ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/OOPSE-4/src/brains/SimInfo.cpp
Revision: 3446
Committed: Wed Sep 10 19:51:45 2008 UTC (16 years, 7 months ago) by cli2
File size: 52446 byte(s)
Log Message:
Inversion fixes and amber mostly working

File Contents

# User Rev Content
1 gezelter 2204 /*
2 gezelter 1930 * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3     *
4     * The University of Notre Dame grants you ("Licensee") a
5     * non-exclusive, royalty free, license to use, modify and
6     * redistribute this software in source and binary code form, provided
7     * that the following conditions are met:
8     *
9     * 1. Acknowledgement of the program authors must be made in any
10     * publication of scientific results based in part on use of the
11     * program. An acceptable form of acknowledgement is citation of
12     * the article in which the program was described (Matthew
13     * A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14     * J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15     * Parallel Simulation Engine for Molecular Dynamics,"
16     * J. Comput. Chem. 26, pp. 252-271 (2005))
17     *
18     * 2. Redistributions of source code must retain the above copyright
19     * notice, this list of conditions and the following disclaimer.
20     *
21     * 3. Redistributions in binary form must reproduce the above copyright
22     * notice, this list of conditions and the following disclaimer in the
23     * documentation and/or other materials provided with the
24     * distribution.
25     *
26     * This software is provided "AS IS," without a warranty of any
27     * kind. All express or implied conditions, representations and
28     * warranties, including any implied warranty of merchantability,
29     * fitness for a particular purpose or non-infringement, are hereby
30     * excluded. The University of Notre Dame and its licensors shall not
31     * be liable for any damages suffered by licensee as a result of
32     * using, modifying or distributing the software or its
33     * derivatives. In no event will the University of Notre Dame or its
34     * licensors be liable for any lost revenue, profit or data, or for
35     * direct, indirect, special, consequential, incidental or punitive
36     * damages, however caused and regardless of the theory of liability,
37     * arising out of the use of or inability to use software, even if the
38     * University of Notre Dame has been advised of the possibility of
39     * such damages.
40     */
41    
42     /**
43     * @file SimInfo.cpp
44     * @author tlin
45     * @date 11/02/2004
46     * @version 1.0
47     */
48 gezelter 1490
49 gezelter 1930 #include <algorithm>
50     #include <set>
51 tim 2448 #include <map>
52 gezelter 1490
53 tim 1492 #include "brains/SimInfo.hpp"
54 gezelter 1930 #include "math/Vector3.hpp"
55     #include "primitives/Molecule.hpp"
56 tim 2982 #include "primitives/StuntDouble.hpp"
57 gezelter 2285 #include "UseTheForce/fCutoffPolicy.h"
58 chrisfen 2305 #include "UseTheForce/DarkSide/fElectrostaticSummationMethod.h"
59 chrisfen 2415 #include "UseTheForce/DarkSide/fElectrostaticScreeningMethod.h"
60 chrisfen 2425 #include "UseTheForce/DarkSide/fSwitchingFunctionType.h"
61 gezelter 1930 #include "UseTheForce/doForces_interface.h"
62 chuckv 3080 #include "UseTheForce/DarkSide/neighborLists_interface.h"
63 chrisfen 2309 #include "UseTheForce/DarkSide/electrostatic_interface.h"
64 chrisfen 2425 #include "UseTheForce/DarkSide/switcheroo_interface.h"
65 gezelter 1930 #include "utils/MemoryUtils.hpp"
66 tim 1492 #include "utils/simError.h"
67 tim 2000 #include "selection/SelectionManager.hpp"
68 chuckv 2533 #include "io/ForceFieldOptions.hpp"
69     #include "UseTheForce/ForceField.hpp"
70 gezelter 1490
71 chuckv 3080
72 gezelter 1930 #ifdef IS_MPI
73     #include "UseTheForce/mpiComponentPlan.h"
74     #include "UseTheForce/DarkSide/simParallel_interface.h"
75     #endif
76 gezelter 1490
77 gezelter 1930 namespace oopse {
78 tim 2448 std::set<int> getRigidSet(int index, std::map<int, std::set<int> >& container) {
79     std::map<int, std::set<int> >::iterator i = container.find(index);
80     std::set<int> result;
81     if (i != container.end()) {
82     result = i->second;
83     }
84 gezelter 1490
85 tim 2448 return result;
86     }
87    
88 tim 2469 SimInfo::SimInfo(ForceField* ff, Globals* simParams) :
89     forceField_(ff), simParams_(simParams),
90 gezelter 2733 ndf_(0), fdf_local(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0),
91 gezelter 2204 nGlobalMols_(0), nGlobalAtoms_(0), nGlobalCutoffGroups_(0),
92     nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0),
93 gezelter 3432 nAtoms_(0), nBonds_(0), nBends_(0), nTorsions_(0), nInversions_(0),
94     nRigidBodies_(0), nIntegrableObjects_(0), nCutoffGroups_(0),
95     nConstraints_(0), sman_(NULL), fortranInitialized_(false),
96     calcBoxDipole_(false), useAtomicVirial_(true) {
97 gezelter 1490
98 gezelter 3432
99 gezelter 2204 MoleculeStamp* molStamp;
100     int nMolWithSameStamp;
101     int nCutoffAtoms = 0; // number of atoms belong to cutoff groups
102 chrisfen 2344 int nGroups = 0; //total cutoff groups defined in meta-data file
103 gezelter 2204 CutoffGroupStamp* cgStamp;
104     RigidBodyStamp* rbStamp;
105     int nRigidAtoms = 0;
106 gezelter 3432
107 tim 2469 std::vector<Component*> components = simParams->getComponents();
108    
109     for (std::vector<Component*>::iterator i = components.begin(); i !=components.end(); ++i) {
110     molStamp = (*i)->getMoleculeStamp();
111     nMolWithSameStamp = (*i)->getNMol();
112 gezelter 1930
113     addMoleculeStamp(molStamp, nMolWithSameStamp);
114 gezelter 1490
115 gezelter 1930 //calculate atoms in molecules
116     nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp;
117 gezelter 1490
118 gezelter 1930 //calculate atoms in cutoff groups
119     int nAtomsInGroups = 0;
120     int nCutoffGroupsInStamp = molStamp->getNCutoffGroups();
121    
122     for (int j=0; j < nCutoffGroupsInStamp; j++) {
123 tim 2469 cgStamp = molStamp->getCutoffGroupStamp(j);
124 gezelter 2204 nAtomsInGroups += cgStamp->getNMembers();
125 gezelter 1930 }
126 gezelter 1490
127 gezelter 1930 nGroups += nCutoffGroupsInStamp * nMolWithSameStamp;
128 chrisfen 2344
129 gezelter 1930 nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp;
130 gezelter 1490
131 gezelter 1930 //calculate atoms in rigid bodies
132     int nAtomsInRigidBodies = 0;
133 tim 1958 int nRigidBodiesInStamp = molStamp->getNRigidBodies();
134 gezelter 1930
135     for (int j=0; j < nRigidBodiesInStamp; j++) {
136 tim 2469 rbStamp = molStamp->getRigidBodyStamp(j);
137 gezelter 2204 nAtomsInRigidBodies += rbStamp->getNMembers();
138 gezelter 1930 }
139 gezelter 1490
140 gezelter 1930 nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp;
141     nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp;
142    
143 gezelter 2204 }
144 chrisfen 1636
145 chrisfen 2344 //every free atom (atom does not belong to cutoff groups) is a cutoff
146     //group therefore the total number of cutoff groups in the system is
147     //equal to the total number of atoms minus number of atoms belong to
148     //cutoff group defined in meta-data file plus the number of cutoff
149     //groups defined in meta-data file
150 gezelter 2204 nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups;
151 gezelter 1490
152 chrisfen 2344 //every free atom (atom does not belong to rigid bodies) is an
153     //integrable object therefore the total number of integrable objects
154     //in the system is equal to the total number of atoms minus number of
155     //atoms belong to rigid body defined in meta-data file plus the number
156     //of rigid bodies defined in meta-data file
157     nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms
158     + nGlobalRigidBodies_;
159    
160 gezelter 2204 nGlobalMols_ = molStampIds_.size();
161     molToProcMap_.resize(nGlobalMols_);
162     }
163 gezelter 1490
164 gezelter 2204 SimInfo::~SimInfo() {
165 tim 2082 std::map<int, Molecule*>::iterator i;
166     for (i = molecules_.begin(); i != molecules_.end(); ++i) {
167 gezelter 2204 delete i->second;
168 tim 2082 }
169     molecules_.clear();
170 tim 2187
171 gezelter 1930 delete sman_;
172     delete simParams_;
173     delete forceField_;
174 gezelter 2204 }
175 gezelter 1490
176 gezelter 2204 int SimInfo::getNGlobalConstraints() {
177 gezelter 1930 int nGlobalConstraints;
178     #ifdef IS_MPI
179     MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM,
180     MPI_COMM_WORLD);
181     #else
182     nGlobalConstraints = nConstraints_;
183     #endif
184     return nGlobalConstraints;
185 gezelter 2204 }
186 gezelter 1490
187 gezelter 2204 bool SimInfo::addMolecule(Molecule* mol) {
188 gezelter 1930 MoleculeIterator i;
189 gezelter 1490
190 gezelter 1930 i = molecules_.find(mol->getGlobalIndex());
191     if (i == molecules_.end() ) {
192 gezelter 1490
193 gezelter 2204 molecules_.insert(std::make_pair(mol->getGlobalIndex(), mol));
194 gezelter 1930
195 gezelter 2204 nAtoms_ += mol->getNAtoms();
196     nBonds_ += mol->getNBonds();
197     nBends_ += mol->getNBends();
198     nTorsions_ += mol->getNTorsions();
199 gezelter 3432 nInversions_ += mol->getNInversions();
200 gezelter 2204 nRigidBodies_ += mol->getNRigidBodies();
201     nIntegrableObjects_ += mol->getNIntegrableObjects();
202     nCutoffGroups_ += mol->getNCutoffGroups();
203     nConstraints_ += mol->getNConstraintPairs();
204 gezelter 1490
205 gezelter 3442 addInteractionPairs(mol);
206    
207 gezelter 2204 return true;
208 gezelter 1930 } else {
209 gezelter 2204 return false;
210 gezelter 1930 }
211 gezelter 2204 }
212 gezelter 1490
213 gezelter 2204 bool SimInfo::removeMolecule(Molecule* mol) {
214 gezelter 1930 MoleculeIterator i;
215     i = molecules_.find(mol->getGlobalIndex());
216 gezelter 1490
217 gezelter 1930 if (i != molecules_.end() ) {
218 gezelter 1490
219 gezelter 2204 assert(mol == i->second);
220 gezelter 1930
221 gezelter 2204 nAtoms_ -= mol->getNAtoms();
222     nBonds_ -= mol->getNBonds();
223     nBends_ -= mol->getNBends();
224     nTorsions_ -= mol->getNTorsions();
225 gezelter 3432 nInversions_ -= mol->getNInversions();
226 gezelter 2204 nRigidBodies_ -= mol->getNRigidBodies();
227     nIntegrableObjects_ -= mol->getNIntegrableObjects();
228     nCutoffGroups_ -= mol->getNCutoffGroups();
229     nConstraints_ -= mol->getNConstraintPairs();
230 gezelter 1490
231 gezelter 3442 removeInteractionPairs(mol);
232 gezelter 2204 molecules_.erase(mol->getGlobalIndex());
233 gezelter 1490
234 gezelter 2204 delete mol;
235 gezelter 1930
236 gezelter 2204 return true;
237 gezelter 1930 } else {
238 gezelter 2204 return false;
239 gezelter 1930 }
240    
241    
242 gezelter 2204 }
243 gezelter 1930
244    
245 gezelter 2204 Molecule* SimInfo::beginMolecule(MoleculeIterator& i) {
246 gezelter 1930 i = molecules_.begin();
247     return i == molecules_.end() ? NULL : i->second;
248 gezelter 2204 }
249 gezelter 1930
250 gezelter 2204 Molecule* SimInfo::nextMolecule(MoleculeIterator& i) {
251 gezelter 1930 ++i;
252     return i == molecules_.end() ? NULL : i->second;
253 gezelter 2204 }
254 gezelter 1490
255    
256 gezelter 2204 void SimInfo::calcNdf() {
257 gezelter 1930 int ndf_local;
258     MoleculeIterator i;
259     std::vector<StuntDouble*>::iterator j;
260     Molecule* mol;
261     StuntDouble* integrableObject;
262 gezelter 1490
263 gezelter 1930 ndf_local = 0;
264    
265     for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
266 gezelter 2204 for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
267     integrableObject = mol->nextIntegrableObject(j)) {
268 gezelter 1490
269 gezelter 2204 ndf_local += 3;
270 gezelter 1490
271 gezelter 2204 if (integrableObject->isDirectional()) {
272     if (integrableObject->isLinear()) {
273     ndf_local += 2;
274     } else {
275     ndf_local += 3;
276     }
277     }
278 gezelter 1930
279 tim 2469 }
280     }
281 gezelter 1930
282     // n_constraints is local, so subtract them on each processor
283     ndf_local -= nConstraints_;
284    
285     #ifdef IS_MPI
286     MPI_Allreduce(&ndf_local,&ndf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
287     #else
288     ndf_ = ndf_local;
289     #endif
290    
291     // nZconstraints_ is global, as are the 3 COM translations for the
292     // entire system:
293     ndf_ = ndf_ - 3 - nZconstraint_;
294    
295 gezelter 2204 }
296 gezelter 1490
297 gezelter 2733 int SimInfo::getFdf() {
298     #ifdef IS_MPI
299     MPI_Allreduce(&fdf_local,&fdf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
300     #else
301     fdf_ = fdf_local;
302     #endif
303     return fdf_;
304     }
305    
306 gezelter 2204 void SimInfo::calcNdfRaw() {
307 gezelter 1930 int ndfRaw_local;
308 gezelter 1490
309 gezelter 1930 MoleculeIterator i;
310     std::vector<StuntDouble*>::iterator j;
311     Molecule* mol;
312     StuntDouble* integrableObject;
313    
314     // Raw degrees of freedom that we have to set
315     ndfRaw_local = 0;
316    
317     for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
318 gezelter 2204 for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
319     integrableObject = mol->nextIntegrableObject(j)) {
320 gezelter 1930
321 gezelter 2204 ndfRaw_local += 3;
322 gezelter 1930
323 gezelter 2204 if (integrableObject->isDirectional()) {
324     if (integrableObject->isLinear()) {
325     ndfRaw_local += 2;
326     } else {
327     ndfRaw_local += 3;
328     }
329     }
330 gezelter 1930
331 gezelter 2204 }
332 gezelter 1930 }
333    
334     #ifdef IS_MPI
335     MPI_Allreduce(&ndfRaw_local,&ndfRaw_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
336     #else
337     ndfRaw_ = ndfRaw_local;
338     #endif
339 gezelter 2204 }
340 gezelter 1490
341 gezelter 2204 void SimInfo::calcNdfTrans() {
342 gezelter 1930 int ndfTrans_local;
343 gezelter 1490
344 gezelter 1930 ndfTrans_local = 3 * nIntegrableObjects_ - nConstraints_;
345 gezelter 1490
346    
347 gezelter 1930 #ifdef IS_MPI
348     MPI_Allreduce(&ndfTrans_local,&ndfTrans_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
349     #else
350     ndfTrans_ = ndfTrans_local;
351     #endif
352 gezelter 1490
353 gezelter 1930 ndfTrans_ = ndfTrans_ - 3 - nZconstraint_;
354    
355 gezelter 2204 }
356 gezelter 1490
357 gezelter 3442 void SimInfo::addInteractionPairs(Molecule* mol) {
358     ForceFieldOptions& options_ = forceField_->getForceFieldOptions();
359 gezelter 1930 std::vector<Bond*>::iterator bondIter;
360     std::vector<Bend*>::iterator bendIter;
361     std::vector<Torsion*>::iterator torsionIter;
362 gezelter 3432 std::vector<Inversion*>::iterator inversionIter;
363 gezelter 1930 Bond* bond;
364     Bend* bend;
365     Torsion* torsion;
366 gezelter 3432 Inversion* inversion;
367 gezelter 1930 int a;
368     int b;
369     int c;
370     int d;
371 tim 2448
372 gezelter 3442 // atomGroups can be used to add special interaction maps between
373     // groups of atoms that are in two separate rigid bodies.
374     // However, most site-site interactions between two rigid bodies
375     // are probably not special, just the ones between the physically
376     // bonded atoms. Interactions *within* a single rigid body should
377     // always be excluded. These are done at the bottom of this
378     // function.
379    
380 tim 2448 std::map<int, std::set<int> > atomGroups;
381     Molecule::RigidBodyIterator rbIter;
382     RigidBody* rb;
383     Molecule::IntegrableObjectIterator ii;
384     StuntDouble* integrableObject;
385 gezelter 1930
386 gezelter 3442 for (integrableObject = mol->beginIntegrableObject(ii);
387     integrableObject != NULL;
388     integrableObject = mol->nextIntegrableObject(ii)) {
389    
390 tim 2448 if (integrableObject->isRigidBody()) {
391 gezelter 3442 rb = static_cast<RigidBody*>(integrableObject);
392     std::vector<Atom*> atoms = rb->getAtoms();
393     std::set<int> rigidAtoms;
394     for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
395     rigidAtoms.insert(atoms[i]->getGlobalIndex());
396     }
397     for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
398     atomGroups.insert(std::map<int, std::set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
399     }
400 tim 2448 } else {
401     std::set<int> oneAtomSet;
402     oneAtomSet.insert(integrableObject->getGlobalIndex());
403     atomGroups.insert(std::map<int, std::set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));
404     }
405     }
406 gezelter 3442
407     for (bond= mol->beginBond(bondIter); bond != NULL;
408     bond = mol->nextBond(bondIter)) {
409 tim 2448
410 gezelter 3442 a = bond->getAtomA()->getGlobalIndex();
411     b = bond->getAtomB()->getGlobalIndex();
412 tim 2448
413 gezelter 3442 if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
414     oneTwoInteractions_.addPair(a, b);
415     } else {
416     excludedInteractions_.addPair(a, b);
417     }
418 gezelter 1930 }
419 gezelter 1490
420 gezelter 3442 for (bend= mol->beginBend(bendIter); bend != NULL;
421     bend = mol->nextBend(bendIter)) {
422    
423 gezelter 2204 a = bend->getAtomA()->getGlobalIndex();
424     b = bend->getAtomB()->getGlobalIndex();
425     c = bend->getAtomC()->getGlobalIndex();
426 gezelter 3442
427     if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
428     oneTwoInteractions_.addPair(a, b);
429     oneTwoInteractions_.addPair(b, c);
430     } else {
431     excludedInteractions_.addPair(a, b);
432     excludedInteractions_.addPair(b, c);
433     }
434 gezelter 1490
435 gezelter 3442 if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
436     oneThreeInteractions_.addPair(a, c);
437     } else {
438     excludedInteractions_.addPair(a, c);
439     }
440 gezelter 1930 }
441 gezelter 1490
442 gezelter 3442 for (torsion= mol->beginTorsion(torsionIter); torsion != NULL;
443     torsion = mol->nextTorsion(torsionIter)) {
444    
445 gezelter 2204 a = torsion->getAtomA()->getGlobalIndex();
446     b = torsion->getAtomB()->getGlobalIndex();
447     c = torsion->getAtomC()->getGlobalIndex();
448 gezelter 3442 d = torsion->getAtomD()->getGlobalIndex();
449 cli2 3446
450 gezelter 3442 if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
451     oneTwoInteractions_.addPair(a, b);
452     oneTwoInteractions_.addPair(b, c);
453     oneTwoInteractions_.addPair(c, d);
454     } else {
455     excludedInteractions_.addPair(a, b);
456     excludedInteractions_.addPair(b, c);
457     excludedInteractions_.addPair(c, d);
458     }
459 gezelter 1490
460 gezelter 3442 if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
461     oneThreeInteractions_.addPair(a, c);
462     oneThreeInteractions_.addPair(b, d);
463     } else {
464     excludedInteractions_.addPair(a, c);
465     excludedInteractions_.addPair(b, d);
466     }
467 tim 2448
468 gezelter 3442 if (options_.havevdw14scale() || options_.haveelectrostatic14scale()) {
469     oneFourInteractions_.addPair(a, d);
470     } else {
471     excludedInteractions_.addPair(a, d);
472     }
473 gezelter 1490 }
474    
475 gezelter 3432 for (inversion= mol->beginInversion(inversionIter); inversion != NULL;
476     inversion = mol->nextInversion(inversionIter)) {
477 gezelter 3442
478 gezelter 3432 a = inversion->getAtomA()->getGlobalIndex();
479     b = inversion->getAtomB()->getGlobalIndex();
480     c = inversion->getAtomC()->getGlobalIndex();
481     d = inversion->getAtomD()->getGlobalIndex();
482    
483 gezelter 3442 if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
484     oneTwoInteractions_.addPair(a, b);
485     oneTwoInteractions_.addPair(a, c);
486     oneTwoInteractions_.addPair(a, d);
487     } else {
488     excludedInteractions_.addPair(a, b);
489     excludedInteractions_.addPair(a, c);
490     excludedInteractions_.addPair(a, d);
491     }
492 gezelter 3432
493 gezelter 3442 if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
494     oneThreeInteractions_.addPair(b, c);
495     oneThreeInteractions_.addPair(b, d);
496     oneThreeInteractions_.addPair(c, d);
497     } else {
498     excludedInteractions_.addPair(b, c);
499     excludedInteractions_.addPair(b, d);
500     excludedInteractions_.addPair(c, d);
501     }
502 gezelter 3432 }
503    
504 gezelter 3442 for (rb = mol->beginRigidBody(rbIter); rb != NULL;
505     rb = mol->nextRigidBody(rbIter)) {
506 gezelter 2204 std::vector<Atom*> atoms = rb->getAtoms();
507 gezelter 3442 for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) {
508     for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) {
509 gezelter 2204 a = atoms[i]->getGlobalIndex();
510     b = atoms[j]->getGlobalIndex();
511 gezelter 3442 excludedInteractions_.addPair(a, b);
512 gezelter 2204 }
513     }
514 tim 2114 }
515    
516 gezelter 2204 }
517 gezelter 1930
518 gezelter 3442 void SimInfo::removeInteractionPairs(Molecule* mol) {
519     ForceFieldOptions& options_ = forceField_->getForceFieldOptions();
520 gezelter 1930 std::vector<Bond*>::iterator bondIter;
521     std::vector<Bend*>::iterator bendIter;
522     std::vector<Torsion*>::iterator torsionIter;
523 gezelter 3432 std::vector<Inversion*>::iterator inversionIter;
524 gezelter 1930 Bond* bond;
525     Bend* bend;
526     Torsion* torsion;
527 gezelter 3432 Inversion* inversion;
528 gezelter 1930 int a;
529     int b;
530     int c;
531     int d;
532 tim 2448
533     std::map<int, std::set<int> > atomGroups;
534     Molecule::RigidBodyIterator rbIter;
535     RigidBody* rb;
536     Molecule::IntegrableObjectIterator ii;
537     StuntDouble* integrableObject;
538 gezelter 1930
539 gezelter 3442 for (integrableObject = mol->beginIntegrableObject(ii);
540     integrableObject != NULL;
541     integrableObject = mol->nextIntegrableObject(ii)) {
542    
543 tim 2448 if (integrableObject->isRigidBody()) {
544 gezelter 3442 rb = static_cast<RigidBody*>(integrableObject);
545     std::vector<Atom*> atoms = rb->getAtoms();
546     std::set<int> rigidAtoms;
547     for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
548     rigidAtoms.insert(atoms[i]->getGlobalIndex());
549     }
550     for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
551     atomGroups.insert(std::map<int, std::set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
552     }
553 tim 2448 } else {
554     std::set<int> oneAtomSet;
555     oneAtomSet.insert(integrableObject->getGlobalIndex());
556     atomGroups.insert(std::map<int, std::set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));
557     }
558     }
559    
560 gezelter 3442 for (bond= mol->beginBond(bondIter); bond != NULL;
561     bond = mol->nextBond(bondIter)) {
562    
563     a = bond->getAtomA()->getGlobalIndex();
564     b = bond->getAtomB()->getGlobalIndex();
565 tim 2448
566 gezelter 3442 if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
567     oneTwoInteractions_.removePair(a, b);
568     } else {
569     excludedInteractions_.removePair(a, b);
570     }
571 gezelter 1490 }
572 gezelter 1930
573 gezelter 3442 for (bend= mol->beginBend(bendIter); bend != NULL;
574     bend = mol->nextBend(bendIter)) {
575    
576 gezelter 2204 a = bend->getAtomA()->getGlobalIndex();
577     b = bend->getAtomB()->getGlobalIndex();
578     c = bend->getAtomC()->getGlobalIndex();
579 gezelter 3442
580     if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
581     oneTwoInteractions_.removePair(a, b);
582     oneTwoInteractions_.removePair(b, c);
583     } else {
584     excludedInteractions_.removePair(a, b);
585     excludedInteractions_.removePair(b, c);
586     }
587 gezelter 1930
588 gezelter 3442 if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
589     oneThreeInteractions_.removePair(a, c);
590     } else {
591     excludedInteractions_.removePair(a, c);
592     }
593 gezelter 1490 }
594 gezelter 1930
595 gezelter 3442 for (torsion= mol->beginTorsion(torsionIter); torsion != NULL;
596     torsion = mol->nextTorsion(torsionIter)) {
597    
598 gezelter 2204 a = torsion->getAtomA()->getGlobalIndex();
599     b = torsion->getAtomB()->getGlobalIndex();
600     c = torsion->getAtomC()->getGlobalIndex();
601 gezelter 3442 d = torsion->getAtomD()->getGlobalIndex();
602    
603     if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
604     oneTwoInteractions_.removePair(a, b);
605     oneTwoInteractions_.removePair(b, c);
606     oneTwoInteractions_.removePair(c, d);
607     } else {
608     excludedInteractions_.removePair(a, b);
609     excludedInteractions_.removePair(b, c);
610     excludedInteractions_.removePair(c, d);
611     }
612 gezelter 1930
613 gezelter 3442 if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
614     oneThreeInteractions_.removePair(a, c);
615     oneThreeInteractions_.removePair(b, d);
616     } else {
617     excludedInteractions_.removePair(a, c);
618     excludedInteractions_.removePair(b, d);
619     }
620 tim 2448
621 gezelter 3442 if (options_.havevdw14scale() || options_.haveelectrostatic14scale()) {
622     oneFourInteractions_.removePair(a, d);
623     } else {
624     excludedInteractions_.removePair(a, d);
625     }
626     }
627 tim 2448
628 gezelter 3442 for (inversion= mol->beginInversion(inversionIter); inversion != NULL;
629     inversion = mol->nextInversion(inversionIter)) {
630 tim 2448
631 gezelter 3432 a = inversion->getAtomA()->getGlobalIndex();
632     b = inversion->getAtomB()->getGlobalIndex();
633     c = inversion->getAtomC()->getGlobalIndex();
634     d = inversion->getAtomD()->getGlobalIndex();
635    
636 gezelter 3442 if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
637     oneTwoInteractions_.removePair(a, b);
638     oneTwoInteractions_.removePair(a, c);
639     oneTwoInteractions_.removePair(a, d);
640     } else {
641     excludedInteractions_.removePair(a, b);
642     excludedInteractions_.removePair(a, c);
643     excludedInteractions_.removePair(a, d);
644     }
645 gezelter 3432
646 gezelter 3442 if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
647     oneThreeInteractions_.removePair(b, c);
648     oneThreeInteractions_.removePair(b, d);
649     oneThreeInteractions_.removePair(c, d);
650     } else {
651     excludedInteractions_.removePair(b, c);
652     excludedInteractions_.removePair(b, d);
653     excludedInteractions_.removePair(c, d);
654     }
655 gezelter 3432 }
656    
657 gezelter 3442 for (rb = mol->beginRigidBody(rbIter); rb != NULL;
658     rb = mol->nextRigidBody(rbIter)) {
659 gezelter 2204 std::vector<Atom*> atoms = rb->getAtoms();
660 gezelter 3442 for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) {
661     for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) {
662 gezelter 2204 a = atoms[i]->getGlobalIndex();
663     b = atoms[j]->getGlobalIndex();
664 gezelter 3442 excludedInteractions_.removePair(a, b);
665 gezelter 2204 }
666     }
667 tim 2114 }
668 gezelter 3442
669 gezelter 2204 }
670 gezelter 3442
671    
672 gezelter 2204 void SimInfo::addMoleculeStamp(MoleculeStamp* molStamp, int nmol) {
673 gezelter 1930 int curStampId;
674 gezelter 3442
675 gezelter 1930 //index from 0
676     curStampId = moleculeStamps_.size();
677 gezelter 1490
678 gezelter 1930 moleculeStamps_.push_back(molStamp);
679     molStampIds_.insert(molStampIds_.end(), nmol, curStampId);
680 gezelter 2204 }
681 gezelter 1490
682 gezelter 2204 void SimInfo::update() {
683 gezelter 1490
684 gezelter 1930 setupSimType();
685 gezelter 1490
686 gezelter 1930 #ifdef IS_MPI
687     setupFortranParallel();
688     #endif
689 gezelter 1490
690 gezelter 1930 setupFortranSim();
691 gezelter 1490
692 gezelter 1930 //setup fortran force field
693     /** @deprecate */
694     int isError = 0;
695 chrisfen 2297
696 chrisfen 3013 setupCutoff();
697    
698 chrisfen 2302 setupElectrostaticSummationMethod( isError );
699 chrisfen 2425 setupSwitchingFunction();
700 chrisfen 2917 setupAccumulateBoxDipole();
701 chrisfen 2297
702 gezelter 1930 if(isError){
703 gezelter 2204 sprintf( painCave.errMsg,
704     "ForceField error: There was an error initializing the forceField in fortran.\n" );
705     painCave.isFatal = 1;
706     simError();
707 gezelter 1930 }
708 gezelter 1490
709 gezelter 1930 calcNdf();
710     calcNdfRaw();
711     calcNdfTrans();
712    
713     fortranInitialized_ = true;
714 gezelter 2204 }
715 gezelter 1490
716 gezelter 2204 std::set<AtomType*> SimInfo::getUniqueAtomTypes() {
717 gezelter 1930 SimInfo::MoleculeIterator mi;
718     Molecule* mol;
719     Molecule::AtomIterator ai;
720     Atom* atom;
721     std::set<AtomType*> atomTypes;
722 gezelter 1490
723 gezelter 1930 for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
724 gezelter 1490
725 gezelter 2204 for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
726     atomTypes.insert(atom->getAtomType());
727     }
728 gezelter 1930
729     }
730 gezelter 1490
731 gezelter 1930 return atomTypes;
732 gezelter 2204 }
733 gezelter 1490
734 gezelter 2204 void SimInfo::setupSimType() {
735 gezelter 1930 std::set<AtomType*>::iterator i;
736     std::set<AtomType*> atomTypes;
737     atomTypes = getUniqueAtomTypes();
738 gezelter 1490
739 gezelter 1930 int useLennardJones = 0;
740     int useElectrostatic = 0;
741     int useEAM = 0;
742 chuckv 2433 int useSC = 0;
743 gezelter 1930 int useCharge = 0;
744     int useDirectional = 0;
745     int useDipole = 0;
746     int useGayBerne = 0;
747     int useSticky = 0;
748 chrisfen 2220 int useStickyPower = 0;
749 gezelter 1930 int useShape = 0;
750     int useFLARB = 0; //it is not in AtomType yet
751     int useDirectionalAtom = 0;
752     int useElectrostatics = 0;
753     //usePBC and useRF are from simParams
754 tim 2364 int usePBC = simParams_->getUsePeriodicBoundaryConditions();
755 chrisfen 2310 int useRF;
756 chrisfen 2419 int useSF;
757 chrisfen 2917 int useSP;
758     int useBoxDipole;
759 gezelter 3126
760 tim 2364 std::string myMethod;
761 gezelter 1490
762 chrisfen 2310 // set the useRF logical
763 tim 2364 useRF = 0;
764 chrisfen 2419 useSF = 0;
765 gezelter 3054 useSP = 0;
766 chrisfen 2390
767    
768 tim 2364 if (simParams_->haveElectrostaticSummationMethod()) {
769 chrisfen 2390 std::string myMethod = simParams_->getElectrostaticSummationMethod();
770     toUpper(myMethod);
771 chrisfen 2917 if (myMethod == "REACTION_FIELD"){
772 gezelter 3054 useRF = 1;
773 chrisfen 2917 } else if (myMethod == "SHIFTED_FORCE"){
774     useSF = 1;
775     } else if (myMethod == "SHIFTED_POTENTIAL"){
776     useSP = 1;
777 chrisfen 2390 }
778 tim 2364 }
779 chrisfen 2917
780     if (simParams_->haveAccumulateBoxDipole())
781     if (simParams_->getAccumulateBoxDipole())
782     useBoxDipole = 1;
783 chrisfen 2310
784 gezelter 3126 useAtomicVirial_ = simParams_->getUseAtomicVirial();
785    
786 gezelter 1930 //loop over all of the atom types
787     for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
788 gezelter 2204 useLennardJones |= (*i)->isLennardJones();
789     useElectrostatic |= (*i)->isElectrostatic();
790     useEAM |= (*i)->isEAM();
791 chuckv 2433 useSC |= (*i)->isSC();
792 gezelter 2204 useCharge |= (*i)->isCharge();
793     useDirectional |= (*i)->isDirectional();
794     useDipole |= (*i)->isDipole();
795     useGayBerne |= (*i)->isGayBerne();
796     useSticky |= (*i)->isSticky();
797 chrisfen 2220 useStickyPower |= (*i)->isStickyPower();
798 gezelter 2204 useShape |= (*i)->isShape();
799 gezelter 1930 }
800 gezelter 1490
801 chrisfen 2220 if (useSticky || useStickyPower || useDipole || useGayBerne || useShape) {
802 gezelter 2204 useDirectionalAtom = 1;
803 gezelter 1930 }
804 gezelter 1490
805 gezelter 1930 if (useCharge || useDipole) {
806 gezelter 2204 useElectrostatics = 1;
807 gezelter 1930 }
808 gezelter 1490
809 gezelter 1930 #ifdef IS_MPI
810     int temp;
811 gezelter 1490
812 gezelter 1930 temp = usePBC;
813     MPI_Allreduce(&temp, &usePBC, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
814 gezelter 1490
815 gezelter 1930 temp = useDirectionalAtom;
816     MPI_Allreduce(&temp, &useDirectionalAtom, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
817 gezelter 1490
818 gezelter 1930 temp = useLennardJones;
819     MPI_Allreduce(&temp, &useLennardJones, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
820 gezelter 1490
821 gezelter 1930 temp = useElectrostatics;
822     MPI_Allreduce(&temp, &useElectrostatics, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
823 gezelter 1490
824 gezelter 1930 temp = useCharge;
825     MPI_Allreduce(&temp, &useCharge, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
826 gezelter 1490
827 gezelter 1930 temp = useDipole;
828     MPI_Allreduce(&temp, &useDipole, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
829 gezelter 1490
830 gezelter 1930 temp = useSticky;
831     MPI_Allreduce(&temp, &useSticky, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
832 gezelter 1490
833 chrisfen 2220 temp = useStickyPower;
834     MPI_Allreduce(&temp, &useStickyPower, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
835    
836 gezelter 1930 temp = useGayBerne;
837     MPI_Allreduce(&temp, &useGayBerne, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
838 gezelter 1490
839 gezelter 1930 temp = useEAM;
840     MPI_Allreduce(&temp, &useEAM, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
841 gezelter 1490
842 chuckv 2433 temp = useSC;
843     MPI_Allreduce(&temp, &useSC, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
844    
845 gezelter 1930 temp = useShape;
846     MPI_Allreduce(&temp, &useShape, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
847    
848     temp = useFLARB;
849     MPI_Allreduce(&temp, &useFLARB, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
850    
851 chrisfen 2310 temp = useRF;
852     MPI_Allreduce(&temp, &useRF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
853    
854 chrisfen 2419 temp = useSF;
855 chrisfen 2917 MPI_Allreduce(&temp, &useSF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
856 chrisfen 2404
857 chrisfen 2917 temp = useSP;
858     MPI_Allreduce(&temp, &useSP, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
859    
860     temp = useBoxDipole;
861     MPI_Allreduce(&temp, &useBoxDipole, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
862    
863 gezelter 3126 temp = useAtomicVirial_;
864     MPI_Allreduce(&temp, &useAtomicVirial_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
865    
866 gezelter 1490 #endif
867    
868 gezelter 1930 fInfo_.SIM_uses_PBC = usePBC;
869     fInfo_.SIM_uses_DirectionalAtoms = useDirectionalAtom;
870     fInfo_.SIM_uses_LennardJones = useLennardJones;
871     fInfo_.SIM_uses_Electrostatics = useElectrostatics;
872     fInfo_.SIM_uses_Charges = useCharge;
873     fInfo_.SIM_uses_Dipoles = useDipole;
874     fInfo_.SIM_uses_Sticky = useSticky;
875 chrisfen 2220 fInfo_.SIM_uses_StickyPower = useStickyPower;
876 gezelter 1930 fInfo_.SIM_uses_GayBerne = useGayBerne;
877     fInfo_.SIM_uses_EAM = useEAM;
878 chuckv 2433 fInfo_.SIM_uses_SC = useSC;
879 gezelter 1930 fInfo_.SIM_uses_Shapes = useShape;
880     fInfo_.SIM_uses_FLARB = useFLARB;
881 chrisfen 2310 fInfo_.SIM_uses_RF = useRF;
882 chrisfen 2419 fInfo_.SIM_uses_SF = useSF;
883 chrisfen 2917 fInfo_.SIM_uses_SP = useSP;
884     fInfo_.SIM_uses_BoxDipole = useBoxDipole;
885 gezelter 3126 fInfo_.SIM_uses_AtomicVirial = useAtomicVirial_;
886 gezelter 2204 }
887 gezelter 1490
888 gezelter 2204 void SimInfo::setupFortranSim() {
889 gezelter 1930 int isError;
890 gezelter 3442 int nExclude, nOneTwo, nOneThree, nOneFour;
891 gezelter 1930 std::vector<int> fortranGlobalGroupMembership;
892    
893     isError = 0;
894 gezelter 1490
895 gezelter 1930 //globalGroupMembership_ is filled by SimCreator
896     for (int i = 0; i < nGlobalAtoms_; i++) {
897 gezelter 2204 fortranGlobalGroupMembership.push_back(globalGroupMembership_[i] + 1);
898 gezelter 1930 }
899 gezelter 1490
900 gezelter 1930 //calculate mass ratio of cutoff group
901 tim 2759 std::vector<RealType> mfact;
902 gezelter 1930 SimInfo::MoleculeIterator mi;
903     Molecule* mol;
904     Molecule::CutoffGroupIterator ci;
905     CutoffGroup* cg;
906     Molecule::AtomIterator ai;
907     Atom* atom;
908 tim 2759 RealType totalMass;
909 gezelter 1930
910     //to avoid memory reallocation, reserve enough space for mfact
911     mfact.reserve(getNCutoffGroups());
912 gezelter 1490
913 gezelter 1930 for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
914 gezelter 2204 for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
915 gezelter 1490
916 gezelter 2204 totalMass = cg->getMass();
917     for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) {
918 chrisfen 2344 // Check for massless groups - set mfact to 1 if true
919     if (totalMass != 0)
920     mfact.push_back(atom->getMass()/totalMass);
921     else
922     mfact.push_back( 1.0 );
923 gezelter 2204 }
924     }
925 gezelter 1930 }
926 gezelter 1490
927 gezelter 1930 //fill ident array of local atoms (it is actually ident of AtomType, it is so confusing !!!)
928     std::vector<int> identArray;
929 gezelter 1490
930 gezelter 1930 //to avoid memory reallocation, reserve enough space identArray
931     identArray.reserve(getNAtoms());
932    
933     for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
934 gezelter 2204 for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
935     identArray.push_back(atom->getIdent());
936     }
937 gezelter 1930 }
938 gezelter 1490
939 gezelter 1930 //fill molMembershipArray
940     //molMembershipArray is filled by SimCreator
941     std::vector<int> molMembershipArray(nGlobalAtoms_);
942     for (int i = 0; i < nGlobalAtoms_; i++) {
943 gezelter 2204 molMembershipArray[i] = globalMolMembership_[i] + 1;
944 gezelter 1930 }
945    
946     //setup fortran simulation
947 gezelter 3442
948     nExclude = excludedInteractions_.getSize();
949     nOneTwo = oneTwoInteractions_.getSize();
950     nOneThree = oneThreeInteractions_.getSize();
951     nOneFour = oneFourInteractions_.getSize();
952    
953 cli2 3446 std::cerr << "excludedInteractions contains: " << excludedInteractions_.getSize() << " pairs \n";
954     std::cerr << "oneTwoInteractions contains: " << oneTwoInteractions_.getSize() << " pairs \n";
955     std::cerr << "oneThreeInteractions contains: " << oneThreeInteractions_.getSize() << " pairs \n";
956     std::cerr << "oneFourInteractions contains: " << oneFourInteractions_.getSize() << " pairs \n";
957 gezelter 3442
958     int* excludeList = excludedInteractions_.getPairList();
959     int* oneTwoList = oneTwoInteractions_.getPairList();
960     int* oneThreeList = oneThreeInteractions_.getPairList();
961     int* oneFourList = oneFourInteractions_.getPairList();
962    
963 gezelter 3388 setFortranSim( &fInfo_, &nGlobalAtoms_, &nAtoms_, &identArray[0],
964 gezelter 3442 &nExclude, excludeList,
965     &nOneTwo, oneTwoList,
966     &nOneThree, oneThreeList,
967     &nOneFour, oneFourList,
968 gezelter 3388 &molMembershipArray[0], &mfact[0], &nCutoffGroups_,
969     &fortranGlobalGroupMembership[0], &isError);
970    
971 gezelter 1930 if( isError ){
972 gezelter 3388
973 gezelter 2204 sprintf( painCave.errMsg,
974     "There was an error setting the simulation information in fortran.\n" );
975     painCave.isFatal = 1;
976     painCave.severity = OOPSE_ERROR;
977     simError();
978 gezelter 1930 }
979 gezelter 3388
980    
981 gezelter 1930 sprintf( checkPointMsg,
982 gezelter 2204 "succesfully sent the simulation information to fortran.\n");
983 gezelter 3388
984     errorCheckPoint();
985    
986 chuckv 3080 // Setup number of neighbors in neighbor list if present
987     if (simParams_->haveNeighborListNeighbors()) {
988 chuckv 3121 int nlistNeighbors = simParams_->getNeighborListNeighbors();
989     setNeighbors(&nlistNeighbors);
990 chuckv 3080 }
991    
992    
993 gezelter 2204 }
994 gezelter 1490
995    
996 gezelter 2204 void SimInfo::setupFortranParallel() {
997 gezelter 3388 #ifdef IS_MPI
998 gezelter 1930 //SimInfo is responsible for creating localToGlobalAtomIndex and localToGlobalGroupIndex
999     std::vector<int> localToGlobalAtomIndex(getNAtoms(), 0);
1000     std::vector<int> localToGlobalCutoffGroupIndex;
1001     SimInfo::MoleculeIterator mi;
1002     Molecule::AtomIterator ai;
1003     Molecule::CutoffGroupIterator ci;
1004     Molecule* mol;
1005     Atom* atom;
1006     CutoffGroup* cg;
1007     mpiSimData parallelData;
1008     int isError;
1009 gezelter 1490
1010 gezelter 1930 for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
1011 gezelter 1490
1012 gezelter 2204 //local index(index in DataStorge) of atom is important
1013     for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
1014     localToGlobalAtomIndex[atom->getLocalIndex()] = atom->getGlobalIndex() + 1;
1015     }
1016 gezelter 1490
1017 gezelter 2204 //local index of cutoff group is trivial, it only depends on the order of travesing
1018     for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
1019     localToGlobalCutoffGroupIndex.push_back(cg->getGlobalIndex() + 1);
1020     }
1021 gezelter 1930
1022     }
1023 gezelter 1490
1024 gezelter 1930 //fill up mpiSimData struct
1025     parallelData.nMolGlobal = getNGlobalMolecules();
1026     parallelData.nMolLocal = getNMolecules();
1027     parallelData.nAtomsGlobal = getNGlobalAtoms();
1028     parallelData.nAtomsLocal = getNAtoms();
1029     parallelData.nGroupsGlobal = getNGlobalCutoffGroups();
1030     parallelData.nGroupsLocal = getNCutoffGroups();
1031     parallelData.myNode = worldRank;
1032     MPI_Comm_size(MPI_COMM_WORLD, &(parallelData.nProcessors));
1033 gezelter 1490
1034 gezelter 1930 //pass mpiSimData struct and index arrays to fortran
1035     setFsimParallel(&parallelData, &(parallelData.nAtomsLocal),
1036     &localToGlobalAtomIndex[0], &(parallelData.nGroupsLocal),
1037     &localToGlobalCutoffGroupIndex[0], &isError);
1038 gezelter 1490
1039 gezelter 1930 if (isError) {
1040 gezelter 2204 sprintf(painCave.errMsg,
1041     "mpiRefresh errror: fortran didn't like something we gave it.\n");
1042     painCave.isFatal = 1;
1043     simError();
1044 gezelter 1930 }
1045 gezelter 1490
1046 gezelter 1930 sprintf(checkPointMsg, " mpiRefresh successful.\n");
1047 gezelter 3388 errorCheckPoint();
1048 gezelter 1490
1049 gezelter 3388 #endif
1050 gezelter 2204 }
1051 chrisfen 1636
1052 gezelter 2463 void SimInfo::setupCutoff() {
1053 gezelter 1490
1054 chuckv 2533 ForceFieldOptions& forceFieldOptions_ = forceField_->getForceFieldOptions();
1055    
1056 gezelter 2463 // Check the cutoff policy
1057 chuckv 2533 int cp = TRADITIONAL_CUTOFF_POLICY; // Set to traditional by default
1058    
1059 chrisfen 3129 // Set LJ shifting bools to false
1060     ljsp_ = false;
1061     ljsf_ = false;
1062    
1063 chuckv 2533 std::string myPolicy;
1064     if (forceFieldOptions_.haveCutoffPolicy()){
1065     myPolicy = forceFieldOptions_.getCutoffPolicy();
1066     }else if (simParams_->haveCutoffPolicy()) {
1067     myPolicy = simParams_->getCutoffPolicy();
1068     }
1069    
1070     if (!myPolicy.empty()){
1071 tim 2364 toUpper(myPolicy);
1072 gezelter 2285 if (myPolicy == "MIX") {
1073     cp = MIX_CUTOFF_POLICY;
1074     } else {
1075     if (myPolicy == "MAX") {
1076     cp = MAX_CUTOFF_POLICY;
1077     } else {
1078     if (myPolicy == "TRADITIONAL") {
1079     cp = TRADITIONAL_CUTOFF_POLICY;
1080     } else {
1081     // throw error
1082     sprintf( painCave.errMsg,
1083     "SimInfo error: Unknown cutoffPolicy. (Input file specified %s .)\n\tcutoffPolicy must be one of: \"Mix\", \"Max\", or \"Traditional\".", myPolicy.c_str() );
1084     painCave.isFatal = 1;
1085     simError();
1086     }
1087     }
1088     }
1089 gezelter 2463 }
1090     notifyFortranCutoffPolicy(&cp);
1091 chuckv 2328
1092 gezelter 2463 // Check the Skin Thickness for neighborlists
1093 tim 2759 RealType skin;
1094 gezelter 2463 if (simParams_->haveSkinThickness()) {
1095     skin = simParams_->getSkinThickness();
1096     notifyFortranSkinThickness(&skin);
1097     }
1098    
1099     // Check if the cutoff was set explicitly:
1100     if (simParams_->haveCutoffRadius()) {
1101     rcut_ = simParams_->getCutoffRadius();
1102     if (simParams_->haveSwitchingRadius()) {
1103     rsw_ = simParams_->getSwitchingRadius();
1104     } else {
1105 chrisfen 2578 if (fInfo_.SIM_uses_Charges |
1106     fInfo_.SIM_uses_Dipoles |
1107     fInfo_.SIM_uses_RF) {
1108    
1109     rsw_ = 0.85 * rcut_;
1110     sprintf(painCave.errMsg,
1111     "SimCreator Warning: No value was set for the switchingRadius.\n"
1112 chrisfen 2579 "\tOOPSE will use a default value of 85 percent of the cutoffRadius.\n"
1113 chrisfen 2578 "\tswitchingRadius = %f. for this simulation\n", rsw_);
1114     painCave.isFatal = 0;
1115     simError();
1116     } else {
1117     rsw_ = rcut_;
1118     sprintf(painCave.errMsg,
1119     "SimCreator Warning: No value was set for the switchingRadius.\n"
1120     "\tOOPSE will use the same value as the cutoffRadius.\n"
1121     "\tswitchingRadius = %f. for this simulation\n", rsw_);
1122     painCave.isFatal = 0;
1123     simError();
1124     }
1125 chrisfen 2579 }
1126 chrisfen 3129
1127     if (simParams_->haveElectrostaticSummationMethod()) {
1128     std::string myMethod = simParams_->getElectrostaticSummationMethod();
1129     toUpper(myMethod);
1130    
1131     if (myMethod == "SHIFTED_POTENTIAL") {
1132     ljsp_ = true;
1133     } else if (myMethod == "SHIFTED_FORCE") {
1134     ljsf_ = true;
1135     }
1136     }
1137     notifyFortranCutoffs(&rcut_, &rsw_, &ljsp_, &ljsf_);
1138 chrisfen 2579
1139 gezelter 2463 } else {
1140    
1141     // For electrostatic atoms, we'll assume a large safe value:
1142     if (fInfo_.SIM_uses_Charges | fInfo_.SIM_uses_Dipoles | fInfo_.SIM_uses_RF) {
1143     sprintf(painCave.errMsg,
1144     "SimCreator Warning: No value was set for the cutoffRadius.\n"
1145     "\tOOPSE will use a default value of 15.0 angstroms"
1146     "\tfor the cutoffRadius.\n");
1147     painCave.isFatal = 0;
1148     simError();
1149     rcut_ = 15.0;
1150    
1151     if (simParams_->haveElectrostaticSummationMethod()) {
1152     std::string myMethod = simParams_->getElectrostaticSummationMethod();
1153     toUpper(myMethod);
1154 chrisfen 3129
1155     // For the time being, we're tethering the LJ shifted behavior to the
1156     // electrostaticSummationMethod keyword options
1157     if (myMethod == "SHIFTED_POTENTIAL") {
1158     ljsp_ = true;
1159     } else if (myMethod == "SHIFTED_FORCE") {
1160     ljsf_ = true;
1161     }
1162     if (myMethod == "SHIFTED_POTENTIAL" || myMethod == "SHIFTED_FORCE") {
1163 gezelter 2463 if (simParams_->haveSwitchingRadius()){
1164     sprintf(painCave.errMsg,
1165     "SimInfo Warning: A value was set for the switchingRadius\n"
1166     "\teven though the electrostaticSummationMethod was\n"
1167     "\tset to %s\n", myMethod.c_str());
1168     painCave.isFatal = 1;
1169     simError();
1170     }
1171     }
1172     }
1173    
1174     if (simParams_->haveSwitchingRadius()){
1175     rsw_ = simParams_->getSwitchingRadius();
1176     } else {
1177     sprintf(painCave.errMsg,
1178     "SimCreator Warning: No value was set for switchingRadius.\n"
1179     "\tOOPSE will use a default value of\n"
1180     "\t0.85 * cutoffRadius for the switchingRadius\n");
1181     painCave.isFatal = 0;
1182     simError();
1183     rsw_ = 0.85 * rcut_;
1184     }
1185 chrisfen 3129
1186     notifyFortranCutoffs(&rcut_, &rsw_, &ljsp_, &ljsf_);
1187    
1188 gezelter 2463 } else {
1189     // We didn't set rcut explicitly, and we don't have electrostatic atoms, so
1190     // We'll punt and let fortran figure out the cutoffs later.
1191    
1192     notifyFortranYouAreOnYourOwn();
1193 chuckv 2328
1194 gezelter 2463 }
1195 chuckv 2328 }
1196 gezelter 2204 }
1197 gezelter 1490
1198 chrisfen 2302 void SimInfo::setupElectrostaticSummationMethod( int isError ) {
1199 chrisfen 2297
1200     int errorOut;
1201 chrisfen 2302 int esm = NONE;
1202 chrisfen 2408 int sm = UNDAMPED;
1203 tim 2759 RealType alphaVal;
1204     RealType dielectric;
1205 chrisfen 3013
1206 chrisfen 2297 errorOut = isError;
1207    
1208 chrisfen 2302 if (simParams_->haveElectrostaticSummationMethod()) {
1209 chrisfen 2303 std::string myMethod = simParams_->getElectrostaticSummationMethod();
1210 tim 2364 toUpper(myMethod);
1211 chrisfen 2302 if (myMethod == "NONE") {
1212     esm = NONE;
1213 chrisfen 2297 } else {
1214 chrisfen 2408 if (myMethod == "SWITCHING_FUNCTION") {
1215     esm = SWITCHING_FUNCTION;
1216 chrisfen 2297 } else {
1217 chrisfen 2408 if (myMethod == "SHIFTED_POTENTIAL") {
1218     esm = SHIFTED_POTENTIAL;
1219     } else {
1220     if (myMethod == "SHIFTED_FORCE") {
1221     esm = SHIFTED_FORCE;
1222 chrisfen 2297 } else {
1223 chrisfen 3020 if (myMethod == "REACTION_FIELD") {
1224 chrisfen 2408 esm = REACTION_FIELD;
1225 chrisfen 3020 dielectric = simParams_->getDielectric();
1226     if (!simParams_->haveDielectric()) {
1227     // throw warning
1228     sprintf( painCave.errMsg,
1229     "SimInfo warning: dielectric was not specified in the input file\n\tfor the reaction field correction method.\n"
1230     "\tA default value of %f will be used for the dielectric.\n", dielectric);
1231     painCave.isFatal = 0;
1232     simError();
1233     }
1234 chrisfen 2408 } else {
1235     // throw error
1236     sprintf( painCave.errMsg,
1237 gezelter 2463 "SimInfo error: Unknown electrostaticSummationMethod.\n"
1238     "\t(Input file specified %s .)\n"
1239     "\telectrostaticSummationMethod must be one of: \"none\",\n"
1240     "\t\"shifted_potential\", \"shifted_force\", or \n"
1241     "\t\"reaction_field\".\n", myMethod.c_str() );
1242 chrisfen 2408 painCave.isFatal = 1;
1243     simError();
1244     }
1245     }
1246     }
1247 chrisfen 2297 }
1248     }
1249     }
1250 chrisfen 2408
1251 chrisfen 2415 if (simParams_->haveElectrostaticScreeningMethod()) {
1252     std::string myScreen = simParams_->getElectrostaticScreeningMethod();
1253 chrisfen 2408 toUpper(myScreen);
1254     if (myScreen == "UNDAMPED") {
1255     sm = UNDAMPED;
1256     } else {
1257     if (myScreen == "DAMPED") {
1258     sm = DAMPED;
1259     if (!simParams_->haveDampingAlpha()) {
1260 chrisfen 3013 // first set a cutoff dependent alpha value
1261     // we assume alpha depends linearly with rcut from 0 to 20.5 ang
1262     alphaVal = 0.5125 - rcut_* 0.025;
1263     // for values rcut > 20.5, alpha is zero
1264     if (alphaVal < 0) alphaVal = 0;
1265    
1266     // throw warning
1267 chrisfen 2408 sprintf( painCave.errMsg,
1268 gezelter 2463 "SimInfo warning: dampingAlpha was not specified in the input file.\n"
1269 chrisfen 3013 "\tA default value of %f (1/ang) will be used for the cutoff of\n\t%f (ang).\n", alphaVal, rcut_);
1270 chrisfen 2408 painCave.isFatal = 0;
1271     simError();
1272 chrisfen 3072 } else {
1273     alphaVal = simParams_->getDampingAlpha();
1274 chrisfen 2408 }
1275 chrisfen 3072
1276 chrisfen 2415 } else {
1277     // throw error
1278     sprintf( painCave.errMsg,
1279 gezelter 2463 "SimInfo error: Unknown electrostaticScreeningMethod.\n"
1280     "\t(Input file specified %s .)\n"
1281     "\telectrostaticScreeningMethod must be one of: \"undamped\"\n"
1282     "or \"damped\".\n", myScreen.c_str() );
1283 chrisfen 2415 painCave.isFatal = 1;
1284     simError();
1285 chrisfen 2408 }
1286     }
1287     }
1288 chrisfen 2415
1289 chrisfen 2309 // let's pass some summation method variables to fortran
1290 chrisfen 2552 setElectrostaticSummationMethod( &esm );
1291 gezelter 2508 setFortranElectrostaticMethod( &esm );
1292 chrisfen 2408 setScreeningMethod( &sm );
1293     setDampingAlpha( &alphaVal );
1294 chrisfen 2309 setReactionFieldDielectric( &dielectric );
1295 gezelter 2463 initFortranFF( &errorOut );
1296 chrisfen 2297 }
1297    
1298 chrisfen 2425 void SimInfo::setupSwitchingFunction() {
1299     int ft = CUBIC;
1300    
1301     if (simParams_->haveSwitchingFunctionType()) {
1302     std::string funcType = simParams_->getSwitchingFunctionType();
1303     toUpper(funcType);
1304     if (funcType == "CUBIC") {
1305     ft = CUBIC;
1306     } else {
1307     if (funcType == "FIFTH_ORDER_POLYNOMIAL") {
1308     ft = FIFTH_ORDER_POLY;
1309     } else {
1310     // throw error
1311     sprintf( painCave.errMsg,
1312     "SimInfo error: Unknown switchingFunctionType. (Input file specified %s .)\n\tswitchingFunctionType must be one of: \"cubic\" or \"fifth_order_polynomial\".", funcType.c_str() );
1313     painCave.isFatal = 1;
1314     simError();
1315     }
1316     }
1317     }
1318    
1319     // send switching function notification to switcheroo
1320     setFunctionType(&ft);
1321    
1322     }
1323    
1324 chrisfen 2917 void SimInfo::setupAccumulateBoxDipole() {
1325    
1326     // we only call setAccumulateBoxDipole if the accumulateBoxDipole parameter is true
1327     if ( simParams_->haveAccumulateBoxDipole() )
1328     if ( simParams_->getAccumulateBoxDipole() ) {
1329     setAccumulateBoxDipole();
1330     calcBoxDipole_ = true;
1331     }
1332    
1333     }
1334    
1335 gezelter 2204 void SimInfo::addProperty(GenericData* genData) {
1336 gezelter 1930 properties_.addProperty(genData);
1337 gezelter 2204 }
1338 gezelter 1490
1339 gezelter 2204 void SimInfo::removeProperty(const std::string& propName) {
1340 gezelter 1930 properties_.removeProperty(propName);
1341 gezelter 2204 }
1342 gezelter 1490
1343 gezelter 2204 void SimInfo::clearProperties() {
1344 gezelter 1930 properties_.clearProperties();
1345 gezelter 2204 }
1346 gezelter 1490
1347 gezelter 2204 std::vector<std::string> SimInfo::getPropertyNames() {
1348 gezelter 1930 return properties_.getPropertyNames();
1349 gezelter 2204 }
1350 gezelter 1930
1351 gezelter 2204 std::vector<GenericData*> SimInfo::getProperties() {
1352 gezelter 1930 return properties_.getProperties();
1353 gezelter 2204 }
1354 gezelter 1490
1355 gezelter 2204 GenericData* SimInfo::getPropertyByName(const std::string& propName) {
1356 gezelter 1930 return properties_.getPropertyByName(propName);
1357 gezelter 2204 }
1358 gezelter 1490
1359 gezelter 2204 void SimInfo::setSnapshotManager(SnapshotManager* sman) {
1360 tim 2116 if (sman_ == sman) {
1361 gezelter 2204 return;
1362 tim 2116 }
1363     delete sman_;
1364 gezelter 1930 sman_ = sman;
1365 gezelter 1490
1366 gezelter 1930 Molecule* mol;
1367     RigidBody* rb;
1368     Atom* atom;
1369     SimInfo::MoleculeIterator mi;
1370     Molecule::RigidBodyIterator rbIter;
1371     Molecule::AtomIterator atomIter;;
1372    
1373     for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
1374    
1375 gezelter 2204 for (atom = mol->beginAtom(atomIter); atom != NULL; atom = mol->nextAtom(atomIter)) {
1376     atom->setSnapshotManager(sman_);
1377     }
1378 gezelter 1930
1379 gezelter 2204 for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
1380     rb->setSnapshotManager(sman_);
1381     }
1382 gezelter 1930 }
1383 gezelter 1490
1384 gezelter 2204 }
1385 gezelter 1490
1386 gezelter 2204 Vector3d SimInfo::getComVel(){
1387 gezelter 1930 SimInfo::MoleculeIterator i;
1388     Molecule* mol;
1389 gezelter 1490
1390 gezelter 1930 Vector3d comVel(0.0);
1391 tim 2759 RealType totalMass = 0.0;
1392 gezelter 1490
1393 gezelter 1930
1394     for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1395 tim 2759 RealType mass = mol->getMass();
1396 gezelter 2204 totalMass += mass;
1397     comVel += mass * mol->getComVel();
1398 gezelter 1930 }
1399 gezelter 1490
1400 gezelter 1930 #ifdef IS_MPI
1401 tim 2759 RealType tmpMass = totalMass;
1402 gezelter 1930 Vector3d tmpComVel(comVel);
1403 tim 2759 MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1404     MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1405 gezelter 1930 #endif
1406    
1407     comVel /= totalMass;
1408    
1409     return comVel;
1410 gezelter 2204 }
1411 gezelter 1490
1412 gezelter 2204 Vector3d SimInfo::getCom(){
1413 gezelter 1930 SimInfo::MoleculeIterator i;
1414     Molecule* mol;
1415 gezelter 1490
1416 gezelter 1930 Vector3d com(0.0);
1417 tim 2759 RealType totalMass = 0.0;
1418 gezelter 1930
1419     for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1420 tim 2759 RealType mass = mol->getMass();
1421 gezelter 2204 totalMass += mass;
1422     com += mass * mol->getCom();
1423 gezelter 1930 }
1424 gezelter 1490
1425     #ifdef IS_MPI
1426 tim 2759 RealType tmpMass = totalMass;
1427 gezelter 1930 Vector3d tmpCom(com);
1428 tim 2759 MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1429     MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1430 gezelter 1490 #endif
1431    
1432 gezelter 1930 com /= totalMass;
1433 gezelter 1490
1434 gezelter 1930 return com;
1435 gezelter 1490
1436 gezelter 2204 }
1437 gezelter 1930
1438 gezelter 2204 std::ostream& operator <<(std::ostream& o, SimInfo& info) {
1439 gezelter 1930
1440     return o;
1441 gezelter 2204 }
1442 chuckv 2252
1443    
1444     /*
1445     Returns center of mass and center of mass velocity in one function call.
1446     */
1447    
1448     void SimInfo::getComAll(Vector3d &com, Vector3d &comVel){
1449     SimInfo::MoleculeIterator i;
1450     Molecule* mol;
1451    
1452    
1453 tim 2759 RealType totalMass = 0.0;
1454 chuckv 2252
1455 gezelter 1930
1456 chuckv 2252 for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1457 tim 2759 RealType mass = mol->getMass();
1458 chuckv 2252 totalMass += mass;
1459     com += mass * mol->getCom();
1460     comVel += mass * mol->getComVel();
1461     }
1462    
1463     #ifdef IS_MPI
1464 tim 2759 RealType tmpMass = totalMass;
1465 chuckv 2252 Vector3d tmpCom(com);
1466     Vector3d tmpComVel(comVel);
1467 tim 2759 MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1468     MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1469     MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1470 chuckv 2252 #endif
1471    
1472     com /= totalMass;
1473     comVel /= totalMass;
1474     }
1475    
1476     /*
1477     Return intertia tensor for entire system and angular momentum Vector.
1478 chuckv 2256
1479    
1480     [ Ixx -Ixy -Ixz ]
1481     J =| -Iyx Iyy -Iyz |
1482     [ -Izx -Iyz Izz ]
1483 chuckv 2252 */
1484    
1485     void SimInfo::getInertiaTensor(Mat3x3d &inertiaTensor, Vector3d &angularMomentum){
1486    
1487    
1488 tim 2759 RealType xx = 0.0;
1489     RealType yy = 0.0;
1490     RealType zz = 0.0;
1491     RealType xy = 0.0;
1492     RealType xz = 0.0;
1493     RealType yz = 0.0;
1494 chuckv 2252 Vector3d com(0.0);
1495     Vector3d comVel(0.0);
1496    
1497     getComAll(com, comVel);
1498    
1499     SimInfo::MoleculeIterator i;
1500     Molecule* mol;
1501    
1502     Vector3d thisq(0.0);
1503     Vector3d thisv(0.0);
1504    
1505 tim 2759 RealType thisMass = 0.0;
1506 chuckv 2252
1507    
1508    
1509    
1510     for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1511    
1512     thisq = mol->getCom()-com;
1513     thisv = mol->getComVel()-comVel;
1514     thisMass = mol->getMass();
1515     // Compute moment of intertia coefficients.
1516     xx += thisq[0]*thisq[0]*thisMass;
1517     yy += thisq[1]*thisq[1]*thisMass;
1518     zz += thisq[2]*thisq[2]*thisMass;
1519    
1520     // compute products of intertia
1521     xy += thisq[0]*thisq[1]*thisMass;
1522     xz += thisq[0]*thisq[2]*thisMass;
1523     yz += thisq[1]*thisq[2]*thisMass;
1524    
1525     angularMomentum += cross( thisq, thisv ) * thisMass;
1526    
1527     }
1528    
1529    
1530     inertiaTensor(0,0) = yy + zz;
1531     inertiaTensor(0,1) = -xy;
1532     inertiaTensor(0,2) = -xz;
1533     inertiaTensor(1,0) = -xy;
1534 chuckv 2256 inertiaTensor(1,1) = xx + zz;
1535 chuckv 2252 inertiaTensor(1,2) = -yz;
1536     inertiaTensor(2,0) = -xz;
1537     inertiaTensor(2,1) = -yz;
1538     inertiaTensor(2,2) = xx + yy;
1539    
1540     #ifdef IS_MPI
1541     Mat3x3d tmpI(inertiaTensor);
1542     Vector3d tmpAngMom;
1543 tim 2759 MPI_Allreduce(tmpI.getArrayPointer(), inertiaTensor.getArrayPointer(),9,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1544     MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1545 chuckv 2252 #endif
1546    
1547     return;
1548     }
1549    
1550     //Returns the angular momentum of the system
1551     Vector3d SimInfo::getAngularMomentum(){
1552    
1553     Vector3d com(0.0);
1554     Vector3d comVel(0.0);
1555     Vector3d angularMomentum(0.0);
1556    
1557     getComAll(com,comVel);
1558    
1559     SimInfo::MoleculeIterator i;
1560     Molecule* mol;
1561    
1562 chuckv 2256 Vector3d thisr(0.0);
1563     Vector3d thisp(0.0);
1564 chuckv 2252
1565 tim 2759 RealType thisMass;
1566 chuckv 2252
1567     for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1568 chuckv 2256 thisMass = mol->getMass();
1569     thisr = mol->getCom()-com;
1570     thisp = (mol->getComVel()-comVel)*thisMass;
1571 chuckv 2252
1572 chuckv 2256 angularMomentum += cross( thisr, thisp );
1573    
1574 chuckv 2252 }
1575    
1576     #ifdef IS_MPI
1577     Vector3d tmpAngMom;
1578 tim 2759 MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1579 chuckv 2252 #endif
1580    
1581     return angularMomentum;
1582     }
1583    
1584 tim 2982 StuntDouble* SimInfo::getIOIndexToIntegrableObject(int index) {
1585     return IOIndexToIntegrableObject.at(index);
1586     }
1587    
1588     void SimInfo::setIOIndexToIntegrableObject(const std::vector<StuntDouble*>& v) {
1589     IOIndexToIntegrableObject= v;
1590     }
1591    
1592 chuckv 3100 /* Returns the Volume of the simulation based on a ellipsoid with semi-axes
1593     based on the radius of gyration V=4/3*Pi*R_1*R_2*R_3
1594     where R_i are related to the principle inertia moments R_i = sqrt(C*I_i/N), this reduces to
1595     V = 4/3*Pi*(C/N)^3/2*sqrt(det(I)). See S.E. Baltazar et. al. Comp. Mat. Sci. 37 (2006) 526-536.
1596     */
1597     void SimInfo::getGyrationalVolume(RealType &volume){
1598     Mat3x3d intTensor;
1599     RealType det;
1600     Vector3d dummyAngMom;
1601     RealType sysconstants;
1602     RealType geomCnst;
1603    
1604     geomCnst = 3.0/2.0;
1605     /* Get the inertial tensor and angular momentum for free*/
1606     getInertiaTensor(intTensor,dummyAngMom);
1607    
1608     det = intTensor.determinant();
1609     sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_;
1610     volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,3.0/2.0)*sqrt(det);
1611     return;
1612     }
1613    
1614     void SimInfo::getGyrationalVolume(RealType &volume, RealType &detI){
1615     Mat3x3d intTensor;
1616     Vector3d dummyAngMom;
1617     RealType sysconstants;
1618     RealType geomCnst;
1619    
1620     geomCnst = 3.0/2.0;
1621     /* Get the inertial tensor and angular momentum for free*/
1622     getInertiaTensor(intTensor,dummyAngMom);
1623    
1624     detI = intTensor.determinant();
1625     sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_;
1626     volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,3.0/2.0)*sqrt(detI);
1627     return;
1628     }
1629 tim 2982 /*
1630     void SimInfo::setStuntDoubleFromGlobalIndex(std::vector<StuntDouble*> v) {
1631     assert( v.size() == nAtoms_ + nRigidBodies_);
1632     sdByGlobalIndex_ = v;
1633     }
1634    
1635     StuntDouble* SimInfo::getStuntDoubleFromGlobalIndex(int index) {
1636     //assert(index < nAtoms_ + nRigidBodies_);
1637     return sdByGlobalIndex_.at(index);
1638     }
1639     */
1640 gezelter 1930 }//end namespace oopse
1641