ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/OOPSE-4/src/brains/SimInfo.cpp
Revision: 3129
Committed: Fri Apr 20 18:15:48 2007 UTC (18 years ago) by chrisfen
File size: 48718 byte(s)
Log Message:
SF Lennard-Jones was added for everyones' enjoyment.  The behavior is tethered to the electrostaticSummationMethod keyword.

File Contents

# Content
1 /*
2 * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3 *
4 * The University of Notre Dame grants you ("Licensee") a
5 * non-exclusive, royalty free, license to use, modify and
6 * redistribute this software in source and binary code form, provided
7 * that the following conditions are met:
8 *
9 * 1. Acknowledgement of the program authors must be made in any
10 * publication of scientific results based in part on use of the
11 * program. An acceptable form of acknowledgement is citation of
12 * the article in which the program was described (Matthew
13 * A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14 * J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15 * Parallel Simulation Engine for Molecular Dynamics,"
16 * J. Comput. Chem. 26, pp. 252-271 (2005))
17 *
18 * 2. Redistributions of source code must retain the above copyright
19 * notice, this list of conditions and the following disclaimer.
20 *
21 * 3. Redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the
24 * distribution.
25 *
26 * This software is provided "AS IS," without a warranty of any
27 * kind. All express or implied conditions, representations and
28 * warranties, including any implied warranty of merchantability,
29 * fitness for a particular purpose or non-infringement, are hereby
30 * excluded. The University of Notre Dame and its licensors shall not
31 * be liable for any damages suffered by licensee as a result of
32 * using, modifying or distributing the software or its
33 * derivatives. In no event will the University of Notre Dame or its
34 * licensors be liable for any lost revenue, profit or data, or for
35 * direct, indirect, special, consequential, incidental or punitive
36 * damages, however caused and regardless of the theory of liability,
37 * arising out of the use of or inability to use software, even if the
38 * University of Notre Dame has been advised of the possibility of
39 * such damages.
40 */
41
42 /**
43 * @file SimInfo.cpp
44 * @author tlin
45 * @date 11/02/2004
46 * @version 1.0
47 */
48
49 #include <algorithm>
50 #include <set>
51 #include <map>
52
53 #include "brains/SimInfo.hpp"
54 #include "math/Vector3.hpp"
55 #include "primitives/Molecule.hpp"
56 #include "primitives/StuntDouble.hpp"
57 #include "UseTheForce/fCutoffPolicy.h"
58 #include "UseTheForce/DarkSide/fElectrostaticSummationMethod.h"
59 #include "UseTheForce/DarkSide/fElectrostaticScreeningMethod.h"
60 #include "UseTheForce/DarkSide/fSwitchingFunctionType.h"
61 #include "UseTheForce/doForces_interface.h"
62 #include "UseTheForce/DarkSide/neighborLists_interface.h"
63 #include "UseTheForce/DarkSide/electrostatic_interface.h"
64 #include "UseTheForce/DarkSide/switcheroo_interface.h"
65 #include "utils/MemoryUtils.hpp"
66 #include "utils/simError.h"
67 #include "selection/SelectionManager.hpp"
68 #include "io/ForceFieldOptions.hpp"
69 #include "UseTheForce/ForceField.hpp"
70
71
72 #ifdef IS_MPI
73 #include "UseTheForce/mpiComponentPlan.h"
74 #include "UseTheForce/DarkSide/simParallel_interface.h"
75 #endif
76
77 namespace oopse {
78 std::set<int> getRigidSet(int index, std::map<int, std::set<int> >& container) {
79 std::map<int, std::set<int> >::iterator i = container.find(index);
80 std::set<int> result;
81 if (i != container.end()) {
82 result = i->second;
83 }
84
85 return result;
86 }
87
88 SimInfo::SimInfo(ForceField* ff, Globals* simParams) :
89 forceField_(ff), simParams_(simParams),
90 ndf_(0), fdf_local(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0),
91 nGlobalMols_(0), nGlobalAtoms_(0), nGlobalCutoffGroups_(0),
92 nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0),
93 nAtoms_(0), nBonds_(0), nBends_(0), nTorsions_(0), nRigidBodies_(0),
94 nIntegrableObjects_(0), nCutoffGroups_(0), nConstraints_(0),
95 sman_(NULL), fortranInitialized_(false), calcBoxDipole_(false),
96 useAtomicVirial_(true) {
97
98 MoleculeStamp* molStamp;
99 int nMolWithSameStamp;
100 int nCutoffAtoms = 0; // number of atoms belong to cutoff groups
101 int nGroups = 0; //total cutoff groups defined in meta-data file
102 CutoffGroupStamp* cgStamp;
103 RigidBodyStamp* rbStamp;
104 int nRigidAtoms = 0;
105 std::vector<Component*> components = simParams->getComponents();
106
107 for (std::vector<Component*>::iterator i = components.begin(); i !=components.end(); ++i) {
108 molStamp = (*i)->getMoleculeStamp();
109 nMolWithSameStamp = (*i)->getNMol();
110
111 addMoleculeStamp(molStamp, nMolWithSameStamp);
112
113 //calculate atoms in molecules
114 nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp;
115
116 //calculate atoms in cutoff groups
117 int nAtomsInGroups = 0;
118 int nCutoffGroupsInStamp = molStamp->getNCutoffGroups();
119
120 for (int j=0; j < nCutoffGroupsInStamp; j++) {
121 cgStamp = molStamp->getCutoffGroupStamp(j);
122 nAtomsInGroups += cgStamp->getNMembers();
123 }
124
125 nGroups += nCutoffGroupsInStamp * nMolWithSameStamp;
126
127 nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp;
128
129 //calculate atoms in rigid bodies
130 int nAtomsInRigidBodies = 0;
131 int nRigidBodiesInStamp = molStamp->getNRigidBodies();
132
133 for (int j=0; j < nRigidBodiesInStamp; j++) {
134 rbStamp = molStamp->getRigidBodyStamp(j);
135 nAtomsInRigidBodies += rbStamp->getNMembers();
136 }
137
138 nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp;
139 nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp;
140
141 }
142
143 //every free atom (atom does not belong to cutoff groups) is a cutoff
144 //group therefore the total number of cutoff groups in the system is
145 //equal to the total number of atoms minus number of atoms belong to
146 //cutoff group defined in meta-data file plus the number of cutoff
147 //groups defined in meta-data file
148 nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups;
149
150 //every free atom (atom does not belong to rigid bodies) is an
151 //integrable object therefore the total number of integrable objects
152 //in the system is equal to the total number of atoms minus number of
153 //atoms belong to rigid body defined in meta-data file plus the number
154 //of rigid bodies defined in meta-data file
155 nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms
156 + nGlobalRigidBodies_;
157
158 nGlobalMols_ = molStampIds_.size();
159
160 #ifdef IS_MPI
161 molToProcMap_.resize(nGlobalMols_);
162 #endif
163
164 }
165
166 SimInfo::~SimInfo() {
167 std::map<int, Molecule*>::iterator i;
168 for (i = molecules_.begin(); i != molecules_.end(); ++i) {
169 delete i->second;
170 }
171 molecules_.clear();
172
173 delete sman_;
174 delete simParams_;
175 delete forceField_;
176 }
177
178 int SimInfo::getNGlobalConstraints() {
179 int nGlobalConstraints;
180 #ifdef IS_MPI
181 MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM,
182 MPI_COMM_WORLD);
183 #else
184 nGlobalConstraints = nConstraints_;
185 #endif
186 return nGlobalConstraints;
187 }
188
189 bool SimInfo::addMolecule(Molecule* mol) {
190 MoleculeIterator i;
191
192 i = molecules_.find(mol->getGlobalIndex());
193 if (i == molecules_.end() ) {
194
195 molecules_.insert(std::make_pair(mol->getGlobalIndex(), mol));
196
197 nAtoms_ += mol->getNAtoms();
198 nBonds_ += mol->getNBonds();
199 nBends_ += mol->getNBends();
200 nTorsions_ += mol->getNTorsions();
201 nRigidBodies_ += mol->getNRigidBodies();
202 nIntegrableObjects_ += mol->getNIntegrableObjects();
203 nCutoffGroups_ += mol->getNCutoffGroups();
204 nConstraints_ += mol->getNConstraintPairs();
205
206 addExcludePairs(mol);
207
208 return true;
209 } else {
210 return false;
211 }
212 }
213
214 bool SimInfo::removeMolecule(Molecule* mol) {
215 MoleculeIterator i;
216 i = molecules_.find(mol->getGlobalIndex());
217
218 if (i != molecules_.end() ) {
219
220 assert(mol == i->second);
221
222 nAtoms_ -= mol->getNAtoms();
223 nBonds_ -= mol->getNBonds();
224 nBends_ -= mol->getNBends();
225 nTorsions_ -= mol->getNTorsions();
226 nRigidBodies_ -= mol->getNRigidBodies();
227 nIntegrableObjects_ -= mol->getNIntegrableObjects();
228 nCutoffGroups_ -= mol->getNCutoffGroups();
229 nConstraints_ -= mol->getNConstraintPairs();
230
231 removeExcludePairs(mol);
232 molecules_.erase(mol->getGlobalIndex());
233
234 delete mol;
235
236 return true;
237 } else {
238 return false;
239 }
240
241
242 }
243
244
245 Molecule* SimInfo::beginMolecule(MoleculeIterator& i) {
246 i = molecules_.begin();
247 return i == molecules_.end() ? NULL : i->second;
248 }
249
250 Molecule* SimInfo::nextMolecule(MoleculeIterator& i) {
251 ++i;
252 return i == molecules_.end() ? NULL : i->second;
253 }
254
255
256 void SimInfo::calcNdf() {
257 int ndf_local;
258 MoleculeIterator i;
259 std::vector<StuntDouble*>::iterator j;
260 Molecule* mol;
261 StuntDouble* integrableObject;
262
263 ndf_local = 0;
264
265 for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
266 for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
267 integrableObject = mol->nextIntegrableObject(j)) {
268
269 ndf_local += 3;
270
271 if (integrableObject->isDirectional()) {
272 if (integrableObject->isLinear()) {
273 ndf_local += 2;
274 } else {
275 ndf_local += 3;
276 }
277 }
278
279 }
280 }
281
282 // n_constraints is local, so subtract them on each processor
283 ndf_local -= nConstraints_;
284
285 #ifdef IS_MPI
286 MPI_Allreduce(&ndf_local,&ndf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
287 #else
288 ndf_ = ndf_local;
289 #endif
290
291 // nZconstraints_ is global, as are the 3 COM translations for the
292 // entire system:
293 ndf_ = ndf_ - 3 - nZconstraint_;
294
295 }
296
297 int SimInfo::getFdf() {
298 #ifdef IS_MPI
299 MPI_Allreduce(&fdf_local,&fdf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
300 #else
301 fdf_ = fdf_local;
302 #endif
303 return fdf_;
304 }
305
306 void SimInfo::calcNdfRaw() {
307 int ndfRaw_local;
308
309 MoleculeIterator i;
310 std::vector<StuntDouble*>::iterator j;
311 Molecule* mol;
312 StuntDouble* integrableObject;
313
314 // Raw degrees of freedom that we have to set
315 ndfRaw_local = 0;
316
317 for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
318 for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
319 integrableObject = mol->nextIntegrableObject(j)) {
320
321 ndfRaw_local += 3;
322
323 if (integrableObject->isDirectional()) {
324 if (integrableObject->isLinear()) {
325 ndfRaw_local += 2;
326 } else {
327 ndfRaw_local += 3;
328 }
329 }
330
331 }
332 }
333
334 #ifdef IS_MPI
335 MPI_Allreduce(&ndfRaw_local,&ndfRaw_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
336 #else
337 ndfRaw_ = ndfRaw_local;
338 #endif
339 }
340
341 void SimInfo::calcNdfTrans() {
342 int ndfTrans_local;
343
344 ndfTrans_local = 3 * nIntegrableObjects_ - nConstraints_;
345
346
347 #ifdef IS_MPI
348 MPI_Allreduce(&ndfTrans_local,&ndfTrans_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
349 #else
350 ndfTrans_ = ndfTrans_local;
351 #endif
352
353 ndfTrans_ = ndfTrans_ - 3 - nZconstraint_;
354
355 }
356
357 void SimInfo::addExcludePairs(Molecule* mol) {
358 std::vector<Bond*>::iterator bondIter;
359 std::vector<Bend*>::iterator bendIter;
360 std::vector<Torsion*>::iterator torsionIter;
361 Bond* bond;
362 Bend* bend;
363 Torsion* torsion;
364 int a;
365 int b;
366 int c;
367 int d;
368
369 std::map<int, std::set<int> > atomGroups;
370
371 Molecule::RigidBodyIterator rbIter;
372 RigidBody* rb;
373 Molecule::IntegrableObjectIterator ii;
374 StuntDouble* integrableObject;
375
376 for (integrableObject = mol->beginIntegrableObject(ii); integrableObject != NULL;
377 integrableObject = mol->nextIntegrableObject(ii)) {
378
379 if (integrableObject->isRigidBody()) {
380 rb = static_cast<RigidBody*>(integrableObject);
381 std::vector<Atom*> atoms = rb->getAtoms();
382 std::set<int> rigidAtoms;
383 for (int i = 0; i < atoms.size(); ++i) {
384 rigidAtoms.insert(atoms[i]->getGlobalIndex());
385 }
386 for (int i = 0; i < atoms.size(); ++i) {
387 atomGroups.insert(std::map<int, std::set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
388 }
389 } else {
390 std::set<int> oneAtomSet;
391 oneAtomSet.insert(integrableObject->getGlobalIndex());
392 atomGroups.insert(std::map<int, std::set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));
393 }
394 }
395
396
397
398 for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
399 a = bond->getAtomA()->getGlobalIndex();
400 b = bond->getAtomB()->getGlobalIndex();
401 exclude_.addPair(a, b);
402 }
403
404 for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
405 a = bend->getAtomA()->getGlobalIndex();
406 b = bend->getAtomB()->getGlobalIndex();
407 c = bend->getAtomC()->getGlobalIndex();
408 std::set<int> rigidSetA = getRigidSet(a, atomGroups);
409 std::set<int> rigidSetB = getRigidSet(b, atomGroups);
410 std::set<int> rigidSetC = getRigidSet(c, atomGroups);
411
412 exclude_.addPairs(rigidSetA, rigidSetB);
413 exclude_.addPairs(rigidSetA, rigidSetC);
414 exclude_.addPairs(rigidSetB, rigidSetC);
415
416 //exclude_.addPair(a, b);
417 //exclude_.addPair(a, c);
418 //exclude_.addPair(b, c);
419 }
420
421 for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
422 a = torsion->getAtomA()->getGlobalIndex();
423 b = torsion->getAtomB()->getGlobalIndex();
424 c = torsion->getAtomC()->getGlobalIndex();
425 d = torsion->getAtomD()->getGlobalIndex();
426 std::set<int> rigidSetA = getRigidSet(a, atomGroups);
427 std::set<int> rigidSetB = getRigidSet(b, atomGroups);
428 std::set<int> rigidSetC = getRigidSet(c, atomGroups);
429 std::set<int> rigidSetD = getRigidSet(d, atomGroups);
430
431 exclude_.addPairs(rigidSetA, rigidSetB);
432 exclude_.addPairs(rigidSetA, rigidSetC);
433 exclude_.addPairs(rigidSetA, rigidSetD);
434 exclude_.addPairs(rigidSetB, rigidSetC);
435 exclude_.addPairs(rigidSetB, rigidSetD);
436 exclude_.addPairs(rigidSetC, rigidSetD);
437
438 /*
439 exclude_.addPairs(rigidSetA.begin(), rigidSetA.end(), rigidSetB.begin(), rigidSetB.end());
440 exclude_.addPairs(rigidSetA.begin(), rigidSetA.end(), rigidSetC.begin(), rigidSetC.end());
441 exclude_.addPairs(rigidSetA.begin(), rigidSetA.end(), rigidSetD.begin(), rigidSetD.end());
442 exclude_.addPairs(rigidSetB.begin(), rigidSetB.end(), rigidSetC.begin(), rigidSetC.end());
443 exclude_.addPairs(rigidSetB.begin(), rigidSetB.end(), rigidSetD.begin(), rigidSetD.end());
444 exclude_.addPairs(rigidSetC.begin(), rigidSetC.end(), rigidSetD.begin(), rigidSetD.end());
445
446
447 exclude_.addPair(a, b);
448 exclude_.addPair(a, c);
449 exclude_.addPair(a, d);
450 exclude_.addPair(b, c);
451 exclude_.addPair(b, d);
452 exclude_.addPair(c, d);
453 */
454 }
455
456 for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
457 std::vector<Atom*> atoms = rb->getAtoms();
458 for (int i = 0; i < atoms.size() -1 ; ++i) {
459 for (int j = i + 1; j < atoms.size(); ++j) {
460 a = atoms[i]->getGlobalIndex();
461 b = atoms[j]->getGlobalIndex();
462 exclude_.addPair(a, b);
463 }
464 }
465 }
466
467 }
468
469 void SimInfo::removeExcludePairs(Molecule* mol) {
470 std::vector<Bond*>::iterator bondIter;
471 std::vector<Bend*>::iterator bendIter;
472 std::vector<Torsion*>::iterator torsionIter;
473 Bond* bond;
474 Bend* bend;
475 Torsion* torsion;
476 int a;
477 int b;
478 int c;
479 int d;
480
481 std::map<int, std::set<int> > atomGroups;
482
483 Molecule::RigidBodyIterator rbIter;
484 RigidBody* rb;
485 Molecule::IntegrableObjectIterator ii;
486 StuntDouble* integrableObject;
487
488 for (integrableObject = mol->beginIntegrableObject(ii); integrableObject != NULL;
489 integrableObject = mol->nextIntegrableObject(ii)) {
490
491 if (integrableObject->isRigidBody()) {
492 rb = static_cast<RigidBody*>(integrableObject);
493 std::vector<Atom*> atoms = rb->getAtoms();
494 std::set<int> rigidAtoms;
495 for (int i = 0; i < atoms.size(); ++i) {
496 rigidAtoms.insert(atoms[i]->getGlobalIndex());
497 }
498 for (int i = 0; i < atoms.size(); ++i) {
499 atomGroups.insert(std::map<int, std::set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
500 }
501 } else {
502 std::set<int> oneAtomSet;
503 oneAtomSet.insert(integrableObject->getGlobalIndex());
504 atomGroups.insert(std::map<int, std::set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));
505 }
506 }
507
508
509 for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
510 a = bond->getAtomA()->getGlobalIndex();
511 b = bond->getAtomB()->getGlobalIndex();
512 exclude_.removePair(a, b);
513 }
514
515 for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
516 a = bend->getAtomA()->getGlobalIndex();
517 b = bend->getAtomB()->getGlobalIndex();
518 c = bend->getAtomC()->getGlobalIndex();
519
520 std::set<int> rigidSetA = getRigidSet(a, atomGroups);
521 std::set<int> rigidSetB = getRigidSet(b, atomGroups);
522 std::set<int> rigidSetC = getRigidSet(c, atomGroups);
523
524 exclude_.removePairs(rigidSetA, rigidSetB);
525 exclude_.removePairs(rigidSetA, rigidSetC);
526 exclude_.removePairs(rigidSetB, rigidSetC);
527
528 //exclude_.removePair(a, b);
529 //exclude_.removePair(a, c);
530 //exclude_.removePair(b, c);
531 }
532
533 for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
534 a = torsion->getAtomA()->getGlobalIndex();
535 b = torsion->getAtomB()->getGlobalIndex();
536 c = torsion->getAtomC()->getGlobalIndex();
537 d = torsion->getAtomD()->getGlobalIndex();
538
539 std::set<int> rigidSetA = getRigidSet(a, atomGroups);
540 std::set<int> rigidSetB = getRigidSet(b, atomGroups);
541 std::set<int> rigidSetC = getRigidSet(c, atomGroups);
542 std::set<int> rigidSetD = getRigidSet(d, atomGroups);
543
544 exclude_.removePairs(rigidSetA, rigidSetB);
545 exclude_.removePairs(rigidSetA, rigidSetC);
546 exclude_.removePairs(rigidSetA, rigidSetD);
547 exclude_.removePairs(rigidSetB, rigidSetC);
548 exclude_.removePairs(rigidSetB, rigidSetD);
549 exclude_.removePairs(rigidSetC, rigidSetD);
550
551 /*
552 exclude_.removePairs(rigidSetA.begin(), rigidSetA.end(), rigidSetB.begin(), rigidSetB.end());
553 exclude_.removePairs(rigidSetA.begin(), rigidSetA.end(), rigidSetC.begin(), rigidSetC.end());
554 exclude_.removePairs(rigidSetA.begin(), rigidSetA.end(), rigidSetD.begin(), rigidSetD.end());
555 exclude_.removePairs(rigidSetB.begin(), rigidSetB.end(), rigidSetC.begin(), rigidSetC.end());
556 exclude_.removePairs(rigidSetB.begin(), rigidSetB.end(), rigidSetD.begin(), rigidSetD.end());
557 exclude_.removePairs(rigidSetC.begin(), rigidSetC.end(), rigidSetD.begin(), rigidSetD.end());
558
559
560 exclude_.removePair(a, b);
561 exclude_.removePair(a, c);
562 exclude_.removePair(a, d);
563 exclude_.removePair(b, c);
564 exclude_.removePair(b, d);
565 exclude_.removePair(c, d);
566 */
567 }
568
569 for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
570 std::vector<Atom*> atoms = rb->getAtoms();
571 for (int i = 0; i < atoms.size() -1 ; ++i) {
572 for (int j = i + 1; j < atoms.size(); ++j) {
573 a = atoms[i]->getGlobalIndex();
574 b = atoms[j]->getGlobalIndex();
575 exclude_.removePair(a, b);
576 }
577 }
578 }
579
580 }
581
582
583 void SimInfo::addMoleculeStamp(MoleculeStamp* molStamp, int nmol) {
584 int curStampId;
585
586 //index from 0
587 curStampId = moleculeStamps_.size();
588
589 moleculeStamps_.push_back(molStamp);
590 molStampIds_.insert(molStampIds_.end(), nmol, curStampId);
591 }
592
593 void SimInfo::update() {
594
595 setupSimType();
596
597 #ifdef IS_MPI
598 setupFortranParallel();
599 #endif
600
601 setupFortranSim();
602
603 //setup fortran force field
604 /** @deprecate */
605 int isError = 0;
606
607 setupCutoff();
608
609 setupElectrostaticSummationMethod( isError );
610 setupSwitchingFunction();
611 setupAccumulateBoxDipole();
612
613 if(isError){
614 sprintf( painCave.errMsg,
615 "ForceField error: There was an error initializing the forceField in fortran.\n" );
616 painCave.isFatal = 1;
617 simError();
618 }
619
620 calcNdf();
621 calcNdfRaw();
622 calcNdfTrans();
623
624 fortranInitialized_ = true;
625 }
626
627 std::set<AtomType*> SimInfo::getUniqueAtomTypes() {
628 SimInfo::MoleculeIterator mi;
629 Molecule* mol;
630 Molecule::AtomIterator ai;
631 Atom* atom;
632 std::set<AtomType*> atomTypes;
633
634 for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
635
636 for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
637 atomTypes.insert(atom->getAtomType());
638 }
639
640 }
641
642 return atomTypes;
643 }
644
645 void SimInfo::setupSimType() {
646 std::set<AtomType*>::iterator i;
647 std::set<AtomType*> atomTypes;
648 atomTypes = getUniqueAtomTypes();
649
650 int useLennardJones = 0;
651 int useElectrostatic = 0;
652 int useEAM = 0;
653 int useSC = 0;
654 int useCharge = 0;
655 int useDirectional = 0;
656 int useDipole = 0;
657 int useGayBerne = 0;
658 int useSticky = 0;
659 int useStickyPower = 0;
660 int useShape = 0;
661 int useFLARB = 0; //it is not in AtomType yet
662 int useDirectionalAtom = 0;
663 int useElectrostatics = 0;
664 //usePBC and useRF are from simParams
665 int usePBC = simParams_->getUsePeriodicBoundaryConditions();
666 int useRF;
667 int useSF;
668 int useSP;
669 int useBoxDipole;
670
671 std::string myMethod;
672
673 // set the useRF logical
674 useRF = 0;
675 useSF = 0;
676 useSP = 0;
677
678
679 if (simParams_->haveElectrostaticSummationMethod()) {
680 std::string myMethod = simParams_->getElectrostaticSummationMethod();
681 toUpper(myMethod);
682 if (myMethod == "REACTION_FIELD"){
683 useRF = 1;
684 } else if (myMethod == "SHIFTED_FORCE"){
685 useSF = 1;
686 } else if (myMethod == "SHIFTED_POTENTIAL"){
687 useSP = 1;
688 }
689 }
690
691 if (simParams_->haveAccumulateBoxDipole())
692 if (simParams_->getAccumulateBoxDipole())
693 useBoxDipole = 1;
694
695 useAtomicVirial_ = simParams_->getUseAtomicVirial();
696
697 //loop over all of the atom types
698 for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
699 useLennardJones |= (*i)->isLennardJones();
700 useElectrostatic |= (*i)->isElectrostatic();
701 useEAM |= (*i)->isEAM();
702 useSC |= (*i)->isSC();
703 useCharge |= (*i)->isCharge();
704 useDirectional |= (*i)->isDirectional();
705 useDipole |= (*i)->isDipole();
706 useGayBerne |= (*i)->isGayBerne();
707 useSticky |= (*i)->isSticky();
708 useStickyPower |= (*i)->isStickyPower();
709 useShape |= (*i)->isShape();
710 }
711
712 if (useSticky || useStickyPower || useDipole || useGayBerne || useShape) {
713 useDirectionalAtom = 1;
714 }
715
716 if (useCharge || useDipole) {
717 useElectrostatics = 1;
718 }
719
720 #ifdef IS_MPI
721 int temp;
722
723 temp = usePBC;
724 MPI_Allreduce(&temp, &usePBC, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
725
726 temp = useDirectionalAtom;
727 MPI_Allreduce(&temp, &useDirectionalAtom, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
728
729 temp = useLennardJones;
730 MPI_Allreduce(&temp, &useLennardJones, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
731
732 temp = useElectrostatics;
733 MPI_Allreduce(&temp, &useElectrostatics, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
734
735 temp = useCharge;
736 MPI_Allreduce(&temp, &useCharge, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
737
738 temp = useDipole;
739 MPI_Allreduce(&temp, &useDipole, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
740
741 temp = useSticky;
742 MPI_Allreduce(&temp, &useSticky, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
743
744 temp = useStickyPower;
745 MPI_Allreduce(&temp, &useStickyPower, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
746
747 temp = useGayBerne;
748 MPI_Allreduce(&temp, &useGayBerne, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
749
750 temp = useEAM;
751 MPI_Allreduce(&temp, &useEAM, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
752
753 temp = useSC;
754 MPI_Allreduce(&temp, &useSC, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
755
756 temp = useShape;
757 MPI_Allreduce(&temp, &useShape, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
758
759 temp = useFLARB;
760 MPI_Allreduce(&temp, &useFLARB, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
761
762 temp = useRF;
763 MPI_Allreduce(&temp, &useRF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
764
765 temp = useSF;
766 MPI_Allreduce(&temp, &useSF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
767
768 temp = useSP;
769 MPI_Allreduce(&temp, &useSP, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
770
771 temp = useBoxDipole;
772 MPI_Allreduce(&temp, &useBoxDipole, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
773
774 temp = useAtomicVirial_;
775 MPI_Allreduce(&temp, &useAtomicVirial_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
776
777 #endif
778
779 fInfo_.SIM_uses_PBC = usePBC;
780 fInfo_.SIM_uses_DirectionalAtoms = useDirectionalAtom;
781 fInfo_.SIM_uses_LennardJones = useLennardJones;
782 fInfo_.SIM_uses_Electrostatics = useElectrostatics;
783 fInfo_.SIM_uses_Charges = useCharge;
784 fInfo_.SIM_uses_Dipoles = useDipole;
785 fInfo_.SIM_uses_Sticky = useSticky;
786 fInfo_.SIM_uses_StickyPower = useStickyPower;
787 fInfo_.SIM_uses_GayBerne = useGayBerne;
788 fInfo_.SIM_uses_EAM = useEAM;
789 fInfo_.SIM_uses_SC = useSC;
790 fInfo_.SIM_uses_Shapes = useShape;
791 fInfo_.SIM_uses_FLARB = useFLARB;
792 fInfo_.SIM_uses_RF = useRF;
793 fInfo_.SIM_uses_SF = useSF;
794 fInfo_.SIM_uses_SP = useSP;
795 fInfo_.SIM_uses_BoxDipole = useBoxDipole;
796 fInfo_.SIM_uses_AtomicVirial = useAtomicVirial_;
797 }
798
799 void SimInfo::setupFortranSim() {
800 int isError;
801 int nExclude;
802 std::vector<int> fortranGlobalGroupMembership;
803
804 nExclude = exclude_.getSize();
805 isError = 0;
806
807 //globalGroupMembership_ is filled by SimCreator
808 for (int i = 0; i < nGlobalAtoms_; i++) {
809 fortranGlobalGroupMembership.push_back(globalGroupMembership_[i] + 1);
810 }
811
812 //calculate mass ratio of cutoff group
813 std::vector<RealType> mfact;
814 SimInfo::MoleculeIterator mi;
815 Molecule* mol;
816 Molecule::CutoffGroupIterator ci;
817 CutoffGroup* cg;
818 Molecule::AtomIterator ai;
819 Atom* atom;
820 RealType totalMass;
821
822 //to avoid memory reallocation, reserve enough space for mfact
823 mfact.reserve(getNCutoffGroups());
824
825 for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
826 for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
827
828 totalMass = cg->getMass();
829 for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) {
830 // Check for massless groups - set mfact to 1 if true
831 if (totalMass != 0)
832 mfact.push_back(atom->getMass()/totalMass);
833 else
834 mfact.push_back( 1.0 );
835 }
836
837 }
838 }
839
840 //fill ident array of local atoms (it is actually ident of AtomType, it is so confusing !!!)
841 std::vector<int> identArray;
842
843 //to avoid memory reallocation, reserve enough space identArray
844 identArray.reserve(getNAtoms());
845
846 for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
847 for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
848 identArray.push_back(atom->getIdent());
849 }
850 }
851
852 //fill molMembershipArray
853 //molMembershipArray is filled by SimCreator
854 std::vector<int> molMembershipArray(nGlobalAtoms_);
855 for (int i = 0; i < nGlobalAtoms_; i++) {
856 molMembershipArray[i] = globalMolMembership_[i] + 1;
857 }
858
859 //setup fortran simulation
860 int nGlobalExcludes = 0;
861 int* globalExcludes = NULL;
862 int* excludeList = exclude_.getExcludeList();
863 setFortranSim( &fInfo_, &nGlobalAtoms_, &nAtoms_, &identArray[0], &nExclude, excludeList ,
864 &nGlobalExcludes, globalExcludes, &molMembershipArray[0],
865 &mfact[0], &nCutoffGroups_, &fortranGlobalGroupMembership[0], &isError);
866
867 if( isError ){
868
869 sprintf( painCave.errMsg,
870 "There was an error setting the simulation information in fortran.\n" );
871 painCave.isFatal = 1;
872 painCave.severity = OOPSE_ERROR;
873 simError();
874 }
875
876 #ifdef IS_MPI
877 sprintf( checkPointMsg,
878 "succesfully sent the simulation information to fortran.\n");
879 MPIcheckPoint();
880 #endif // is_mpi
881
882 // Setup number of neighbors in neighbor list if present
883 if (simParams_->haveNeighborListNeighbors()) {
884 int nlistNeighbors = simParams_->getNeighborListNeighbors();
885 setNeighbors(&nlistNeighbors);
886 }
887
888
889 }
890
891
892 #ifdef IS_MPI
893 void SimInfo::setupFortranParallel() {
894
895 //SimInfo is responsible for creating localToGlobalAtomIndex and localToGlobalGroupIndex
896 std::vector<int> localToGlobalAtomIndex(getNAtoms(), 0);
897 std::vector<int> localToGlobalCutoffGroupIndex;
898 SimInfo::MoleculeIterator mi;
899 Molecule::AtomIterator ai;
900 Molecule::CutoffGroupIterator ci;
901 Molecule* mol;
902 Atom* atom;
903 CutoffGroup* cg;
904 mpiSimData parallelData;
905 int isError;
906
907 for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
908
909 //local index(index in DataStorge) of atom is important
910 for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
911 localToGlobalAtomIndex[atom->getLocalIndex()] = atom->getGlobalIndex() + 1;
912 }
913
914 //local index of cutoff group is trivial, it only depends on the order of travesing
915 for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
916 localToGlobalCutoffGroupIndex.push_back(cg->getGlobalIndex() + 1);
917 }
918
919 }
920
921 //fill up mpiSimData struct
922 parallelData.nMolGlobal = getNGlobalMolecules();
923 parallelData.nMolLocal = getNMolecules();
924 parallelData.nAtomsGlobal = getNGlobalAtoms();
925 parallelData.nAtomsLocal = getNAtoms();
926 parallelData.nGroupsGlobal = getNGlobalCutoffGroups();
927 parallelData.nGroupsLocal = getNCutoffGroups();
928 parallelData.myNode = worldRank;
929 MPI_Comm_size(MPI_COMM_WORLD, &(parallelData.nProcessors));
930
931 //pass mpiSimData struct and index arrays to fortran
932 setFsimParallel(&parallelData, &(parallelData.nAtomsLocal),
933 &localToGlobalAtomIndex[0], &(parallelData.nGroupsLocal),
934 &localToGlobalCutoffGroupIndex[0], &isError);
935
936 if (isError) {
937 sprintf(painCave.errMsg,
938 "mpiRefresh errror: fortran didn't like something we gave it.\n");
939 painCave.isFatal = 1;
940 simError();
941 }
942
943 sprintf(checkPointMsg, " mpiRefresh successful.\n");
944 MPIcheckPoint();
945
946
947 }
948
949 #endif
950
951 void SimInfo::setupCutoff() {
952
953 ForceFieldOptions& forceFieldOptions_ = forceField_->getForceFieldOptions();
954
955 // Check the cutoff policy
956 int cp = TRADITIONAL_CUTOFF_POLICY; // Set to traditional by default
957
958 // Set LJ shifting bools to false
959 ljsp_ = false;
960 ljsf_ = false;
961
962 std::string myPolicy;
963 if (forceFieldOptions_.haveCutoffPolicy()){
964 myPolicy = forceFieldOptions_.getCutoffPolicy();
965 }else if (simParams_->haveCutoffPolicy()) {
966 myPolicy = simParams_->getCutoffPolicy();
967 }
968
969 if (!myPolicy.empty()){
970 toUpper(myPolicy);
971 if (myPolicy == "MIX") {
972 cp = MIX_CUTOFF_POLICY;
973 } else {
974 if (myPolicy == "MAX") {
975 cp = MAX_CUTOFF_POLICY;
976 } else {
977 if (myPolicy == "TRADITIONAL") {
978 cp = TRADITIONAL_CUTOFF_POLICY;
979 } else {
980 // throw error
981 sprintf( painCave.errMsg,
982 "SimInfo error: Unknown cutoffPolicy. (Input file specified %s .)\n\tcutoffPolicy must be one of: \"Mix\", \"Max\", or \"Traditional\".", myPolicy.c_str() );
983 painCave.isFatal = 1;
984 simError();
985 }
986 }
987 }
988 }
989 notifyFortranCutoffPolicy(&cp);
990
991 // Check the Skin Thickness for neighborlists
992 RealType skin;
993 if (simParams_->haveSkinThickness()) {
994 skin = simParams_->getSkinThickness();
995 notifyFortranSkinThickness(&skin);
996 }
997
998 // Check if the cutoff was set explicitly:
999 if (simParams_->haveCutoffRadius()) {
1000 rcut_ = simParams_->getCutoffRadius();
1001 if (simParams_->haveSwitchingRadius()) {
1002 rsw_ = simParams_->getSwitchingRadius();
1003 } else {
1004 if (fInfo_.SIM_uses_Charges |
1005 fInfo_.SIM_uses_Dipoles |
1006 fInfo_.SIM_uses_RF) {
1007
1008 rsw_ = 0.85 * rcut_;
1009 sprintf(painCave.errMsg,
1010 "SimCreator Warning: No value was set for the switchingRadius.\n"
1011 "\tOOPSE will use a default value of 85 percent of the cutoffRadius.\n"
1012 "\tswitchingRadius = %f. for this simulation\n", rsw_);
1013 painCave.isFatal = 0;
1014 simError();
1015 } else {
1016 rsw_ = rcut_;
1017 sprintf(painCave.errMsg,
1018 "SimCreator Warning: No value was set for the switchingRadius.\n"
1019 "\tOOPSE will use the same value as the cutoffRadius.\n"
1020 "\tswitchingRadius = %f. for this simulation\n", rsw_);
1021 painCave.isFatal = 0;
1022 simError();
1023 }
1024 }
1025
1026 if (simParams_->haveElectrostaticSummationMethod()) {
1027 std::string myMethod = simParams_->getElectrostaticSummationMethod();
1028 toUpper(myMethod);
1029
1030 if (myMethod == "SHIFTED_POTENTIAL") {
1031 ljsp_ = true;
1032 } else if (myMethod == "SHIFTED_FORCE") {
1033 ljsf_ = true;
1034 }
1035 }
1036 notifyFortranCutoffs(&rcut_, &rsw_, &ljsp_, &ljsf_);
1037
1038 } else {
1039
1040 // For electrostatic atoms, we'll assume a large safe value:
1041 if (fInfo_.SIM_uses_Charges | fInfo_.SIM_uses_Dipoles | fInfo_.SIM_uses_RF) {
1042 sprintf(painCave.errMsg,
1043 "SimCreator Warning: No value was set for the cutoffRadius.\n"
1044 "\tOOPSE will use a default value of 15.0 angstroms"
1045 "\tfor the cutoffRadius.\n");
1046 painCave.isFatal = 0;
1047 simError();
1048 rcut_ = 15.0;
1049
1050 if (simParams_->haveElectrostaticSummationMethod()) {
1051 std::string myMethod = simParams_->getElectrostaticSummationMethod();
1052 toUpper(myMethod);
1053
1054 // For the time being, we're tethering the LJ shifted behavior to the
1055 // electrostaticSummationMethod keyword options
1056 if (myMethod == "SHIFTED_POTENTIAL") {
1057 ljsp_ = true;
1058 } else if (myMethod == "SHIFTED_FORCE") {
1059 ljsf_ = true;
1060 }
1061 if (myMethod == "SHIFTED_POTENTIAL" || myMethod == "SHIFTED_FORCE") {
1062 if (simParams_->haveSwitchingRadius()){
1063 sprintf(painCave.errMsg,
1064 "SimInfo Warning: A value was set for the switchingRadius\n"
1065 "\teven though the electrostaticSummationMethod was\n"
1066 "\tset to %s\n", myMethod.c_str());
1067 painCave.isFatal = 1;
1068 simError();
1069 }
1070 }
1071 }
1072
1073 if (simParams_->haveSwitchingRadius()){
1074 rsw_ = simParams_->getSwitchingRadius();
1075 } else {
1076 sprintf(painCave.errMsg,
1077 "SimCreator Warning: No value was set for switchingRadius.\n"
1078 "\tOOPSE will use a default value of\n"
1079 "\t0.85 * cutoffRadius for the switchingRadius\n");
1080 painCave.isFatal = 0;
1081 simError();
1082 rsw_ = 0.85 * rcut_;
1083 }
1084
1085 notifyFortranCutoffs(&rcut_, &rsw_, &ljsp_, &ljsf_);
1086
1087 } else {
1088 // We didn't set rcut explicitly, and we don't have electrostatic atoms, so
1089 // We'll punt and let fortran figure out the cutoffs later.
1090
1091 notifyFortranYouAreOnYourOwn();
1092
1093 }
1094 }
1095 }
1096
1097 void SimInfo::setupElectrostaticSummationMethod( int isError ) {
1098
1099 int errorOut;
1100 int esm = NONE;
1101 int sm = UNDAMPED;
1102 RealType alphaVal;
1103 RealType dielectric;
1104
1105 errorOut = isError;
1106
1107 if (simParams_->haveElectrostaticSummationMethod()) {
1108 std::string myMethod = simParams_->getElectrostaticSummationMethod();
1109 toUpper(myMethod);
1110 if (myMethod == "NONE") {
1111 esm = NONE;
1112 } else {
1113 if (myMethod == "SWITCHING_FUNCTION") {
1114 esm = SWITCHING_FUNCTION;
1115 } else {
1116 if (myMethod == "SHIFTED_POTENTIAL") {
1117 esm = SHIFTED_POTENTIAL;
1118 } else {
1119 if (myMethod == "SHIFTED_FORCE") {
1120 esm = SHIFTED_FORCE;
1121 } else {
1122 if (myMethod == "REACTION_FIELD") {
1123 esm = REACTION_FIELD;
1124 dielectric = simParams_->getDielectric();
1125 if (!simParams_->haveDielectric()) {
1126 // throw warning
1127 sprintf( painCave.errMsg,
1128 "SimInfo warning: dielectric was not specified in the input file\n\tfor the reaction field correction method.\n"
1129 "\tA default value of %f will be used for the dielectric.\n", dielectric);
1130 painCave.isFatal = 0;
1131 simError();
1132 }
1133 } else {
1134 // throw error
1135 sprintf( painCave.errMsg,
1136 "SimInfo error: Unknown electrostaticSummationMethod.\n"
1137 "\t(Input file specified %s .)\n"
1138 "\telectrostaticSummationMethod must be one of: \"none\",\n"
1139 "\t\"shifted_potential\", \"shifted_force\", or \n"
1140 "\t\"reaction_field\".\n", myMethod.c_str() );
1141 painCave.isFatal = 1;
1142 simError();
1143 }
1144 }
1145 }
1146 }
1147 }
1148 }
1149
1150 if (simParams_->haveElectrostaticScreeningMethod()) {
1151 std::string myScreen = simParams_->getElectrostaticScreeningMethod();
1152 toUpper(myScreen);
1153 if (myScreen == "UNDAMPED") {
1154 sm = UNDAMPED;
1155 } else {
1156 if (myScreen == "DAMPED") {
1157 sm = DAMPED;
1158 if (!simParams_->haveDampingAlpha()) {
1159 // first set a cutoff dependent alpha value
1160 // we assume alpha depends linearly with rcut from 0 to 20.5 ang
1161 alphaVal = 0.5125 - rcut_* 0.025;
1162 // for values rcut > 20.5, alpha is zero
1163 if (alphaVal < 0) alphaVal = 0;
1164
1165 // throw warning
1166 sprintf( painCave.errMsg,
1167 "SimInfo warning: dampingAlpha was not specified in the input file.\n"
1168 "\tA default value of %f (1/ang) will be used for the cutoff of\n\t%f (ang).\n", alphaVal, rcut_);
1169 painCave.isFatal = 0;
1170 simError();
1171 } else {
1172 alphaVal = simParams_->getDampingAlpha();
1173 }
1174
1175 } else {
1176 // throw error
1177 sprintf( painCave.errMsg,
1178 "SimInfo error: Unknown electrostaticScreeningMethod.\n"
1179 "\t(Input file specified %s .)\n"
1180 "\telectrostaticScreeningMethod must be one of: \"undamped\"\n"
1181 "or \"damped\".\n", myScreen.c_str() );
1182 painCave.isFatal = 1;
1183 simError();
1184 }
1185 }
1186 }
1187
1188 // let's pass some summation method variables to fortran
1189 setElectrostaticSummationMethod( &esm );
1190 setFortranElectrostaticMethod( &esm );
1191 setScreeningMethod( &sm );
1192 setDampingAlpha( &alphaVal );
1193 setReactionFieldDielectric( &dielectric );
1194 initFortranFF( &errorOut );
1195 }
1196
1197 void SimInfo::setupSwitchingFunction() {
1198 int ft = CUBIC;
1199
1200 if (simParams_->haveSwitchingFunctionType()) {
1201 std::string funcType = simParams_->getSwitchingFunctionType();
1202 toUpper(funcType);
1203 if (funcType == "CUBIC") {
1204 ft = CUBIC;
1205 } else {
1206 if (funcType == "FIFTH_ORDER_POLYNOMIAL") {
1207 ft = FIFTH_ORDER_POLY;
1208 } else {
1209 // throw error
1210 sprintf( painCave.errMsg,
1211 "SimInfo error: Unknown switchingFunctionType. (Input file specified %s .)\n\tswitchingFunctionType must be one of: \"cubic\" or \"fifth_order_polynomial\".", funcType.c_str() );
1212 painCave.isFatal = 1;
1213 simError();
1214 }
1215 }
1216 }
1217
1218 // send switching function notification to switcheroo
1219 setFunctionType(&ft);
1220
1221 }
1222
1223 void SimInfo::setupAccumulateBoxDipole() {
1224
1225 // we only call setAccumulateBoxDipole if the accumulateBoxDipole parameter is true
1226 if ( simParams_->haveAccumulateBoxDipole() )
1227 if ( simParams_->getAccumulateBoxDipole() ) {
1228 setAccumulateBoxDipole();
1229 calcBoxDipole_ = true;
1230 }
1231
1232 }
1233
1234 void SimInfo::addProperty(GenericData* genData) {
1235 properties_.addProperty(genData);
1236 }
1237
1238 void SimInfo::removeProperty(const std::string& propName) {
1239 properties_.removeProperty(propName);
1240 }
1241
1242 void SimInfo::clearProperties() {
1243 properties_.clearProperties();
1244 }
1245
1246 std::vector<std::string> SimInfo::getPropertyNames() {
1247 return properties_.getPropertyNames();
1248 }
1249
1250 std::vector<GenericData*> SimInfo::getProperties() {
1251 return properties_.getProperties();
1252 }
1253
1254 GenericData* SimInfo::getPropertyByName(const std::string& propName) {
1255 return properties_.getPropertyByName(propName);
1256 }
1257
1258 void SimInfo::setSnapshotManager(SnapshotManager* sman) {
1259 if (sman_ == sman) {
1260 return;
1261 }
1262 delete sman_;
1263 sman_ = sman;
1264
1265 Molecule* mol;
1266 RigidBody* rb;
1267 Atom* atom;
1268 SimInfo::MoleculeIterator mi;
1269 Molecule::RigidBodyIterator rbIter;
1270 Molecule::AtomIterator atomIter;;
1271
1272 for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
1273
1274 for (atom = mol->beginAtom(atomIter); atom != NULL; atom = mol->nextAtom(atomIter)) {
1275 atom->setSnapshotManager(sman_);
1276 }
1277
1278 for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
1279 rb->setSnapshotManager(sman_);
1280 }
1281 }
1282
1283 }
1284
1285 Vector3d SimInfo::getComVel(){
1286 SimInfo::MoleculeIterator i;
1287 Molecule* mol;
1288
1289 Vector3d comVel(0.0);
1290 RealType totalMass = 0.0;
1291
1292
1293 for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1294 RealType mass = mol->getMass();
1295 totalMass += mass;
1296 comVel += mass * mol->getComVel();
1297 }
1298
1299 #ifdef IS_MPI
1300 RealType tmpMass = totalMass;
1301 Vector3d tmpComVel(comVel);
1302 MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1303 MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1304 #endif
1305
1306 comVel /= totalMass;
1307
1308 return comVel;
1309 }
1310
1311 Vector3d SimInfo::getCom(){
1312 SimInfo::MoleculeIterator i;
1313 Molecule* mol;
1314
1315 Vector3d com(0.0);
1316 RealType totalMass = 0.0;
1317
1318 for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1319 RealType mass = mol->getMass();
1320 totalMass += mass;
1321 com += mass * mol->getCom();
1322 }
1323
1324 #ifdef IS_MPI
1325 RealType tmpMass = totalMass;
1326 Vector3d tmpCom(com);
1327 MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1328 MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1329 #endif
1330
1331 com /= totalMass;
1332
1333 return com;
1334
1335 }
1336
1337 std::ostream& operator <<(std::ostream& o, SimInfo& info) {
1338
1339 return o;
1340 }
1341
1342
1343 /*
1344 Returns center of mass and center of mass velocity in one function call.
1345 */
1346
1347 void SimInfo::getComAll(Vector3d &com, Vector3d &comVel){
1348 SimInfo::MoleculeIterator i;
1349 Molecule* mol;
1350
1351
1352 RealType totalMass = 0.0;
1353
1354
1355 for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1356 RealType mass = mol->getMass();
1357 totalMass += mass;
1358 com += mass * mol->getCom();
1359 comVel += mass * mol->getComVel();
1360 }
1361
1362 #ifdef IS_MPI
1363 RealType tmpMass = totalMass;
1364 Vector3d tmpCom(com);
1365 Vector3d tmpComVel(comVel);
1366 MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1367 MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1368 MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1369 #endif
1370
1371 com /= totalMass;
1372 comVel /= totalMass;
1373 }
1374
1375 /*
1376 Return intertia tensor for entire system and angular momentum Vector.
1377
1378
1379 [ Ixx -Ixy -Ixz ]
1380 J =| -Iyx Iyy -Iyz |
1381 [ -Izx -Iyz Izz ]
1382 */
1383
1384 void SimInfo::getInertiaTensor(Mat3x3d &inertiaTensor, Vector3d &angularMomentum){
1385
1386
1387 RealType xx = 0.0;
1388 RealType yy = 0.0;
1389 RealType zz = 0.0;
1390 RealType xy = 0.0;
1391 RealType xz = 0.0;
1392 RealType yz = 0.0;
1393 Vector3d com(0.0);
1394 Vector3d comVel(0.0);
1395
1396 getComAll(com, comVel);
1397
1398 SimInfo::MoleculeIterator i;
1399 Molecule* mol;
1400
1401 Vector3d thisq(0.0);
1402 Vector3d thisv(0.0);
1403
1404 RealType thisMass = 0.0;
1405
1406
1407
1408
1409 for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1410
1411 thisq = mol->getCom()-com;
1412 thisv = mol->getComVel()-comVel;
1413 thisMass = mol->getMass();
1414 // Compute moment of intertia coefficients.
1415 xx += thisq[0]*thisq[0]*thisMass;
1416 yy += thisq[1]*thisq[1]*thisMass;
1417 zz += thisq[2]*thisq[2]*thisMass;
1418
1419 // compute products of intertia
1420 xy += thisq[0]*thisq[1]*thisMass;
1421 xz += thisq[0]*thisq[2]*thisMass;
1422 yz += thisq[1]*thisq[2]*thisMass;
1423
1424 angularMomentum += cross( thisq, thisv ) * thisMass;
1425
1426 }
1427
1428
1429 inertiaTensor(0,0) = yy + zz;
1430 inertiaTensor(0,1) = -xy;
1431 inertiaTensor(0,2) = -xz;
1432 inertiaTensor(1,0) = -xy;
1433 inertiaTensor(1,1) = xx + zz;
1434 inertiaTensor(1,2) = -yz;
1435 inertiaTensor(2,0) = -xz;
1436 inertiaTensor(2,1) = -yz;
1437 inertiaTensor(2,2) = xx + yy;
1438
1439 #ifdef IS_MPI
1440 Mat3x3d tmpI(inertiaTensor);
1441 Vector3d tmpAngMom;
1442 MPI_Allreduce(tmpI.getArrayPointer(), inertiaTensor.getArrayPointer(),9,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1443 MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1444 #endif
1445
1446 return;
1447 }
1448
1449 //Returns the angular momentum of the system
1450 Vector3d SimInfo::getAngularMomentum(){
1451
1452 Vector3d com(0.0);
1453 Vector3d comVel(0.0);
1454 Vector3d angularMomentum(0.0);
1455
1456 getComAll(com,comVel);
1457
1458 SimInfo::MoleculeIterator i;
1459 Molecule* mol;
1460
1461 Vector3d thisr(0.0);
1462 Vector3d thisp(0.0);
1463
1464 RealType thisMass;
1465
1466 for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1467 thisMass = mol->getMass();
1468 thisr = mol->getCom()-com;
1469 thisp = (mol->getComVel()-comVel)*thisMass;
1470
1471 angularMomentum += cross( thisr, thisp );
1472
1473 }
1474
1475 #ifdef IS_MPI
1476 Vector3d tmpAngMom;
1477 MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1478 #endif
1479
1480 return angularMomentum;
1481 }
1482
1483 StuntDouble* SimInfo::getIOIndexToIntegrableObject(int index) {
1484 return IOIndexToIntegrableObject.at(index);
1485 }
1486
1487 void SimInfo::setIOIndexToIntegrableObject(const std::vector<StuntDouble*>& v) {
1488 IOIndexToIntegrableObject= v;
1489 }
1490
1491 /* Returns the Volume of the simulation based on a ellipsoid with semi-axes
1492 based on the radius of gyration V=4/3*Pi*R_1*R_2*R_3
1493 where R_i are related to the principle inertia moments R_i = sqrt(C*I_i/N), this reduces to
1494 V = 4/3*Pi*(C/N)^3/2*sqrt(det(I)). See S.E. Baltazar et. al. Comp. Mat. Sci. 37 (2006) 526-536.
1495 */
1496 void SimInfo::getGyrationalVolume(RealType &volume){
1497 Mat3x3d intTensor;
1498 RealType det;
1499 Vector3d dummyAngMom;
1500 RealType sysconstants;
1501 RealType geomCnst;
1502
1503 geomCnst = 3.0/2.0;
1504 /* Get the inertial tensor and angular momentum for free*/
1505 getInertiaTensor(intTensor,dummyAngMom);
1506
1507 det = intTensor.determinant();
1508 sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_;
1509 volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,3.0/2.0)*sqrt(det);
1510 return;
1511 }
1512
1513 void SimInfo::getGyrationalVolume(RealType &volume, RealType &detI){
1514 Mat3x3d intTensor;
1515 Vector3d dummyAngMom;
1516 RealType sysconstants;
1517 RealType geomCnst;
1518
1519 geomCnst = 3.0/2.0;
1520 /* Get the inertial tensor and angular momentum for free*/
1521 getInertiaTensor(intTensor,dummyAngMom);
1522
1523 detI = intTensor.determinant();
1524 sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_;
1525 volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,3.0/2.0)*sqrt(detI);
1526 return;
1527 }
1528 /*
1529 void SimInfo::setStuntDoubleFromGlobalIndex(std::vector<StuntDouble*> v) {
1530 assert( v.size() == nAtoms_ + nRigidBodies_);
1531 sdByGlobalIndex_ = v;
1532 }
1533
1534 StuntDouble* SimInfo::getStuntDoubleFromGlobalIndex(int index) {
1535 //assert(index < nAtoms_ + nRigidBodies_);
1536 return sdByGlobalIndex_.at(index);
1537 }
1538 */
1539 }//end namespace oopse
1540