ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/OOPSE-4/src/brains/SimInfo.cpp
Revision: 3013
Committed: Thu Sep 21 18:25:17 2006 UTC (18 years, 7 months ago) by chrisfen
File size: 46146 byte(s)
Log Message:
fixed the half self term for wolf electrostatics and OOPSE now chooses a cutoff radius dependent alpha for damped electrostatics

File Contents

# Content
1 /*
2 * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3 *
4 * The University of Notre Dame grants you ("Licensee") a
5 * non-exclusive, royalty free, license to use, modify and
6 * redistribute this software in source and binary code form, provided
7 * that the following conditions are met:
8 *
9 * 1. Acknowledgement of the program authors must be made in any
10 * publication of scientific results based in part on use of the
11 * program. An acceptable form of acknowledgement is citation of
12 * the article in which the program was described (Matthew
13 * A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14 * J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15 * Parallel Simulation Engine for Molecular Dynamics,"
16 * J. Comput. Chem. 26, pp. 252-271 (2005))
17 *
18 * 2. Redistributions of source code must retain the above copyright
19 * notice, this list of conditions and the following disclaimer.
20 *
21 * 3. Redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the
24 * distribution.
25 *
26 * This software is provided "AS IS," without a warranty of any
27 * kind. All express or implied conditions, representations and
28 * warranties, including any implied warranty of merchantability,
29 * fitness for a particular purpose or non-infringement, are hereby
30 * excluded. The University of Notre Dame and its licensors shall not
31 * be liable for any damages suffered by licensee as a result of
32 * using, modifying or distributing the software or its
33 * derivatives. In no event will the University of Notre Dame or its
34 * licensors be liable for any lost revenue, profit or data, or for
35 * direct, indirect, special, consequential, incidental or punitive
36 * damages, however caused and regardless of the theory of liability,
37 * arising out of the use of or inability to use software, even if the
38 * University of Notre Dame has been advised of the possibility of
39 * such damages.
40 */
41
42 /**
43 * @file SimInfo.cpp
44 * @author tlin
45 * @date 11/02/2004
46 * @version 1.0
47 */
48
49 #include <algorithm>
50 #include <set>
51 #include <map>
52
53 #include "brains/SimInfo.hpp"
54 #include "math/Vector3.hpp"
55 #include "primitives/Molecule.hpp"
56 #include "primitives/StuntDouble.hpp"
57 #include "UseTheForce/fCutoffPolicy.h"
58 #include "UseTheForce/DarkSide/fElectrostaticSummationMethod.h"
59 #include "UseTheForce/DarkSide/fElectrostaticScreeningMethod.h"
60 #include "UseTheForce/DarkSide/fSwitchingFunctionType.h"
61 #include "UseTheForce/doForces_interface.h"
62 #include "UseTheForce/DarkSide/electrostatic_interface.h"
63 #include "UseTheForce/DarkSide/switcheroo_interface.h"
64 #include "utils/MemoryUtils.hpp"
65 #include "utils/simError.h"
66 #include "selection/SelectionManager.hpp"
67 #include "io/ForceFieldOptions.hpp"
68 #include "UseTheForce/ForceField.hpp"
69
70 #ifdef IS_MPI
71 #include "UseTheForce/mpiComponentPlan.h"
72 #include "UseTheForce/DarkSide/simParallel_interface.h"
73 #endif
74
75 namespace oopse {
76 std::set<int> getRigidSet(int index, std::map<int, std::set<int> >& container) {
77 std::map<int, std::set<int> >::iterator i = container.find(index);
78 std::set<int> result;
79 if (i != container.end()) {
80 result = i->second;
81 }
82
83 return result;
84 }
85
86 SimInfo::SimInfo(ForceField* ff, Globals* simParams) :
87 forceField_(ff), simParams_(simParams),
88 ndf_(0), fdf_local(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0),
89 nGlobalMols_(0), nGlobalAtoms_(0), nGlobalCutoffGroups_(0),
90 nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0),
91 nAtoms_(0), nBonds_(0), nBends_(0), nTorsions_(0), nRigidBodies_(0),
92 nIntegrableObjects_(0), nCutoffGroups_(0), nConstraints_(0),
93 sman_(NULL), fortranInitialized_(false), calcBoxDipole_(false) {
94
95 MoleculeStamp* molStamp;
96 int nMolWithSameStamp;
97 int nCutoffAtoms = 0; // number of atoms belong to cutoff groups
98 int nGroups = 0; //total cutoff groups defined in meta-data file
99 CutoffGroupStamp* cgStamp;
100 RigidBodyStamp* rbStamp;
101 int nRigidAtoms = 0;
102 std::vector<Component*> components = simParams->getComponents();
103
104 for (std::vector<Component*>::iterator i = components.begin(); i !=components.end(); ++i) {
105 molStamp = (*i)->getMoleculeStamp();
106 nMolWithSameStamp = (*i)->getNMol();
107
108 addMoleculeStamp(molStamp, nMolWithSameStamp);
109
110 //calculate atoms in molecules
111 nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp;
112
113 //calculate atoms in cutoff groups
114 int nAtomsInGroups = 0;
115 int nCutoffGroupsInStamp = molStamp->getNCutoffGroups();
116
117 for (int j=0; j < nCutoffGroupsInStamp; j++) {
118 cgStamp = molStamp->getCutoffGroupStamp(j);
119 nAtomsInGroups += cgStamp->getNMembers();
120 }
121
122 nGroups += nCutoffGroupsInStamp * nMolWithSameStamp;
123
124 nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp;
125
126 //calculate atoms in rigid bodies
127 int nAtomsInRigidBodies = 0;
128 int nRigidBodiesInStamp = molStamp->getNRigidBodies();
129
130 for (int j=0; j < nRigidBodiesInStamp; j++) {
131 rbStamp = molStamp->getRigidBodyStamp(j);
132 nAtomsInRigidBodies += rbStamp->getNMembers();
133 }
134
135 nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp;
136 nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp;
137
138 }
139
140 //every free atom (atom does not belong to cutoff groups) is a cutoff
141 //group therefore the total number of cutoff groups in the system is
142 //equal to the total number of atoms minus number of atoms belong to
143 //cutoff group defined in meta-data file plus the number of cutoff
144 //groups defined in meta-data file
145 nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups;
146
147 //every free atom (atom does not belong to rigid bodies) is an
148 //integrable object therefore the total number of integrable objects
149 //in the system is equal to the total number of atoms minus number of
150 //atoms belong to rigid body defined in meta-data file plus the number
151 //of rigid bodies defined in meta-data file
152 nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms
153 + nGlobalRigidBodies_;
154
155 nGlobalMols_ = molStampIds_.size();
156
157 #ifdef IS_MPI
158 molToProcMap_.resize(nGlobalMols_);
159 #endif
160
161 }
162
163 SimInfo::~SimInfo() {
164 std::map<int, Molecule*>::iterator i;
165 for (i = molecules_.begin(); i != molecules_.end(); ++i) {
166 delete i->second;
167 }
168 molecules_.clear();
169
170 delete sman_;
171 delete simParams_;
172 delete forceField_;
173 }
174
175 int SimInfo::getNGlobalConstraints() {
176 int nGlobalConstraints;
177 #ifdef IS_MPI
178 MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM,
179 MPI_COMM_WORLD);
180 #else
181 nGlobalConstraints = nConstraints_;
182 #endif
183 return nGlobalConstraints;
184 }
185
186 bool SimInfo::addMolecule(Molecule* mol) {
187 MoleculeIterator i;
188
189 i = molecules_.find(mol->getGlobalIndex());
190 if (i == molecules_.end() ) {
191
192 molecules_.insert(std::make_pair(mol->getGlobalIndex(), mol));
193
194 nAtoms_ += mol->getNAtoms();
195 nBonds_ += mol->getNBonds();
196 nBends_ += mol->getNBends();
197 nTorsions_ += mol->getNTorsions();
198 nRigidBodies_ += mol->getNRigidBodies();
199 nIntegrableObjects_ += mol->getNIntegrableObjects();
200 nCutoffGroups_ += mol->getNCutoffGroups();
201 nConstraints_ += mol->getNConstraintPairs();
202
203 addExcludePairs(mol);
204
205 return true;
206 } else {
207 return false;
208 }
209 }
210
211 bool SimInfo::removeMolecule(Molecule* mol) {
212 MoleculeIterator i;
213 i = molecules_.find(mol->getGlobalIndex());
214
215 if (i != molecules_.end() ) {
216
217 assert(mol == i->second);
218
219 nAtoms_ -= mol->getNAtoms();
220 nBonds_ -= mol->getNBonds();
221 nBends_ -= mol->getNBends();
222 nTorsions_ -= mol->getNTorsions();
223 nRigidBodies_ -= mol->getNRigidBodies();
224 nIntegrableObjects_ -= mol->getNIntegrableObjects();
225 nCutoffGroups_ -= mol->getNCutoffGroups();
226 nConstraints_ -= mol->getNConstraintPairs();
227
228 removeExcludePairs(mol);
229 molecules_.erase(mol->getGlobalIndex());
230
231 delete mol;
232
233 return true;
234 } else {
235 return false;
236 }
237
238
239 }
240
241
242 Molecule* SimInfo::beginMolecule(MoleculeIterator& i) {
243 i = molecules_.begin();
244 return i == molecules_.end() ? NULL : i->second;
245 }
246
247 Molecule* SimInfo::nextMolecule(MoleculeIterator& i) {
248 ++i;
249 return i == molecules_.end() ? NULL : i->second;
250 }
251
252
253 void SimInfo::calcNdf() {
254 int ndf_local;
255 MoleculeIterator i;
256 std::vector<StuntDouble*>::iterator j;
257 Molecule* mol;
258 StuntDouble* integrableObject;
259
260 ndf_local = 0;
261
262 for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
263 for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
264 integrableObject = mol->nextIntegrableObject(j)) {
265
266 ndf_local += 3;
267
268 if (integrableObject->isDirectional()) {
269 if (integrableObject->isLinear()) {
270 ndf_local += 2;
271 } else {
272 ndf_local += 3;
273 }
274 }
275
276 }
277 }
278
279 // n_constraints is local, so subtract them on each processor
280 ndf_local -= nConstraints_;
281
282 #ifdef IS_MPI
283 MPI_Allreduce(&ndf_local,&ndf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
284 #else
285 ndf_ = ndf_local;
286 #endif
287
288 // nZconstraints_ is global, as are the 3 COM translations for the
289 // entire system:
290 ndf_ = ndf_ - 3 - nZconstraint_;
291
292 }
293
294 int SimInfo::getFdf() {
295 #ifdef IS_MPI
296 MPI_Allreduce(&fdf_local,&fdf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
297 #else
298 fdf_ = fdf_local;
299 #endif
300 return fdf_;
301 }
302
303 void SimInfo::calcNdfRaw() {
304 int ndfRaw_local;
305
306 MoleculeIterator i;
307 std::vector<StuntDouble*>::iterator j;
308 Molecule* mol;
309 StuntDouble* integrableObject;
310
311 // Raw degrees of freedom that we have to set
312 ndfRaw_local = 0;
313
314 for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
315 for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
316 integrableObject = mol->nextIntegrableObject(j)) {
317
318 ndfRaw_local += 3;
319
320 if (integrableObject->isDirectional()) {
321 if (integrableObject->isLinear()) {
322 ndfRaw_local += 2;
323 } else {
324 ndfRaw_local += 3;
325 }
326 }
327
328 }
329 }
330
331 #ifdef IS_MPI
332 MPI_Allreduce(&ndfRaw_local,&ndfRaw_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
333 #else
334 ndfRaw_ = ndfRaw_local;
335 #endif
336 }
337
338 void SimInfo::calcNdfTrans() {
339 int ndfTrans_local;
340
341 ndfTrans_local = 3 * nIntegrableObjects_ - nConstraints_;
342
343
344 #ifdef IS_MPI
345 MPI_Allreduce(&ndfTrans_local,&ndfTrans_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
346 #else
347 ndfTrans_ = ndfTrans_local;
348 #endif
349
350 ndfTrans_ = ndfTrans_ - 3 - nZconstraint_;
351
352 }
353
354 void SimInfo::addExcludePairs(Molecule* mol) {
355 std::vector<Bond*>::iterator bondIter;
356 std::vector<Bend*>::iterator bendIter;
357 std::vector<Torsion*>::iterator torsionIter;
358 Bond* bond;
359 Bend* bend;
360 Torsion* torsion;
361 int a;
362 int b;
363 int c;
364 int d;
365
366 std::map<int, std::set<int> > atomGroups;
367
368 Molecule::RigidBodyIterator rbIter;
369 RigidBody* rb;
370 Molecule::IntegrableObjectIterator ii;
371 StuntDouble* integrableObject;
372
373 for (integrableObject = mol->beginIntegrableObject(ii); integrableObject != NULL;
374 integrableObject = mol->nextIntegrableObject(ii)) {
375
376 if (integrableObject->isRigidBody()) {
377 rb = static_cast<RigidBody*>(integrableObject);
378 std::vector<Atom*> atoms = rb->getAtoms();
379 std::set<int> rigidAtoms;
380 for (int i = 0; i < atoms.size(); ++i) {
381 rigidAtoms.insert(atoms[i]->getGlobalIndex());
382 }
383 for (int i = 0; i < atoms.size(); ++i) {
384 atomGroups.insert(std::map<int, std::set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
385 }
386 } else {
387 std::set<int> oneAtomSet;
388 oneAtomSet.insert(integrableObject->getGlobalIndex());
389 atomGroups.insert(std::map<int, std::set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));
390 }
391 }
392
393
394
395 for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
396 a = bond->getAtomA()->getGlobalIndex();
397 b = bond->getAtomB()->getGlobalIndex();
398 exclude_.addPair(a, b);
399 }
400
401 for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
402 a = bend->getAtomA()->getGlobalIndex();
403 b = bend->getAtomB()->getGlobalIndex();
404 c = bend->getAtomC()->getGlobalIndex();
405 std::set<int> rigidSetA = getRigidSet(a, atomGroups);
406 std::set<int> rigidSetB = getRigidSet(b, atomGroups);
407 std::set<int> rigidSetC = getRigidSet(c, atomGroups);
408
409 exclude_.addPairs(rigidSetA, rigidSetB);
410 exclude_.addPairs(rigidSetA, rigidSetC);
411 exclude_.addPairs(rigidSetB, rigidSetC);
412
413 //exclude_.addPair(a, b);
414 //exclude_.addPair(a, c);
415 //exclude_.addPair(b, c);
416 }
417
418 for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
419 a = torsion->getAtomA()->getGlobalIndex();
420 b = torsion->getAtomB()->getGlobalIndex();
421 c = torsion->getAtomC()->getGlobalIndex();
422 d = torsion->getAtomD()->getGlobalIndex();
423 std::set<int> rigidSetA = getRigidSet(a, atomGroups);
424 std::set<int> rigidSetB = getRigidSet(b, atomGroups);
425 std::set<int> rigidSetC = getRigidSet(c, atomGroups);
426 std::set<int> rigidSetD = getRigidSet(d, atomGroups);
427
428 exclude_.addPairs(rigidSetA, rigidSetB);
429 exclude_.addPairs(rigidSetA, rigidSetC);
430 exclude_.addPairs(rigidSetA, rigidSetD);
431 exclude_.addPairs(rigidSetB, rigidSetC);
432 exclude_.addPairs(rigidSetB, rigidSetD);
433 exclude_.addPairs(rigidSetC, rigidSetD);
434
435 /*
436 exclude_.addPairs(rigidSetA.begin(), rigidSetA.end(), rigidSetB.begin(), rigidSetB.end());
437 exclude_.addPairs(rigidSetA.begin(), rigidSetA.end(), rigidSetC.begin(), rigidSetC.end());
438 exclude_.addPairs(rigidSetA.begin(), rigidSetA.end(), rigidSetD.begin(), rigidSetD.end());
439 exclude_.addPairs(rigidSetB.begin(), rigidSetB.end(), rigidSetC.begin(), rigidSetC.end());
440 exclude_.addPairs(rigidSetB.begin(), rigidSetB.end(), rigidSetD.begin(), rigidSetD.end());
441 exclude_.addPairs(rigidSetC.begin(), rigidSetC.end(), rigidSetD.begin(), rigidSetD.end());
442
443
444 exclude_.addPair(a, b);
445 exclude_.addPair(a, c);
446 exclude_.addPair(a, d);
447 exclude_.addPair(b, c);
448 exclude_.addPair(b, d);
449 exclude_.addPair(c, d);
450 */
451 }
452
453 for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
454 std::vector<Atom*> atoms = rb->getAtoms();
455 for (int i = 0; i < atoms.size() -1 ; ++i) {
456 for (int j = i + 1; j < atoms.size(); ++j) {
457 a = atoms[i]->getGlobalIndex();
458 b = atoms[j]->getGlobalIndex();
459 exclude_.addPair(a, b);
460 }
461 }
462 }
463
464 }
465
466 void SimInfo::removeExcludePairs(Molecule* mol) {
467 std::vector<Bond*>::iterator bondIter;
468 std::vector<Bend*>::iterator bendIter;
469 std::vector<Torsion*>::iterator torsionIter;
470 Bond* bond;
471 Bend* bend;
472 Torsion* torsion;
473 int a;
474 int b;
475 int c;
476 int d;
477
478 std::map<int, std::set<int> > atomGroups;
479
480 Molecule::RigidBodyIterator rbIter;
481 RigidBody* rb;
482 Molecule::IntegrableObjectIterator ii;
483 StuntDouble* integrableObject;
484
485 for (integrableObject = mol->beginIntegrableObject(ii); integrableObject != NULL;
486 integrableObject = mol->nextIntegrableObject(ii)) {
487
488 if (integrableObject->isRigidBody()) {
489 rb = static_cast<RigidBody*>(integrableObject);
490 std::vector<Atom*> atoms = rb->getAtoms();
491 std::set<int> rigidAtoms;
492 for (int i = 0; i < atoms.size(); ++i) {
493 rigidAtoms.insert(atoms[i]->getGlobalIndex());
494 }
495 for (int i = 0; i < atoms.size(); ++i) {
496 atomGroups.insert(std::map<int, std::set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
497 }
498 } else {
499 std::set<int> oneAtomSet;
500 oneAtomSet.insert(integrableObject->getGlobalIndex());
501 atomGroups.insert(std::map<int, std::set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));
502 }
503 }
504
505
506 for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
507 a = bond->getAtomA()->getGlobalIndex();
508 b = bond->getAtomB()->getGlobalIndex();
509 exclude_.removePair(a, b);
510 }
511
512 for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
513 a = bend->getAtomA()->getGlobalIndex();
514 b = bend->getAtomB()->getGlobalIndex();
515 c = bend->getAtomC()->getGlobalIndex();
516
517 std::set<int> rigidSetA = getRigidSet(a, atomGroups);
518 std::set<int> rigidSetB = getRigidSet(b, atomGroups);
519 std::set<int> rigidSetC = getRigidSet(c, atomGroups);
520
521 exclude_.removePairs(rigidSetA, rigidSetB);
522 exclude_.removePairs(rigidSetA, rigidSetC);
523 exclude_.removePairs(rigidSetB, rigidSetC);
524
525 //exclude_.removePair(a, b);
526 //exclude_.removePair(a, c);
527 //exclude_.removePair(b, c);
528 }
529
530 for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
531 a = torsion->getAtomA()->getGlobalIndex();
532 b = torsion->getAtomB()->getGlobalIndex();
533 c = torsion->getAtomC()->getGlobalIndex();
534 d = torsion->getAtomD()->getGlobalIndex();
535
536 std::set<int> rigidSetA = getRigidSet(a, atomGroups);
537 std::set<int> rigidSetB = getRigidSet(b, atomGroups);
538 std::set<int> rigidSetC = getRigidSet(c, atomGroups);
539 std::set<int> rigidSetD = getRigidSet(d, atomGroups);
540
541 exclude_.removePairs(rigidSetA, rigidSetB);
542 exclude_.removePairs(rigidSetA, rigidSetC);
543 exclude_.removePairs(rigidSetA, rigidSetD);
544 exclude_.removePairs(rigidSetB, rigidSetC);
545 exclude_.removePairs(rigidSetB, rigidSetD);
546 exclude_.removePairs(rigidSetC, rigidSetD);
547
548 /*
549 exclude_.removePairs(rigidSetA.begin(), rigidSetA.end(), rigidSetB.begin(), rigidSetB.end());
550 exclude_.removePairs(rigidSetA.begin(), rigidSetA.end(), rigidSetC.begin(), rigidSetC.end());
551 exclude_.removePairs(rigidSetA.begin(), rigidSetA.end(), rigidSetD.begin(), rigidSetD.end());
552 exclude_.removePairs(rigidSetB.begin(), rigidSetB.end(), rigidSetC.begin(), rigidSetC.end());
553 exclude_.removePairs(rigidSetB.begin(), rigidSetB.end(), rigidSetD.begin(), rigidSetD.end());
554 exclude_.removePairs(rigidSetC.begin(), rigidSetC.end(), rigidSetD.begin(), rigidSetD.end());
555
556
557 exclude_.removePair(a, b);
558 exclude_.removePair(a, c);
559 exclude_.removePair(a, d);
560 exclude_.removePair(b, c);
561 exclude_.removePair(b, d);
562 exclude_.removePair(c, d);
563 */
564 }
565
566 for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
567 std::vector<Atom*> atoms = rb->getAtoms();
568 for (int i = 0; i < atoms.size() -1 ; ++i) {
569 for (int j = i + 1; j < atoms.size(); ++j) {
570 a = atoms[i]->getGlobalIndex();
571 b = atoms[j]->getGlobalIndex();
572 exclude_.removePair(a, b);
573 }
574 }
575 }
576
577 }
578
579
580 void SimInfo::addMoleculeStamp(MoleculeStamp* molStamp, int nmol) {
581 int curStampId;
582
583 //index from 0
584 curStampId = moleculeStamps_.size();
585
586 moleculeStamps_.push_back(molStamp);
587 molStampIds_.insert(molStampIds_.end(), nmol, curStampId);
588 }
589
590 void SimInfo::update() {
591
592 setupSimType();
593
594 #ifdef IS_MPI
595 setupFortranParallel();
596 #endif
597
598 setupFortranSim();
599
600 //setup fortran force field
601 /** @deprecate */
602 int isError = 0;
603
604 setupCutoff();
605
606 setupElectrostaticSummationMethod( isError );
607 setupSwitchingFunction();
608 setupAccumulateBoxDipole();
609
610 if(isError){
611 sprintf( painCave.errMsg,
612 "ForceField error: There was an error initializing the forceField in fortran.\n" );
613 painCave.isFatal = 1;
614 simError();
615 }
616
617 calcNdf();
618 calcNdfRaw();
619 calcNdfTrans();
620
621 fortranInitialized_ = true;
622 }
623
624 std::set<AtomType*> SimInfo::getUniqueAtomTypes() {
625 SimInfo::MoleculeIterator mi;
626 Molecule* mol;
627 Molecule::AtomIterator ai;
628 Atom* atom;
629 std::set<AtomType*> atomTypes;
630
631 for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
632
633 for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
634 atomTypes.insert(atom->getAtomType());
635 }
636
637 }
638
639 return atomTypes;
640 }
641
642 void SimInfo::setupSimType() {
643 std::set<AtomType*>::iterator i;
644 std::set<AtomType*> atomTypes;
645 atomTypes = getUniqueAtomTypes();
646
647 int useLennardJones = 0;
648 int useElectrostatic = 0;
649 int useEAM = 0;
650 int useSC = 0;
651 int useCharge = 0;
652 int useDirectional = 0;
653 int useDipole = 0;
654 int useGayBerne = 0;
655 int useSticky = 0;
656 int useStickyPower = 0;
657 int useShape = 0;
658 int useFLARB = 0; //it is not in AtomType yet
659 int useDirectionalAtom = 0;
660 int useElectrostatics = 0;
661 //usePBC and useRF are from simParams
662 int usePBC = simParams_->getUsePeriodicBoundaryConditions();
663 int useRF;
664 int useSF;
665 int useSP;
666 int useBoxDipole;
667 std::string myMethod;
668
669 // set the useRF logical
670 useRF = 0;
671 useSF = 0;
672
673
674 if (simParams_->haveElectrostaticSummationMethod()) {
675 std::string myMethod = simParams_->getElectrostaticSummationMethod();
676 toUpper(myMethod);
677 if (myMethod == "REACTION_FIELD"){
678 useRF=1;
679 } else if (myMethod == "SHIFTED_FORCE"){
680 useSF = 1;
681 } else if (myMethod == "SHIFTED_POTENTIAL"){
682 useSP = 1;
683 }
684 }
685
686 if (simParams_->haveAccumulateBoxDipole())
687 if (simParams_->getAccumulateBoxDipole())
688 useBoxDipole = 1;
689
690 //loop over all of the atom types
691 for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
692 useLennardJones |= (*i)->isLennardJones();
693 useElectrostatic |= (*i)->isElectrostatic();
694 useEAM |= (*i)->isEAM();
695 useSC |= (*i)->isSC();
696 useCharge |= (*i)->isCharge();
697 useDirectional |= (*i)->isDirectional();
698 useDipole |= (*i)->isDipole();
699 useGayBerne |= (*i)->isGayBerne();
700 useSticky |= (*i)->isSticky();
701 useStickyPower |= (*i)->isStickyPower();
702 useShape |= (*i)->isShape();
703 }
704
705 if (useSticky || useStickyPower || useDipole || useGayBerne || useShape) {
706 useDirectionalAtom = 1;
707 }
708
709 if (useCharge || useDipole) {
710 useElectrostatics = 1;
711 }
712
713 #ifdef IS_MPI
714 int temp;
715
716 temp = usePBC;
717 MPI_Allreduce(&temp, &usePBC, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
718
719 temp = useDirectionalAtom;
720 MPI_Allreduce(&temp, &useDirectionalAtom, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
721
722 temp = useLennardJones;
723 MPI_Allreduce(&temp, &useLennardJones, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
724
725 temp = useElectrostatics;
726 MPI_Allreduce(&temp, &useElectrostatics, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
727
728 temp = useCharge;
729 MPI_Allreduce(&temp, &useCharge, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
730
731 temp = useDipole;
732 MPI_Allreduce(&temp, &useDipole, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
733
734 temp = useSticky;
735 MPI_Allreduce(&temp, &useSticky, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
736
737 temp = useStickyPower;
738 MPI_Allreduce(&temp, &useStickyPower, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
739
740 temp = useGayBerne;
741 MPI_Allreduce(&temp, &useGayBerne, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
742
743 temp = useEAM;
744 MPI_Allreduce(&temp, &useEAM, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
745
746 temp = useSC;
747 MPI_Allreduce(&temp, &useSC, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
748
749 temp = useShape;
750 MPI_Allreduce(&temp, &useShape, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
751
752 temp = useFLARB;
753 MPI_Allreduce(&temp, &useFLARB, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
754
755 temp = useRF;
756 MPI_Allreduce(&temp, &useRF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
757
758 temp = useSF;
759 MPI_Allreduce(&temp, &useSF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
760
761 temp = useSP;
762 MPI_Allreduce(&temp, &useSP, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
763
764 temp = useBoxDipole;
765 MPI_Allreduce(&temp, &useBoxDipole, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
766
767 #endif
768
769 fInfo_.SIM_uses_PBC = usePBC;
770 fInfo_.SIM_uses_DirectionalAtoms = useDirectionalAtom;
771 fInfo_.SIM_uses_LennardJones = useLennardJones;
772 fInfo_.SIM_uses_Electrostatics = useElectrostatics;
773 fInfo_.SIM_uses_Charges = useCharge;
774 fInfo_.SIM_uses_Dipoles = useDipole;
775 fInfo_.SIM_uses_Sticky = useSticky;
776 fInfo_.SIM_uses_StickyPower = useStickyPower;
777 fInfo_.SIM_uses_GayBerne = useGayBerne;
778 fInfo_.SIM_uses_EAM = useEAM;
779 fInfo_.SIM_uses_SC = useSC;
780 fInfo_.SIM_uses_Shapes = useShape;
781 fInfo_.SIM_uses_FLARB = useFLARB;
782 fInfo_.SIM_uses_RF = useRF;
783 fInfo_.SIM_uses_SF = useSF;
784 fInfo_.SIM_uses_SP = useSP;
785 fInfo_.SIM_uses_BoxDipole = useBoxDipole;
786
787 if( myMethod == "REACTION_FIELD") {
788
789 if (simParams_->haveDielectric()) {
790 fInfo_.dielect = simParams_->getDielectric();
791 } else {
792 sprintf(painCave.errMsg,
793 "SimSetup Error: No Dielectric constant was set.\n"
794 "\tYou are trying to use Reaction Field without"
795 "\tsetting a dielectric constant!\n");
796 painCave.isFatal = 1;
797 simError();
798 }
799 }
800
801 }
802
803 void SimInfo::setupFortranSim() {
804 int isError;
805 int nExclude;
806 std::vector<int> fortranGlobalGroupMembership;
807
808 nExclude = exclude_.getSize();
809 isError = 0;
810
811 //globalGroupMembership_ is filled by SimCreator
812 for (int i = 0; i < nGlobalAtoms_; i++) {
813 fortranGlobalGroupMembership.push_back(globalGroupMembership_[i] + 1);
814 }
815
816 //calculate mass ratio of cutoff group
817 std::vector<RealType> mfact;
818 SimInfo::MoleculeIterator mi;
819 Molecule* mol;
820 Molecule::CutoffGroupIterator ci;
821 CutoffGroup* cg;
822 Molecule::AtomIterator ai;
823 Atom* atom;
824 RealType totalMass;
825
826 //to avoid memory reallocation, reserve enough space for mfact
827 mfact.reserve(getNCutoffGroups());
828
829 for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
830 for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
831
832 totalMass = cg->getMass();
833 for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) {
834 // Check for massless groups - set mfact to 1 if true
835 if (totalMass != 0)
836 mfact.push_back(atom->getMass()/totalMass);
837 else
838 mfact.push_back( 1.0 );
839 }
840
841 }
842 }
843
844 //fill ident array of local atoms (it is actually ident of AtomType, it is so confusing !!!)
845 std::vector<int> identArray;
846
847 //to avoid memory reallocation, reserve enough space identArray
848 identArray.reserve(getNAtoms());
849
850 for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
851 for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
852 identArray.push_back(atom->getIdent());
853 }
854 }
855
856 //fill molMembershipArray
857 //molMembershipArray is filled by SimCreator
858 std::vector<int> molMembershipArray(nGlobalAtoms_);
859 for (int i = 0; i < nGlobalAtoms_; i++) {
860 molMembershipArray[i] = globalMolMembership_[i] + 1;
861 }
862
863 //setup fortran simulation
864 int nGlobalExcludes = 0;
865 int* globalExcludes = NULL;
866 int* excludeList = exclude_.getExcludeList();
867 setFortranSim( &fInfo_, &nGlobalAtoms_, &nAtoms_, &identArray[0], &nExclude, excludeList ,
868 &nGlobalExcludes, globalExcludes, &molMembershipArray[0],
869 &mfact[0], &nCutoffGroups_, &fortranGlobalGroupMembership[0], &isError);
870
871 if( isError ){
872
873 sprintf( painCave.errMsg,
874 "There was an error setting the simulation information in fortran.\n" );
875 painCave.isFatal = 1;
876 painCave.severity = OOPSE_ERROR;
877 simError();
878 }
879
880 #ifdef IS_MPI
881 sprintf( checkPointMsg,
882 "succesfully sent the simulation information to fortran.\n");
883 MPIcheckPoint();
884 #endif // is_mpi
885 }
886
887
888 #ifdef IS_MPI
889 void SimInfo::setupFortranParallel() {
890
891 //SimInfo is responsible for creating localToGlobalAtomIndex and localToGlobalGroupIndex
892 std::vector<int> localToGlobalAtomIndex(getNAtoms(), 0);
893 std::vector<int> localToGlobalCutoffGroupIndex;
894 SimInfo::MoleculeIterator mi;
895 Molecule::AtomIterator ai;
896 Molecule::CutoffGroupIterator ci;
897 Molecule* mol;
898 Atom* atom;
899 CutoffGroup* cg;
900 mpiSimData parallelData;
901 int isError;
902
903 for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
904
905 //local index(index in DataStorge) of atom is important
906 for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
907 localToGlobalAtomIndex[atom->getLocalIndex()] = atom->getGlobalIndex() + 1;
908 }
909
910 //local index of cutoff group is trivial, it only depends on the order of travesing
911 for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
912 localToGlobalCutoffGroupIndex.push_back(cg->getGlobalIndex() + 1);
913 }
914
915 }
916
917 //fill up mpiSimData struct
918 parallelData.nMolGlobal = getNGlobalMolecules();
919 parallelData.nMolLocal = getNMolecules();
920 parallelData.nAtomsGlobal = getNGlobalAtoms();
921 parallelData.nAtomsLocal = getNAtoms();
922 parallelData.nGroupsGlobal = getNGlobalCutoffGroups();
923 parallelData.nGroupsLocal = getNCutoffGroups();
924 parallelData.myNode = worldRank;
925 MPI_Comm_size(MPI_COMM_WORLD, &(parallelData.nProcessors));
926
927 //pass mpiSimData struct and index arrays to fortran
928 setFsimParallel(&parallelData, &(parallelData.nAtomsLocal),
929 &localToGlobalAtomIndex[0], &(parallelData.nGroupsLocal),
930 &localToGlobalCutoffGroupIndex[0], &isError);
931
932 if (isError) {
933 sprintf(painCave.errMsg,
934 "mpiRefresh errror: fortran didn't like something we gave it.\n");
935 painCave.isFatal = 1;
936 simError();
937 }
938
939 sprintf(checkPointMsg, " mpiRefresh successful.\n");
940 MPIcheckPoint();
941
942
943 }
944
945 #endif
946
947 void SimInfo::setupCutoff() {
948
949 ForceFieldOptions& forceFieldOptions_ = forceField_->getForceFieldOptions();
950
951 // Check the cutoff policy
952 int cp = TRADITIONAL_CUTOFF_POLICY; // Set to traditional by default
953
954 std::string myPolicy;
955 if (forceFieldOptions_.haveCutoffPolicy()){
956 myPolicy = forceFieldOptions_.getCutoffPolicy();
957 }else if (simParams_->haveCutoffPolicy()) {
958 myPolicy = simParams_->getCutoffPolicy();
959 }
960
961 if (!myPolicy.empty()){
962 toUpper(myPolicy);
963 if (myPolicy == "MIX") {
964 cp = MIX_CUTOFF_POLICY;
965 } else {
966 if (myPolicy == "MAX") {
967 cp = MAX_CUTOFF_POLICY;
968 } else {
969 if (myPolicy == "TRADITIONAL") {
970 cp = TRADITIONAL_CUTOFF_POLICY;
971 } else {
972 // throw error
973 sprintf( painCave.errMsg,
974 "SimInfo error: Unknown cutoffPolicy. (Input file specified %s .)\n\tcutoffPolicy must be one of: \"Mix\", \"Max\", or \"Traditional\".", myPolicy.c_str() );
975 painCave.isFatal = 1;
976 simError();
977 }
978 }
979 }
980 }
981 notifyFortranCutoffPolicy(&cp);
982
983 // Check the Skin Thickness for neighborlists
984 RealType skin;
985 if (simParams_->haveSkinThickness()) {
986 skin = simParams_->getSkinThickness();
987 notifyFortranSkinThickness(&skin);
988 }
989
990 // Check if the cutoff was set explicitly:
991 if (simParams_->haveCutoffRadius()) {
992 rcut_ = simParams_->getCutoffRadius();
993 if (simParams_->haveSwitchingRadius()) {
994 rsw_ = simParams_->getSwitchingRadius();
995 } else {
996 if (fInfo_.SIM_uses_Charges |
997 fInfo_.SIM_uses_Dipoles |
998 fInfo_.SIM_uses_RF) {
999
1000 rsw_ = 0.85 * rcut_;
1001 sprintf(painCave.errMsg,
1002 "SimCreator Warning: No value was set for the switchingRadius.\n"
1003 "\tOOPSE will use a default value of 85 percent of the cutoffRadius.\n"
1004 "\tswitchingRadius = %f. for this simulation\n", rsw_);
1005 painCave.isFatal = 0;
1006 simError();
1007 } else {
1008 rsw_ = rcut_;
1009 sprintf(painCave.errMsg,
1010 "SimCreator Warning: No value was set for the switchingRadius.\n"
1011 "\tOOPSE will use the same value as the cutoffRadius.\n"
1012 "\tswitchingRadius = %f. for this simulation\n", rsw_);
1013 painCave.isFatal = 0;
1014 simError();
1015 }
1016 }
1017
1018 notifyFortranCutoffs(&rcut_, &rsw_);
1019
1020 } else {
1021
1022 // For electrostatic atoms, we'll assume a large safe value:
1023 if (fInfo_.SIM_uses_Charges | fInfo_.SIM_uses_Dipoles | fInfo_.SIM_uses_RF) {
1024 sprintf(painCave.errMsg,
1025 "SimCreator Warning: No value was set for the cutoffRadius.\n"
1026 "\tOOPSE will use a default value of 15.0 angstroms"
1027 "\tfor the cutoffRadius.\n");
1028 painCave.isFatal = 0;
1029 simError();
1030 rcut_ = 15.0;
1031
1032 if (simParams_->haveElectrostaticSummationMethod()) {
1033 std::string myMethod = simParams_->getElectrostaticSummationMethod();
1034 toUpper(myMethod);
1035 if (myMethod == "SHIFTED_POTENTIAL" || myMethod == "SHIFTED_FORCE") {
1036 if (simParams_->haveSwitchingRadius()){
1037 sprintf(painCave.errMsg,
1038 "SimInfo Warning: A value was set for the switchingRadius\n"
1039 "\teven though the electrostaticSummationMethod was\n"
1040 "\tset to %s\n", myMethod.c_str());
1041 painCave.isFatal = 1;
1042 simError();
1043 }
1044 }
1045 }
1046
1047 if (simParams_->haveSwitchingRadius()){
1048 rsw_ = simParams_->getSwitchingRadius();
1049 } else {
1050 sprintf(painCave.errMsg,
1051 "SimCreator Warning: No value was set for switchingRadius.\n"
1052 "\tOOPSE will use a default value of\n"
1053 "\t0.85 * cutoffRadius for the switchingRadius\n");
1054 painCave.isFatal = 0;
1055 simError();
1056 rsw_ = 0.85 * rcut_;
1057 }
1058 notifyFortranCutoffs(&rcut_, &rsw_);
1059 } else {
1060 // We didn't set rcut explicitly, and we don't have electrostatic atoms, so
1061 // We'll punt and let fortran figure out the cutoffs later.
1062
1063 notifyFortranYouAreOnYourOwn();
1064
1065 }
1066 }
1067 }
1068
1069 void SimInfo::setupElectrostaticSummationMethod( int isError ) {
1070
1071 int errorOut;
1072 int esm = NONE;
1073 int sm = UNDAMPED;
1074 RealType alphaVal;
1075 RealType dielectric;
1076
1077 errorOut = isError;
1078 dielectric = simParams_->getDielectric();
1079
1080 if (simParams_->haveElectrostaticSummationMethod()) {
1081 std::string myMethod = simParams_->getElectrostaticSummationMethod();
1082 toUpper(myMethod);
1083 if (myMethod == "NONE") {
1084 esm = NONE;
1085 } else {
1086 if (myMethod == "SWITCHING_FUNCTION") {
1087 esm = SWITCHING_FUNCTION;
1088 } else {
1089 if (myMethod == "SHIFTED_POTENTIAL") {
1090 esm = SHIFTED_POTENTIAL;
1091 } else {
1092 if (myMethod == "SHIFTED_FORCE") {
1093 esm = SHIFTED_FORCE;
1094 } else {
1095 if (myMethod == "REACTION_FIELD") {
1096 esm = REACTION_FIELD;
1097 } else {
1098 // throw error
1099 sprintf( painCave.errMsg,
1100 "SimInfo error: Unknown electrostaticSummationMethod.\n"
1101 "\t(Input file specified %s .)\n"
1102 "\telectrostaticSummationMethod must be one of: \"none\",\n"
1103 "\t\"shifted_potential\", \"shifted_force\", or \n"
1104 "\t\"reaction_field\".\n", myMethod.c_str() );
1105 painCave.isFatal = 1;
1106 simError();
1107 }
1108 }
1109 }
1110 }
1111 }
1112 }
1113
1114 if (simParams_->haveElectrostaticScreeningMethod()) {
1115 std::string myScreen = simParams_->getElectrostaticScreeningMethod();
1116 toUpper(myScreen);
1117 if (myScreen == "UNDAMPED") {
1118 sm = UNDAMPED;
1119 } else {
1120 if (myScreen == "DAMPED") {
1121 sm = DAMPED;
1122 if (!simParams_->haveDampingAlpha()) {
1123 // first set a cutoff dependent alpha value
1124 // we assume alpha depends linearly with rcut from 0 to 20.5 ang
1125 alphaVal = 0.5125 - rcut_* 0.025;
1126 // for values rcut > 20.5, alpha is zero
1127 if (alphaVal < 0) alphaVal = 0;
1128
1129 // throw warning
1130 sprintf( painCave.errMsg,
1131 "SimInfo warning: dampingAlpha was not specified in the input file.\n"
1132 "\tA default value of %f (1/ang) will be used for the cutoff of\n\t%f (ang).\n", alphaVal, rcut_);
1133 painCave.isFatal = 0;
1134 simError();
1135 }
1136 } else {
1137 // throw error
1138 sprintf( painCave.errMsg,
1139 "SimInfo error: Unknown electrostaticScreeningMethod.\n"
1140 "\t(Input file specified %s .)\n"
1141 "\telectrostaticScreeningMethod must be one of: \"undamped\"\n"
1142 "or \"damped\".\n", myScreen.c_str() );
1143 painCave.isFatal = 1;
1144 simError();
1145 }
1146 }
1147 }
1148
1149 // let's pass some summation method variables to fortran
1150 setElectrostaticSummationMethod( &esm );
1151 setFortranElectrostaticMethod( &esm );
1152 setScreeningMethod( &sm );
1153 setDampingAlpha( &alphaVal );
1154 setReactionFieldDielectric( &dielectric );
1155 initFortranFF( &errorOut );
1156 }
1157
1158 void SimInfo::setupSwitchingFunction() {
1159 int ft = CUBIC;
1160
1161 if (simParams_->haveSwitchingFunctionType()) {
1162 std::string funcType = simParams_->getSwitchingFunctionType();
1163 toUpper(funcType);
1164 if (funcType == "CUBIC") {
1165 ft = CUBIC;
1166 } else {
1167 if (funcType == "FIFTH_ORDER_POLYNOMIAL") {
1168 ft = FIFTH_ORDER_POLY;
1169 } else {
1170 // throw error
1171 sprintf( painCave.errMsg,
1172 "SimInfo error: Unknown switchingFunctionType. (Input file specified %s .)\n\tswitchingFunctionType must be one of: \"cubic\" or \"fifth_order_polynomial\".", funcType.c_str() );
1173 painCave.isFatal = 1;
1174 simError();
1175 }
1176 }
1177 }
1178
1179 // send switching function notification to switcheroo
1180 setFunctionType(&ft);
1181
1182 }
1183
1184 void SimInfo::setupAccumulateBoxDipole() {
1185
1186 // we only call setAccumulateBoxDipole if the accumulateBoxDipole parameter is true
1187 if ( simParams_->haveAccumulateBoxDipole() )
1188 if ( simParams_->getAccumulateBoxDipole() ) {
1189 setAccumulateBoxDipole();
1190 calcBoxDipole_ = true;
1191 }
1192
1193 }
1194
1195 void SimInfo::addProperty(GenericData* genData) {
1196 properties_.addProperty(genData);
1197 }
1198
1199 void SimInfo::removeProperty(const std::string& propName) {
1200 properties_.removeProperty(propName);
1201 }
1202
1203 void SimInfo::clearProperties() {
1204 properties_.clearProperties();
1205 }
1206
1207 std::vector<std::string> SimInfo::getPropertyNames() {
1208 return properties_.getPropertyNames();
1209 }
1210
1211 std::vector<GenericData*> SimInfo::getProperties() {
1212 return properties_.getProperties();
1213 }
1214
1215 GenericData* SimInfo::getPropertyByName(const std::string& propName) {
1216 return properties_.getPropertyByName(propName);
1217 }
1218
1219 void SimInfo::setSnapshotManager(SnapshotManager* sman) {
1220 if (sman_ == sman) {
1221 return;
1222 }
1223 delete sman_;
1224 sman_ = sman;
1225
1226 Molecule* mol;
1227 RigidBody* rb;
1228 Atom* atom;
1229 SimInfo::MoleculeIterator mi;
1230 Molecule::RigidBodyIterator rbIter;
1231 Molecule::AtomIterator atomIter;;
1232
1233 for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
1234
1235 for (atom = mol->beginAtom(atomIter); atom != NULL; atom = mol->nextAtom(atomIter)) {
1236 atom->setSnapshotManager(sman_);
1237 }
1238
1239 for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
1240 rb->setSnapshotManager(sman_);
1241 }
1242 }
1243
1244 }
1245
1246 Vector3d SimInfo::getComVel(){
1247 SimInfo::MoleculeIterator i;
1248 Molecule* mol;
1249
1250 Vector3d comVel(0.0);
1251 RealType totalMass = 0.0;
1252
1253
1254 for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1255 RealType mass = mol->getMass();
1256 totalMass += mass;
1257 comVel += mass * mol->getComVel();
1258 }
1259
1260 #ifdef IS_MPI
1261 RealType tmpMass = totalMass;
1262 Vector3d tmpComVel(comVel);
1263 MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1264 MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1265 #endif
1266
1267 comVel /= totalMass;
1268
1269 return comVel;
1270 }
1271
1272 Vector3d SimInfo::getCom(){
1273 SimInfo::MoleculeIterator i;
1274 Molecule* mol;
1275
1276 Vector3d com(0.0);
1277 RealType totalMass = 0.0;
1278
1279 for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1280 RealType mass = mol->getMass();
1281 totalMass += mass;
1282 com += mass * mol->getCom();
1283 }
1284
1285 #ifdef IS_MPI
1286 RealType tmpMass = totalMass;
1287 Vector3d tmpCom(com);
1288 MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1289 MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1290 #endif
1291
1292 com /= totalMass;
1293
1294 return com;
1295
1296 }
1297
1298 std::ostream& operator <<(std::ostream& o, SimInfo& info) {
1299
1300 return o;
1301 }
1302
1303
1304 /*
1305 Returns center of mass and center of mass velocity in one function call.
1306 */
1307
1308 void SimInfo::getComAll(Vector3d &com, Vector3d &comVel){
1309 SimInfo::MoleculeIterator i;
1310 Molecule* mol;
1311
1312
1313 RealType totalMass = 0.0;
1314
1315
1316 for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1317 RealType mass = mol->getMass();
1318 totalMass += mass;
1319 com += mass * mol->getCom();
1320 comVel += mass * mol->getComVel();
1321 }
1322
1323 #ifdef IS_MPI
1324 RealType tmpMass = totalMass;
1325 Vector3d tmpCom(com);
1326 Vector3d tmpComVel(comVel);
1327 MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1328 MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1329 MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1330 #endif
1331
1332 com /= totalMass;
1333 comVel /= totalMass;
1334 }
1335
1336 /*
1337 Return intertia tensor for entire system and angular momentum Vector.
1338
1339
1340 [ Ixx -Ixy -Ixz ]
1341 J =| -Iyx Iyy -Iyz |
1342 [ -Izx -Iyz Izz ]
1343 */
1344
1345 void SimInfo::getInertiaTensor(Mat3x3d &inertiaTensor, Vector3d &angularMomentum){
1346
1347
1348 RealType xx = 0.0;
1349 RealType yy = 0.0;
1350 RealType zz = 0.0;
1351 RealType xy = 0.0;
1352 RealType xz = 0.0;
1353 RealType yz = 0.0;
1354 Vector3d com(0.0);
1355 Vector3d comVel(0.0);
1356
1357 getComAll(com, comVel);
1358
1359 SimInfo::MoleculeIterator i;
1360 Molecule* mol;
1361
1362 Vector3d thisq(0.0);
1363 Vector3d thisv(0.0);
1364
1365 RealType thisMass = 0.0;
1366
1367
1368
1369
1370 for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1371
1372 thisq = mol->getCom()-com;
1373 thisv = mol->getComVel()-comVel;
1374 thisMass = mol->getMass();
1375 // Compute moment of intertia coefficients.
1376 xx += thisq[0]*thisq[0]*thisMass;
1377 yy += thisq[1]*thisq[1]*thisMass;
1378 zz += thisq[2]*thisq[2]*thisMass;
1379
1380 // compute products of intertia
1381 xy += thisq[0]*thisq[1]*thisMass;
1382 xz += thisq[0]*thisq[2]*thisMass;
1383 yz += thisq[1]*thisq[2]*thisMass;
1384
1385 angularMomentum += cross( thisq, thisv ) * thisMass;
1386
1387 }
1388
1389
1390 inertiaTensor(0,0) = yy + zz;
1391 inertiaTensor(0,1) = -xy;
1392 inertiaTensor(0,2) = -xz;
1393 inertiaTensor(1,0) = -xy;
1394 inertiaTensor(1,1) = xx + zz;
1395 inertiaTensor(1,2) = -yz;
1396 inertiaTensor(2,0) = -xz;
1397 inertiaTensor(2,1) = -yz;
1398 inertiaTensor(2,2) = xx + yy;
1399
1400 #ifdef IS_MPI
1401 Mat3x3d tmpI(inertiaTensor);
1402 Vector3d tmpAngMom;
1403 MPI_Allreduce(tmpI.getArrayPointer(), inertiaTensor.getArrayPointer(),9,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1404 MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1405 #endif
1406
1407 return;
1408 }
1409
1410 //Returns the angular momentum of the system
1411 Vector3d SimInfo::getAngularMomentum(){
1412
1413 Vector3d com(0.0);
1414 Vector3d comVel(0.0);
1415 Vector3d angularMomentum(0.0);
1416
1417 getComAll(com,comVel);
1418
1419 SimInfo::MoleculeIterator i;
1420 Molecule* mol;
1421
1422 Vector3d thisr(0.0);
1423 Vector3d thisp(0.0);
1424
1425 RealType thisMass;
1426
1427 for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1428 thisMass = mol->getMass();
1429 thisr = mol->getCom()-com;
1430 thisp = (mol->getComVel()-comVel)*thisMass;
1431
1432 angularMomentum += cross( thisr, thisp );
1433
1434 }
1435
1436 #ifdef IS_MPI
1437 Vector3d tmpAngMom;
1438 MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1439 #endif
1440
1441 return angularMomentum;
1442 }
1443
1444 StuntDouble* SimInfo::getIOIndexToIntegrableObject(int index) {
1445 return IOIndexToIntegrableObject.at(index);
1446 }
1447
1448 void SimInfo::setIOIndexToIntegrableObject(const std::vector<StuntDouble*>& v) {
1449 IOIndexToIntegrableObject= v;
1450 }
1451
1452 /*
1453 void SimInfo::setStuntDoubleFromGlobalIndex(std::vector<StuntDouble*> v) {
1454 assert( v.size() == nAtoms_ + nRigidBodies_);
1455 sdByGlobalIndex_ = v;
1456 }
1457
1458 StuntDouble* SimInfo::getStuntDoubleFromGlobalIndex(int index) {
1459 //assert(index < nAtoms_ + nRigidBodies_);
1460 return sdByGlobalIndex_.at(index);
1461 }
1462 */
1463 }//end namespace oopse
1464