  |  |  | 
| 153 |  |  | const double p_convert = 1.63882576e8; | 
| 154 |  |  | double press[3][3]; | 
| 155 |  |  | double pressureX; | 
| 156 |  |  |  | 
| 157 |  |  | this->getPressureTensor(press); | 
| 158 |  |  |  | 
| 159 |  |  | pressureX = p_convert * press[0][0]; | 
| 160 |  |  |  | 
| 161 |  |  | return pressureX; | 
| 162 |  |  | } | 
| 163 |  |  |  | 
| 164 |  |  | double Thermo::getPressureY() { | 
| 165 |  |  |  | 
| 166 |  |  | // Relies on the calculation of the full molecular pressure tensor | 
| 167 |  |  |  | 
| 168 |  |  | const double p_convert = 1.63882576e8; | 
| 169 |  |  | double press[3][3]; | 
| 170 |  |  | double pressureY; | 
| 171 |  |  |  | 
| 172 |  |  | this->getPressureTensor(press); | 
| 173 |  |  |  | 
| 174 |  |  | pressureY = p_convert * press[1][1]; | 
| 175 |  |  |  | 
| 176 |  |  | return pressureY; | 
| 177 |  |  | } | 
| 178 |  |  |  | 
| 179 |  |  | double Thermo::getPressureZ() { | 
| 180 |  |  |  | 
| 181 |  |  | // Relies on the calculation of the full molecular pressure tensor | 
| 182 |  |  |  | 
| 183 |  |  | const double p_convert = 1.63882576e8; | 
| 184 |  |  | double press[3][3]; | 
| 185 |  |  | double pressureZ; | 
| 186 |  |  |  | 
| 187 |  |  | this->getPressureTensor(press); | 
| 188 |  |  |  | 
| 189 |  |  | pressureZ = p_convert * press[2][2]; | 
| 190 |  |  |  | 
| 191 |  |  | return pressureZ; | 
| 192 |  |  | } | 
| 193 |  |  |  | 
| 194 |  |  |  | 
| 195 |  |  | void Thermo::getPressureTensor(double press[3][3]){ | 
| 196 |  |  | // returns pressure tensor in units amu*fs^-2*Ang^-1 | 
| 197 |  |  | // routine derived via viral theorem description in: | 
| 198 |  |  | // Paci, E. and Marchi, M. J.Phys.Chem. 1996, 100, 4314-4322 | 
| 199 |  |  |  | 
| 200 |  |  | const double e_convert = 4.184e-4; | 
| 201 |  |  |  | 
| 202 |  |  | double molmass, volume; | 
| 203 |  |  | double vcom[3]; | 
| 204 |  |  | double p_local[9], p_global[9]; | 
| 205 |  |  | int i, j, k; | 
| 206 |  |  |  | 
| 207 |  |  | for (i=0; i < 9; i++) { | 
| 208 |  |  | p_local[i] = 0.0; | 
| 209 |  |  | p_global[i] = 0.0; | 
| 210 |  |  | } | 
| 211 |  |  |  | 
| 212 |  |  | // use velocities of integrableObjects and their masses: | 
| 213 |  |  |  | 
| 214 |  |  | for (i=0; i < info->integrableObjects.size(); i++) { | 
| 215 |  |  |  | 
| 216 |  |  | molmass = info->integrableObjects[i]->getMass(); | 
| 217 |  |  |  | 
| 218 |  |  | info->integrableObjects[i]->getVel(vcom); | 
| 219 |  |  |  | 
| 220 |  |  | p_local[0] += molmass * (vcom[0] * vcom[0]); | 
| 221 |  |  | p_local[1] += molmass * (vcom[0] * vcom[1]); | 
| 222 |  |  | p_local[2] += molmass * (vcom[0] * vcom[2]); | 
| 223 |  |  | p_local[3] += molmass * (vcom[1] * vcom[0]); | 
| 224 |  |  | p_local[4] += molmass * (vcom[1] * vcom[1]); | 
| 225 |  |  | p_local[5] += molmass * (vcom[1] * vcom[2]); | 
| 226 |  |  | p_local[6] += molmass * (vcom[2] * vcom[0]); | 
| 227 |  |  | p_local[7] += molmass * (vcom[2] * vcom[1]); | 
| 228 |  |  | p_local[8] += molmass * (vcom[2] * vcom[2]); | 
| 229 |  |  |  | 
| 230 |  |  | } | 
| 231 |  |  |  | 
| 232 |  |  | // Get total for entire system from MPI. | 
| 233 |  |  |  | 
| 234 |  |  | #ifdef IS_MPI | 
| 235 |  |  | MPI_Allreduce(p_local,p_global,9,MPI_DOUBLE, MPI_SUM, MPI_COMM_WORLD); | 
| 236 |  |  | #else | 
| 237 |  |  | for (i=0; i<9; i++) { | 
| 238 |  |  | p_global[i] = p_local[i]; | 
| 239 |  |  | } | 
| 240 |  |  | #endif // is_mpi | 
| 241 |  |  |  | 
| 242 |  |  | volume = this->getVolume(); | 
| 243 |  |  |  | 
| 244 |  |  |  | 
| 245 |  |  |  | 
| 246 |  |  | for(i = 0; i < 3; i++) { | 
| 247 |  |  | for (j = 0; j < 3; j++) { | 
| 248 |  |  | k = 3*i + j; | 
| 249 |  |  | press[i][j] = (p_global[k] + info->tau[k]*e_convert) / volume; | 
| 250 |  |  | } | 
| 251 |  |  | } | 
| 252 |  |  | } | 
| 253 |  |  |  | 
| 254 |  |  | void Thermo::velocitize() { | 
| 255 |  |  |  | 
| 256 |  |  | double aVel[3], aJ[3], I[3][3]; | 
| 257 |  |  | int i, j, l, m, n, vr, vd; // velocity randomizer loop counters | 
| 258 |  |  | double vdrift[3]; | 
| 259 |  |  | double vbar; | 
| 260 |  |  | const double kb = 8.31451e-7; // kb in amu, angstroms, fs, etc. | 
| 261 |  |  | double av2; | 
| 262 |  |  | double kebar; | 
| 263 |  |  | double temperature; | 
| 264 |  |  | int nobj; | 
| 265 |  |  |  | 
| 266 |  |  | if (!info->have_target_temp) { | 
| 267 |  |  | sprintf( painCave.errMsg, | 
| 268 |  |  | "You can't resample the velocities without a targetTemp!\n" | 
| 269 |  |  | ); | 
| 270 |  |  | painCave.isFatal = 1; | 
| 271 |  |  | painCave.severity = OOPSE_ERROR; | 
| 272 |  |  | simError(); | 
| 273 |  |  | return; | 
| 274 |  |  | } | 
| 275 |  |  |  | 
| 276 |  |  | nobj = info->integrableObjects.size(); | 
| 277 |  |  |  | 
| 278 |  |  | temperature   = info->target_temp; | 
| 279 |  |  |  | 
| 280 |  |  | kebar = kb * temperature * (double)info->ndfRaw / | 
| 281 |  |  | ( 2.0 * (double)info->ndf ); | 
| 282 |  |  |  | 
| 283 |  |  | for(vr = 0; vr < nobj; vr++){ | 
| 284 |  |  |  | 
| 285 |  |  | // uses equipartition theory to solve for vbar in angstrom/fs | 
| 286 |  |  |  | 
| 287 |  |  | av2 = 2.0 * kebar / info->integrableObjects[vr]->getMass(); | 
| 288 |  |  | vbar = sqrt( av2 ); | 
| 289 |  |  |  | 
| 290 |  |  | // picks random velocities from a gaussian distribution | 
| 291 |  |  | // centered on vbar | 
| 292 |  |  |  | 
| 293 |  |  | for (j=0; j<3; j++) | 
| 294 |  |  | aVel[j] = vbar * gaussStream->getGaussian(); | 
| 295 |  |  |  | 
| 296 |  |  | info->integrableObjects[vr]->setVel( aVel ); | 
| 297 |  |  |  | 
| 298 |  |  | if(info->integrableObjects[vr]->isDirectional()){ | 
| 299 |  |  |  | 
| 300 |  |  | info->integrableObjects[vr]->getI( I ); | 
| 301 |  |  |  | 
| 302 |  |  | if (info->integrableObjects[vr]->isLinear()) { | 
| 303 |  |  |  | 
| 304 |  |  | l= info->integrableObjects[vr]->linearAxis(); | 
| 305 |  |  | m = (l+1)%3; | 
| 306 |  |  | n = (l+2)%3; | 
| 307 |  |  |  | 
| 308 |  |  | aJ[l] = 0.0; | 
| 309 |  |  | vbar = sqrt( 2.0 * kebar * I[m][m] ); | 
| 310 |  |  | aJ[m] = vbar * gaussStream->getGaussian(); | 
| 311 |  |  | vbar = sqrt( 2.0 * kebar * I[n][n] ); | 
| 312 |  |  | aJ[n] = vbar * gaussStream->getGaussian(); | 
| 313 |  |  |  | 
| 314 |  |  | } else { | 
| 315 |  |  | for (j = 0 ; j < 3; j++) { | 
| 316 |  |  | vbar = sqrt( 2.0 * kebar * I[j][j] ); | 
| 317 |  |  | aJ[j] = vbar * gaussStream->getGaussian(); | 
| 318 |  |  | } | 
| 319 |  |  | } // else isLinear | 
| 320 |  |  |  | 
| 321 |  |  | info->integrableObjects[vr]->setJ( aJ ); | 
| 322 |  |  |  | 
| 323 |  |  | }//isDirectional | 
| 324 |  |  |  | 
| 325 |  |  | } | 
| 326 |  |  |  | 
| 327 |  |  | // Get the Center of Mass drift velocity. | 
| 328 |  |  |  | 
| 329 |  |  | getCOMVel(vdrift); | 
| 330 |  |  |  | 
| 331 |  |  | //  Corrects for the center of mass drift. | 
| 332 |  |  | // sums all the momentum and divides by total mass. | 
| 333 |  |  |  | 
| 334 |  |  | for(vd = 0; vd < nobj; vd++){ | 
| 335 |  |  |  | 
| 336 |  |  | info->integrableObjects[vd]->getVel(aVel); | 
| 337 |  |  |  | 
| 338 |  |  | for (j=0; j < 3; j++) | 
| 339 |  |  | aVel[j] -= vdrift[j]; | 
| 340 |  |  |  | 
| 341 |  |  | info->integrableObjects[vd]->setVel( aVel ); | 
| 342 |  |  | } | 
| 343 |  |  |  | 
| 344 |  |  | } | 
| 345 |  |  |  | 
| 346 |  |  | void Thermo::getCOMVel(double vdrift[3]){ | 
| 347 |  |  |  | 
| 348 |  |  | double mtot, mtot_local; | 
| 349 |  |  | double aVel[3], amass; | 
| 350 |  |  | double vdrift_local[3]; | 
| 351 |  |  | int vd, j; | 
| 352 |  |  | int nobj; | 
| 353 |  |  |  | 
| 354 |  |  | nobj   = info->integrableObjects.size(); | 
| 355 |  |  |  | 
| 356 |  |  | mtot_local = 0.0; | 
| 357 |  |  | vdrift_local[0] = 0.0; | 
| 358 |  |  | vdrift_local[1] = 0.0; | 
| 359 |  |  | vdrift_local[2] = 0.0; | 
| 360 |  |  |  | 
| 361 |  |  | for(vd = 0; vd < nobj; vd++){ | 
| 362 |  |  |  | 
| 363 |  |  | amass = info->integrableObjects[vd]->getMass(); | 
| 364 |  |  | info->integrableObjects[vd]->getVel( aVel ); | 
| 365 |  |  |  | 
| 366 |  |  | for(j = 0; j < 3; j++) | 
| 367 |  |  | vdrift_local[j] += aVel[j] * amass; | 
| 368 |  |  |  | 
| 369 |  |  | mtot_local += amass; | 
| 370 |  |  | } | 
| 371 |  |  |  | 
| 372 |  |  | #ifdef IS_MPI | 
| 373 |  |  | MPI_Allreduce(&mtot_local,&mtot,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD); | 
| 374 |  |  | MPI_Allreduce(vdrift_local,vdrift,3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD); | 
| 375 |  |  | #else | 
| 376 |  |  | mtot = mtot_local; | 
| 377 |  |  | for(vd = 0; vd < 3; vd++) { | 
| 378 |  |  | vdrift[vd] = vdrift_local[vd]; | 
| 379 |  |  | } | 
| 380 |  |  | #endif | 
| 381 |  |  |  | 
| 382 |  |  | for (vd = 0; vd < 3; vd++) { | 
| 383 |  |  | vdrift[vd] = vdrift[vd] / mtot; | 
| 384 |  |  | } | 
| 385 |  |  |  | 
| 386 |  |  | } | 
| 387 |  |  |  | 
| 388 |  |  | void Thermo::getCOM(double COM[3]){ | 
| 389 |  |  |  | 
| 390 |  |  | double mtot, mtot_local; | 
| 391 |  |  | double aPos[3], amass; | 
| 392 |  |  | double COM_local[3]; | 
| 393 |  |  | int i, j; | 
| 394 |  |  | int nobj; | 
| 395 |  |  |  | 
| 396 |  |  | mtot_local = 0.0; | 
| 397 |  |  | COM_local[0] = 0.0; | 
| 398 |  |  | COM_local[1] = 0.0; | 
| 399 |  |  | COM_local[2] = 0.0; | 
| 400 |  |  |  | 
| 401 |  |  | nobj = info->integrableObjects.size(); | 
| 402 |  |  | for(i = 0; i < nobj; i++){ | 
| 403 |  |  |  | 
| 404 |  |  | amass = info->integrableObjects[i]->getMass(); | 
| 405 |  |  | info->integrableObjects[i]->getPos( aPos ); | 
| 406 |  |  |  | 
| 407 |  |  | for(j = 0; j < 3; j++) | 
| 408 |  |  | COM_local[j] += aPos[j] * amass; | 
| 409 |  |  |  | 
| 410 |  |  | mtot_local += amass; | 
| 411 |  |  | } | 
| 412 |  |  |  | 
| 413 |  |  | #ifdef IS_MPI | 
| 414 |  |  | MPI_Allreduce(&mtot_local,&mtot,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD); | 
| 415 |  |  | MPI_Allreduce(COM_local,COM,3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD); | 
| 416 |  |  | #else | 
| 417 |  |  | mtot = mtot_local; | 
| 418 |  |  | for(i = 0; i < 3; i++) { | 
| 419 |  |  | COM[i] = COM_local[i]; | 
| 420 |  |  | } | 
| 421 |  |  | #endif | 
| 422 |  |  |  | 
| 423 |  |  | for (i = 0; i < 3; i++) { | 
| 424 |  |  | COM[i] = COM[i] / mtot; | 
| 425 |  |  | } | 
| 426 |  |  | } | 
| 427 |  |  |  | 
| 428 |  |  | void Thermo::removeCOMdrift() { | 
| 429 |  |  | double vdrift[3], aVel[3]; | 
| 430 |  |  | int vd, j, nobj; | 
| 431 |  |  |  | 
| 432 |  |  | nobj = info->integrableObjects.size(); | 
| 433 |  |  |  | 
| 434 |  |  | // Get the Center of Mass drift velocity. | 
| 435 |  |  |  | 
| 436 |  |  | getCOMVel(vdrift); | 
| 437 |  |  |  | 
| 438 |  |  | //  Corrects for the center of mass drift. | 
| 439 |  |  | // sums all the momentum and divides by total mass. | 
| 440 |  |  |  | 
| 441 |  |  | for(vd = 0; vd < nobj; vd++){ | 
| 442 |  |  |  | 
| 443 |  |  | info->integrableObjects[vd]->getVel(aVel); | 
| 444 |  |  |  | 
| 445 |  |  | for (j=0; j < 3; j++) | 
| 446 |  |  | aVel[j] -= vdrift[j]; | 
| 447 |  |  |  | 
| 448 |  |  | info->integrableObjects[vd]->setVel( aVel ); | 
| 449 |  |  | } | 
| 450 |  |  | } |