ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/OOPSE-4/src/UseTheForce/doForces.F90
Revision: 3470
Committed: Wed Oct 22 20:01:49 2008 UTC (16 years, 9 months ago) by gezelter
File size: 60266 byte(s)
Log Message:
General bug-fixes and other changes to make particle pots work with
the Helfand Energy correlation function

File Contents

# User Rev Content
1 gezelter 1930 !!
2     !! Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3     !!
4     !! The University of Notre Dame grants you ("Licensee") a
5     !! non-exclusive, royalty free, license to use, modify and
6     !! redistribute this software in source and binary code form, provided
7     !! that the following conditions are met:
8     !!
9     !! 1. Acknowledgement of the program authors must be made in any
10     !! publication of scientific results based in part on use of the
11     !! program. An acceptable form of acknowledgement is citation of
12     !! the article in which the program was described (Matthew
13 gezelter 3470 !! A. Meineke, Charles F. Vardeman I, Teng Lin, Christopher
14 gezelter 1930 !! J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15     !! Parallel Simulation Engine for Molecular Dynamics,"
16     !! J. Comput. Chem. 26, pp. 252-271 (2005))
17     !!
18     !! 2. Redistributions of source code must retain the above copyright
19     !! notice, this list of conditions and the following disclaimer.
20     !!
21     !! 3. Redistributions in binary form must reproduce the above copyright
22     !! notice, this list of conditions and the following disclaimer in the
23     !! documentation and/or other materials provided with the
24     !! distribution.
25     !!
26     !! This software is provided "AS IS," without a warranty of any
27     !! kind. All express or implied conditions, representations and
28     !! warranties, including any implied warranty of merchantability,
29     !! fitness for a particular purpose or non-infringement, are hereby
30     !! excluded. The University of Notre Dame and its licensors shall not
31     !! be liable for any damages suffered by licensee as a result of
32     !! using, modifying or distributing the software or its
33     !! derivatives. In no event will the University of Notre Dame or its
34     !! licensors be liable for any lost revenue, profit or data, or for
35     !! direct, indirect, special, consequential, incidental or punitive
36     !! damages, however caused and regardless of the theory of liability,
37     !! arising out of the use of or inability to use software, even if the
38     !! University of Notre Dame has been advised of the possibility of
39     !! such damages.
40     !!
41    
42 gezelter 1610 !! doForces.F90
43     !! module doForces
44     !! Calculates Long Range forces.
45    
46     !! @author Charles F. Vardeman II
47     !! @author Matthew Meineke
48 gezelter 3470 !! @version $Id: doForces.F90,v 1.98 2008-10-22 20:01:48 gezelter Exp $, $Date: 2008-10-22 20:01:48 $, $Name: not supported by cvs2svn $, $Revision: 1.98 $
49 gezelter 1610
50 gezelter 1930
51 gezelter 1610 module doForces
52     use force_globals
53 gezelter 3441 use fForceOptions
54 gezelter 1610 use simulation
55     use definitions
56     use atype_module
57     use switcheroo
58     use neighborLists
59     use lj
60 gezelter 1930 use sticky
61 gezelter 2085 use electrostatic_module
62 gezelter 2375 use gayberne
63 chrisfen 1636 use shapes
64 gezelter 1610 use vector_class
65     use eam
66 chuckv 3164 use MetalNonMetal
67 chuckv 2432 use suttonchen
68 gezelter 1610 use status
69     #ifdef IS_MPI
70     use mpiSimulation
71     #endif
72    
73     implicit none
74     PRIVATE
75    
76     #define __FORTRAN90
77 gezelter 2273 #include "UseTheForce/fCutoffPolicy.h"
78 gezelter 2259 #include "UseTheForce/DarkSide/fInteractionMap.h"
79 chrisfen 2310 #include "UseTheForce/DarkSide/fElectrostaticSummationMethod.h"
80 gezelter 1610
81     INTEGER, PARAMETER:: PREPAIR_LOOP = 1
82     INTEGER, PARAMETER:: PAIR_LOOP = 2
83    
84     logical, save :: haveNeighborList = .false.
85     logical, save :: haveSIMvariables = .false.
86     logical, save :: haveSaneForceField = .false.
87 gezelter 2270 logical, save :: haveInteractionHash = .false.
88     logical, save :: haveGtypeCutoffMap = .false.
89 chrisfen 2317 logical, save :: haveDefaultCutoffs = .false.
90 gezelter 2461 logical, save :: haveSkinThickness = .false.
91     logical, save :: haveElectrostaticSummationMethod = .false.
92     logical, save :: haveCutoffPolicy = .false.
93     logical, save :: VisitCutoffsAfterComputing = .false.
94 chrisfen 2917 logical, save :: do_box_dipole = .false.
95 chrisfen 2229
96 gezelter 1634 logical, save :: FF_uses_DirectionalAtoms
97 gezelter 2085 logical, save :: FF_uses_Dipoles
98 gezelter 1634 logical, save :: FF_uses_GayBerne
99     logical, save :: FF_uses_EAM
100 chuckv 2432 logical, save :: FF_uses_SC
101 chuckv 3164 logical, save :: FF_uses_MNM
102 chuckv 2432
103 gezelter 1634
104     logical, save :: SIM_uses_DirectionalAtoms
105     logical, save :: SIM_uses_EAM
106 chuckv 2432 logical, save :: SIM_uses_SC
107 chuckv 3164 logical, save :: SIM_uses_MNM
108 gezelter 1610 logical, save :: SIM_requires_postpair_calc
109     logical, save :: SIM_requires_prepair_calc
110     logical, save :: SIM_uses_PBC
111 gezelter 3126 logical, save :: SIM_uses_AtomicVirial
112 gezelter 1610
113 chrisfen 2306 integer, save :: electrostaticSummationMethod
114 gezelter 2461 integer, save :: cutoffPolicy = TRADITIONAL_CUTOFF_POLICY
115 chrisfen 2279
116 gezelter 2461 real(kind=dp), save :: defaultRcut, defaultRsw, largestRcut
117     real(kind=dp), save :: skinThickness
118 chrisfen 3129 logical, save :: defaultDoShiftPot
119     logical, save :: defaultDoShiftFrc
120 gezelter 2461
121 gezelter 1610 public :: init_FF
122 gezelter 2461 public :: setCutoffs
123     public :: cWasLame
124     public :: setElectrostaticMethod
125 chrisfen 2917 public :: setBoxDipole
126     public :: getBoxDipole
127 gezelter 2461 public :: setCutoffPolicy
128     public :: setSkinThickness
129 gezelter 1610 public :: do_force_loop
130    
131     #ifdef PROFILE
132     public :: getforcetime
133     real, save :: forceTime = 0
134     real :: forceTimeInitial, forceTimeFinal
135     integer :: nLoops
136     #endif
137 chuckv 2260
138 gezelter 2270 !! Variables for cutoff mapping and interaction mapping
139     ! Bit hash to determine pair-pair interactions.
140     integer, dimension(:,:), allocatable :: InteractionHash
141     real(kind=dp), dimension(:), allocatable :: atypeMaxCutoff
142 chuckv 2350 real(kind=dp), dimension(:), allocatable, target :: groupMaxCutoffRow
143     real(kind=dp), dimension(:), pointer :: groupMaxCutoffCol
144    
145     integer, dimension(:), allocatable, target :: groupToGtypeRow
146     integer, dimension(:), pointer :: groupToGtypeCol => null()
147    
148     real(kind=dp), dimension(:), allocatable,target :: gtypeMaxCutoffRow
149     real(kind=dp), dimension(:), pointer :: gtypeMaxCutoffCol
150 gezelter 2270 type ::gtypeCutoffs
151     real(kind=dp) :: rcut
152     real(kind=dp) :: rcutsq
153     real(kind=dp) :: rlistsq
154     end type gtypeCutoffs
155     type(gtypeCutoffs), dimension(:,:), allocatable :: gtypeCutoffMap
156 gezelter 2273
157 chrisfen 2917 real(kind=dp), dimension(3) :: boxDipole
158 gezelter 2722
159 gezelter 1610 contains
160    
161 gezelter 2461 subroutine createInteractionHash()
162 chuckv 2260 integer :: nAtypes
163     integer :: i
164     integer :: j
165 gezelter 2270 integer :: iHash
166 tim 2267 !! Test Types
167 chuckv 2260 logical :: i_is_LJ
168     logical :: i_is_Elect
169     logical :: i_is_Sticky
170     logical :: i_is_StickyP
171     logical :: i_is_GB
172     logical :: i_is_EAM
173     logical :: i_is_Shape
174 chuckv 2432 logical :: i_is_SC
175 chuckv 2260 logical :: j_is_LJ
176     logical :: j_is_Elect
177     logical :: j_is_Sticky
178     logical :: j_is_StickyP
179     logical :: j_is_GB
180     logical :: j_is_EAM
181     logical :: j_is_Shape
182 chuckv 2432 logical :: j_is_SC
183 gezelter 2275 real(kind=dp) :: myRcut
184    
185 chuckv 2260 if (.not. associated(atypes)) then
186 gezelter 2461 call handleError("doForces", "atypes was not present before call of createInteractionHash!")
187 chuckv 2260 return
188     endif
189    
190     nAtypes = getSize(atypes)
191    
192     if (nAtypes == 0) then
193 gezelter 2461 call handleError("doForces", "nAtypes was zero during call of createInteractionHash!")
194 chuckv 2260 return
195     end if
196 chrisfen 2229
197 chuckv 2269 if (.not. allocated(InteractionHash)) then
198     allocate(InteractionHash(nAtypes,nAtypes))
199 chuckv 2354 else
200     deallocate(InteractionHash)
201     allocate(InteractionHash(nAtypes,nAtypes))
202 chuckv 2260 endif
203 gezelter 2270
204     if (.not. allocated(atypeMaxCutoff)) then
205     allocate(atypeMaxCutoff(nAtypes))
206 chuckv 2354 else
207     deallocate(atypeMaxCutoff)
208     allocate(atypeMaxCutoff(nAtypes))
209 gezelter 2270 endif
210 chuckv 2260
211     do i = 1, nAtypes
212     call getElementProperty(atypes, i, "is_LennardJones", i_is_LJ)
213     call getElementProperty(atypes, i, "is_Electrostatic", i_is_Elect)
214     call getElementProperty(atypes, i, "is_Sticky", i_is_Sticky)
215     call getElementProperty(atypes, i, "is_StickyPower", i_is_StickyP)
216     call getElementProperty(atypes, i, "is_GayBerne", i_is_GB)
217     call getElementProperty(atypes, i, "is_EAM", i_is_EAM)
218     call getElementProperty(atypes, i, "is_Shape", i_is_Shape)
219 chuckv 2432 call getElementProperty(atypes, i, "is_SC", i_is_SC)
220 gezelter 1610
221 chuckv 2260 do j = i, nAtypes
222 chrisfen 2229
223 chuckv 2260 iHash = 0
224     myRcut = 0.0_dp
225 gezelter 1610
226 chuckv 2260 call getElementProperty(atypes, j, "is_LennardJones", j_is_LJ)
227     call getElementProperty(atypes, j, "is_Electrostatic", j_is_Elect)
228     call getElementProperty(atypes, j, "is_Sticky", j_is_Sticky)
229     call getElementProperty(atypes, j, "is_StickyPower", j_is_StickyP)
230     call getElementProperty(atypes, j, "is_GayBerne", j_is_GB)
231     call getElementProperty(atypes, j, "is_EAM", j_is_EAM)
232     call getElementProperty(atypes, j, "is_Shape", j_is_Shape)
233 chuckv 2432 call getElementProperty(atypes, j, "is_SC", j_is_SC)
234 gezelter 1610
235 chuckv 2260 if (i_is_LJ .and. j_is_LJ) then
236 gezelter 2261 iHash = ior(iHash, LJ_PAIR)
237     endif
238    
239     if (i_is_Elect .and. j_is_Elect) then
240     iHash = ior(iHash, ELECTROSTATIC_PAIR)
241     endif
242    
243     if (i_is_Sticky .and. j_is_Sticky) then
244     iHash = ior(iHash, STICKY_PAIR)
245     endif
246 chuckv 2260
247 gezelter 2261 if (i_is_StickyP .and. j_is_StickyP) then
248     iHash = ior(iHash, STICKYPOWER_PAIR)
249     endif
250 chuckv 2260
251 gezelter 2261 if (i_is_EAM .and. j_is_EAM) then
252     iHash = ior(iHash, EAM_PAIR)
253 chuckv 2260 endif
254    
255 chuckv 2432 if (i_is_SC .and. j_is_SC) then
256     iHash = ior(iHash, SC_PAIR)
257     endif
258    
259 chuckv 2260 if (i_is_GB .and. j_is_GB) iHash = ior(iHash, GAYBERNE_PAIR)
260     if (i_is_GB .and. j_is_LJ) iHash = ior(iHash, GAYBERNE_LJ)
261     if (i_is_LJ .and. j_is_GB) iHash = ior(iHash, GAYBERNE_LJ)
262 chuckv 3164
263     if ((i_is_EAM.or.i_is_SC).and.(.not.(j_is_EAM.or.j_is_SC))) iHash = ior(iHash, MNM_PAIR)
264     if ((j_is_EAM.or.j_is_SC).and.(.not.(i_is_EAM.or.i_is_SC))) iHash = ior(iHash, MNM_PAIR)
265 chuckv 2260
266     if (i_is_Shape .and. j_is_Shape) iHash = ior(iHash, SHAPE_PAIR)
267     if (i_is_Shape .and. j_is_LJ) iHash = ior(iHash, SHAPE_LJ)
268     if (i_is_LJ .and. j_is_Shape) iHash = ior(iHash, SHAPE_LJ)
269    
270    
271 chuckv 2269 InteractionHash(i,j) = iHash
272     InteractionHash(j,i) = iHash
273 chuckv 2260
274     end do
275    
276     end do
277 tim 2267
278 gezelter 2270 haveInteractionHash = .true.
279     end subroutine createInteractionHash
280 chuckv 2260
281 gezelter 2461 subroutine createGtypeCutoffMap()
282 gezelter 2268
283 gezelter 2273 logical :: i_is_LJ
284     logical :: i_is_Elect
285     logical :: i_is_Sticky
286     logical :: i_is_StickyP
287     logical :: i_is_GB
288     logical :: i_is_EAM
289     logical :: i_is_Shape
290 chuckv 2530 logical :: i_is_SC
291 gezelter 2286 logical :: GtypeFound
292 chuckv 2260
293 gezelter 2275 integer :: myStatus, nAtypes, i, j, istart, iend, jstart, jend
294 chuckv 2351 integer :: n_in_i, me_i, ia, g, atom1, ja, n_in_j,me_j
295 chuckv 2288 integer :: nGroupsInRow
296 chuckv 2350 integer :: nGroupsInCol
297     integer :: nGroupTypesRow,nGroupTypesCol
298 gezelter 2461 real(kind=dp):: thisSigma, bigSigma, thisRcut, tradRcut, tol
299 gezelter 2275 real(kind=dp) :: biggestAtypeCutoff
300 gezelter 2270
301     if (.not. haveInteractionHash) then
302 gezelter 2461 call createInteractionHash()
303 chuckv 2266 endif
304 chuckv 2288 #ifdef IS_MPI
305     nGroupsInRow = getNgroupsInRow(plan_group_row)
306 chuckv 2350 nGroupsInCol = getNgroupsInCol(plan_group_col)
307 chuckv 2288 #endif
308 chuckv 2262 nAtypes = getSize(atypes)
309 chuckv 2298 ! Set all of the initial cutoffs to zero.
310     atypeMaxCutoff = 0.0_dp
311 gezelter 3470 biggestAtypeCutoff = 0.0_dp
312 gezelter 2270 do i = 1, nAtypes
313 gezelter 2281 if (SimHasAtype(i)) then
314 gezelter 2274 call getElementProperty(atypes, i, "is_LennardJones", i_is_LJ)
315     call getElementProperty(atypes, i, "is_Electrostatic", i_is_Elect)
316     call getElementProperty(atypes, i, "is_Sticky", i_is_Sticky)
317     call getElementProperty(atypes, i, "is_StickyPower", i_is_StickyP)
318     call getElementProperty(atypes, i, "is_GayBerne", i_is_GB)
319     call getElementProperty(atypes, i, "is_EAM", i_is_EAM)
320     call getElementProperty(atypes, i, "is_Shape", i_is_Shape)
321 chuckv 2530 call getElementProperty(atypes, i, "is_SC", i_is_SC)
322 chuckv 2298
323 chrisfen 2317 if (haveDefaultCutoffs) then
324     atypeMaxCutoff(i) = defaultRcut
325     else
326     if (i_is_LJ) then
327     thisRcut = getSigma(i) * 2.5_dp
328     if (thisRCut .gt. atypeMaxCutoff(i)) atypeMaxCutoff(i) = thisRCut
329     endif
330     if (i_is_Elect) then
331     thisRcut = defaultRcut
332     if (thisRCut .gt. atypeMaxCutoff(i)) atypeMaxCutoff(i) = thisRCut
333     endif
334     if (i_is_Sticky) then
335     thisRcut = getStickyCut(i)
336     if (thisRCut .gt. atypeMaxCutoff(i)) atypeMaxCutoff(i) = thisRCut
337     endif
338     if (i_is_StickyP) then
339     thisRcut = getStickyPowerCut(i)
340     if (thisRCut .gt. atypeMaxCutoff(i)) atypeMaxCutoff(i) = thisRCut
341     endif
342     if (i_is_GB) then
343     thisRcut = getGayBerneCut(i)
344     if (thisRCut .gt. atypeMaxCutoff(i)) atypeMaxCutoff(i) = thisRCut
345     endif
346     if (i_is_EAM) then
347     thisRcut = getEAMCut(i)
348     if (thisRCut .gt. atypeMaxCutoff(i)) atypeMaxCutoff(i) = thisRCut
349     endif
350     if (i_is_Shape) then
351     thisRcut = getShapeCut(i)
352     if (thisRCut .gt. atypeMaxCutoff(i)) atypeMaxCutoff(i) = thisRCut
353     endif
354 chuckv 2530 if (i_is_SC) then
355     thisRcut = getSCCut(i)
356     if (thisRCut .gt. atypeMaxCutoff(i)) atypeMaxCutoff(i) = thisRCut
357     endif
358 gezelter 2274 endif
359 gezelter 2461
360 gezelter 2274 if (atypeMaxCutoff(i).gt.biggestAtypeCutoff) then
361     biggestAtypeCutoff = atypeMaxCutoff(i)
362     endif
363 chrisfen 2317
364 gezelter 2273 endif
365 gezelter 2274 enddo
366 gezelter 2280
367 gezelter 2274 istart = 1
368 chuckv 2350 jstart = 1
369 gezelter 2274 #ifdef IS_MPI
370     iend = nGroupsInRow
371 chuckv 2350 jend = nGroupsInCol
372 gezelter 2274 #else
373     iend = nGroups
374 chuckv 2350 jend = nGroups
375 gezelter 2274 #endif
376 gezelter 2281
377 gezelter 2280 !! allocate the groupToGtype and gtypeMaxCutoff here.
378 chuckv 2350 if(.not.allocated(groupToGtypeRow)) then
379     ! allocate(groupToGtype(iend))
380     allocate(groupToGtypeRow(iend))
381     else
382     deallocate(groupToGtypeRow)
383     allocate(groupToGtypeRow(iend))
384 chuckv 2282 endif
385 chuckv 2350 if(.not.allocated(groupMaxCutoffRow)) then
386     allocate(groupMaxCutoffRow(iend))
387     else
388     deallocate(groupMaxCutoffRow)
389     allocate(groupMaxCutoffRow(iend))
390     end if
391    
392     if(.not.allocated(gtypeMaxCutoffRow)) then
393     allocate(gtypeMaxCutoffRow(iend))
394     else
395     deallocate(gtypeMaxCutoffRow)
396     allocate(gtypeMaxCutoffRow(iend))
397     endif
398    
399    
400     #ifdef IS_MPI
401     ! We only allocate new storage if we are in MPI because Ncol /= Nrow
402 chuckv 2351 if(.not.associated(groupToGtypeCol)) then
403 chuckv 2350 allocate(groupToGtypeCol(jend))
404     else
405     deallocate(groupToGtypeCol)
406     allocate(groupToGtypeCol(jend))
407     end if
408    
409 tim 2532 if(.not.associated(groupMaxCutoffCol)) then
410     allocate(groupMaxCutoffCol(jend))
411 chuckv 2350 else
412 tim 2532 deallocate(groupMaxCutoffCol)
413     allocate(groupMaxCutoffCol(jend))
414 chuckv 2350 end if
415 chuckv 2351 if(.not.associated(gtypeMaxCutoffCol)) then
416 chuckv 2350 allocate(gtypeMaxCutoffCol(jend))
417     else
418     deallocate(gtypeMaxCutoffCol)
419     allocate(gtypeMaxCutoffCol(jend))
420     end if
421    
422     groupMaxCutoffCol = 0.0_dp
423     gtypeMaxCutoffCol = 0.0_dp
424    
425     #endif
426     groupMaxCutoffRow = 0.0_dp
427     gtypeMaxCutoffRow = 0.0_dp
428    
429    
430 gezelter 2281 !! first we do a single loop over the cutoff groups to find the
431     !! largest cutoff for any atypes present in this group. We also
432     !! create gtypes at this point.
433    
434 gezelter 2756 tol = 1.0e-6_dp
435 chuckv 2350 nGroupTypesRow = 0
436 tim 2532 nGroupTypesCol = 0
437 gezelter 2280 do i = istart, iend
438 gezelter 2274 n_in_i = groupStartRow(i+1) - groupStartRow(i)
439 chuckv 2350 groupMaxCutoffRow(i) = 0.0_dp
440 gezelter 2280 do ia = groupStartRow(i), groupStartRow(i+1)-1
441     atom1 = groupListRow(ia)
442 gezelter 2274 #ifdef IS_MPI
443 gezelter 2280 me_i = atid_row(atom1)
444 gezelter 2274 #else
445 gezelter 2280 me_i = atid(atom1)
446     #endif
447 chuckv 2350 if (atypeMaxCutoff(me_i).gt.groupMaxCutoffRow(i)) then
448     groupMaxCutoffRow(i)=atypeMaxCutoff(me_i)
449 gezelter 2286 endif
450 gezelter 2280 enddo
451 chuckv 2350 if (nGroupTypesRow.eq.0) then
452     nGroupTypesRow = nGroupTypesRow + 1
453     gtypeMaxCutoffRow(nGroupTypesRow) = groupMaxCutoffRow(i)
454     groupToGtypeRow(i) = nGroupTypesRow
455 gezelter 2280 else
456 gezelter 2286 GtypeFound = .false.
457 chuckv 2350 do g = 1, nGroupTypesRow
458     if ( abs(groupMaxCutoffRow(i) - gtypeMaxCutoffRow(g)).lt.tol) then
459     groupToGtypeRow(i) = g
460 gezelter 2286 GtypeFound = .true.
461 gezelter 2280 endif
462     enddo
463 gezelter 2286 if (.not.GtypeFound) then
464 chuckv 2350 nGroupTypesRow = nGroupTypesRow + 1
465     gtypeMaxCutoffRow(nGroupTypesRow) = groupMaxCutoffRow(i)
466     groupToGtypeRow(i) = nGroupTypesRow
467 gezelter 2286 endif
468 gezelter 2280 endif
469 gezelter 2286 enddo
470    
471 chuckv 2350 #ifdef IS_MPI
472     do j = jstart, jend
473     n_in_j = groupStartCol(j+1) - groupStartCol(j)
474     groupMaxCutoffCol(j) = 0.0_dp
475     do ja = groupStartCol(j), groupStartCol(j+1)-1
476     atom1 = groupListCol(ja)
477    
478     me_j = atid_col(atom1)
479    
480     if (atypeMaxCutoff(me_j).gt.groupMaxCutoffCol(j)) then
481     groupMaxCutoffCol(j)=atypeMaxCutoff(me_j)
482     endif
483     enddo
484    
485     if (nGroupTypesCol.eq.0) then
486     nGroupTypesCol = nGroupTypesCol + 1
487     gtypeMaxCutoffCol(nGroupTypesCol) = groupMaxCutoffCol(j)
488     groupToGtypeCol(j) = nGroupTypesCol
489     else
490     GtypeFound = .false.
491     do g = 1, nGroupTypesCol
492     if ( abs(groupMaxCutoffCol(j) - gtypeMaxCutoffCol(g)).lt.tol) then
493     groupToGtypeCol(j) = g
494     GtypeFound = .true.
495     endif
496     enddo
497     if (.not.GtypeFound) then
498     nGroupTypesCol = nGroupTypesCol + 1
499     gtypeMaxCutoffCol(nGroupTypesCol) = groupMaxCutoffCol(j)
500     groupToGtypeCol(j) = nGroupTypesCol
501     endif
502     endif
503     enddo
504    
505     #else
506     ! Set pointers to information we just found
507     nGroupTypesCol = nGroupTypesRow
508     groupToGtypeCol => groupToGtypeRow
509     gtypeMaxCutoffCol => gtypeMaxCutoffRow
510     groupMaxCutoffCol => groupMaxCutoffRow
511     #endif
512    
513 gezelter 2280 !! allocate the gtypeCutoffMap here.
514 chuckv 2350 allocate(gtypeCutoffMap(nGroupTypesRow,nGroupTypesCol))
515 gezelter 2280 !! then we do a double loop over all the group TYPES to find the cutoff
516     !! map between groups of two types
517 chuckv 2350 tradRcut = max(maxval(gtypeMaxCutoffRow),maxval(gtypeMaxCutoffCol))
518    
519 gezelter 2461 do i = 1, nGroupTypesRow
520 chuckv 2350 do j = 1, nGroupTypesCol
521 gezelter 2275
522 gezelter 2280 select case(cutoffPolicy)
523 gezelter 2281 case(TRADITIONAL_CUTOFF_POLICY)
524 chuckv 2350 thisRcut = tradRcut
525 gezelter 2281 case(MIX_CUTOFF_POLICY)
526 chuckv 2350 thisRcut = 0.5_dp * (gtypeMaxCutoffRow(i) + gtypeMaxCutoffCol(j))
527 gezelter 2281 case(MAX_CUTOFF_POLICY)
528 chuckv 2350 thisRcut = max(gtypeMaxCutoffRow(i), gtypeMaxCutoffCol(j))
529 gezelter 2281 case default
530     call handleError("createGtypeCutoffMap", "Unknown Cutoff Policy")
531     return
532     end select
533     gtypeCutoffMap(i,j)%rcut = thisRcut
534 gezelter 2461
535     if (thisRcut.gt.largestRcut) largestRcut = thisRcut
536    
537 gezelter 2281 gtypeCutoffMap(i,j)%rcutsq = thisRcut*thisRcut
538 gezelter 2284
539 gezelter 2461 if (.not.haveSkinThickness) then
540     skinThickness = 1.0_dp
541     endif
542    
543     gtypeCutoffMap(i,j)%rlistsq = (thisRcut + skinThickness)**2
544    
545 chrisfen 2317 ! sanity check
546    
547     if (haveDefaultCutoffs) then
548     if (abs(gtypeCutoffMap(i,j)%rcut - defaultRcut).gt.0.0001) then
549     call handleError("createGtypeCutoffMap", "user-specified rCut does not match computed group Cutoff")
550     endif
551     endif
552 gezelter 2280 enddo
553     enddo
554 gezelter 2461
555 chuckv 2350 if(allocated(gtypeMaxCutoffRow)) deallocate(gtypeMaxCutoffRow)
556     if(allocated(groupMaxCutoffRow)) deallocate(groupMaxCutoffRow)
557     if(allocated(atypeMaxCutoff)) deallocate(atypeMaxCutoff)
558     #ifdef IS_MPI
559     if(associated(groupMaxCutoffCol)) deallocate(groupMaxCutoffCol)
560     if(associated(gtypeMaxCutoffCol)) deallocate(gtypeMaxCutoffCol)
561     #endif
562     groupMaxCutoffCol => null()
563     gtypeMaxCutoffCol => null()
564    
565 gezelter 2280 haveGtypeCutoffMap = .true.
566 chrisfen 2295 end subroutine createGtypeCutoffMap
567 chrisfen 2277
568 chrisfen 3129 subroutine setCutoffs(defRcut, defRsw, defSP, defSF)
569 chrisfen 2295
570 gezelter 2461 real(kind=dp),intent(in) :: defRcut, defRsw
571 chrisfen 3129 logical, intent(in) :: defSP, defSF
572 gezelter 2461 character(len = statusMsgSize) :: errMsg
573     integer :: localError
574    
575 chrisfen 2295 defaultRcut = defRcut
576     defaultRsw = defRsw
577 gezelter 2461
578 chrisfen 3129 defaultDoShiftPot = defSP
579     defaultDoShiftFrc = defSF
580    
581 gezelter 2461 if (abs(defaultRcut-defaultRsw) .lt. 0.0001) then
582 chrisfen 3129 if (defaultDoShiftFrc) then
583     write(errMsg, *) &
584     'cutoffRadius and switchingRadius are set to the', newline &
585     // tab, 'same value. OOPSE will use shifted force', newline &
586     // tab, 'potentials instead of switching functions.'
587    
588     call handleInfo("setCutoffs", errMsg)
589     else
590     write(errMsg, *) &
591     'cutoffRadius and switchingRadius are set to the', newline &
592     // tab, 'same value. OOPSE will use shifted', newline &
593     // tab, 'potentials instead of switching functions.'
594    
595     call handleInfo("setCutoffs", errMsg)
596    
597     defaultDoShiftPot = .true.
598     endif
599    
600 gezelter 2461 endif
601 gezelter 2722
602 gezelter 2461 localError = 0
603 chrisfen 3129 call setLJDefaultCutoff( defaultRcut, defaultDoShiftPot, &
604     defaultDoShiftFrc )
605 gezelter 2512 call setElectrostaticCutoffRadius( defaultRcut, defaultRsw )
606 gezelter 2717 call setCutoffEAM( defaultRcut )
607     call setCutoffSC( defaultRcut )
608 chuckv 3164 call setMnMDefaultCutoff( defaultRcut, defaultDoShiftPot, &
609     defaultDoShiftFrc )
610 gezelter 2722 call set_switch(defaultRsw, defaultRcut)
611 gezelter 2592 call setHmatDangerousRcutValue(defaultRcut)
612 gezelter 2722
613 chrisfen 2317 haveDefaultCutoffs = .true.
614 gezelter 2512 haveGtypeCutoffMap = .false.
615 gezelter 2722
616 gezelter 2461 end subroutine setCutoffs
617 chrisfen 2295
618 gezelter 2461 subroutine cWasLame()
619    
620     VisitCutoffsAfterComputing = .true.
621     return
622    
623     end subroutine cWasLame
624    
625 chrisfen 2295 subroutine setCutoffPolicy(cutPolicy)
626 gezelter 2461
627 chrisfen 2295 integer, intent(in) :: cutPolicy
628 gezelter 2461
629 chrisfen 2295 cutoffPolicy = cutPolicy
630 gezelter 2461 haveCutoffPolicy = .true.
631 gezelter 2512 haveGtypeCutoffMap = .false.
632 gezelter 2461
633 gezelter 2275 end subroutine setCutoffPolicy
634 gezelter 3126
635 chrisfen 2917 subroutine setBoxDipole()
636    
637     do_box_dipole = .true.
638    
639     end subroutine setBoxDipole
640    
641     subroutine getBoxDipole( box_dipole )
642    
643     real(kind=dp), intent(inout), dimension(3) :: box_dipole
644    
645     box_dipole = boxDipole
646    
647     end subroutine getBoxDipole
648    
649 gezelter 2461 subroutine setElectrostaticMethod( thisESM )
650    
651     integer, intent(in) :: thisESM
652    
653     electrostaticSummationMethod = thisESM
654     haveElectrostaticSummationMethod = .true.
655 gezelter 2273
656 gezelter 2461 end subroutine setElectrostaticMethod
657    
658     subroutine setSkinThickness( thisSkin )
659 gezelter 2273
660 gezelter 2461 real(kind=dp), intent(in) :: thisSkin
661    
662     skinThickness = thisSkin
663 gezelter 2512 haveSkinThickness = .true.
664     haveGtypeCutoffMap = .false.
665 gezelter 2461
666     end subroutine setSkinThickness
667    
668     subroutine setSimVariables()
669     SIM_uses_DirectionalAtoms = SimUsesDirectionalAtoms()
670     SIM_uses_EAM = SimUsesEAM()
671     SIM_requires_postpair_calc = SimRequiresPostpairCalc()
672     SIM_requires_prepair_calc = SimRequiresPrepairCalc()
673     SIM_uses_PBC = SimUsesPBC()
674 chuckv 2540 SIM_uses_SC = SimUsesSC()
675 gezelter 3126 SIM_uses_AtomicVirial = SimUsesAtomicVirial()
676 chrisfen 2917
677 gezelter 2461 haveSIMvariables = .true.
678    
679     return
680     end subroutine setSimVariables
681 gezelter 1610
682     subroutine doReadyCheck(error)
683     integer, intent(out) :: error
684     integer :: myStatus
685    
686     error = 0
687 chrisfen 2229
688 gezelter 2270 if (.not. haveInteractionHash) then
689 gezelter 2461 call createInteractionHash()
690 gezelter 1610 endif
691    
692 gezelter 2270 if (.not. haveGtypeCutoffMap) then
693 gezelter 2461 call createGtypeCutoffMap()
694 gezelter 2270 endif
695    
696 gezelter 2461 if (VisitCutoffsAfterComputing) then
697 gezelter 2722 call set_switch(largestRcut, largestRcut)
698 gezelter 2592 call setHmatDangerousRcutValue(largestRcut)
699 gezelter 2717 call setCutoffEAM(largestRcut)
700     call setCutoffSC(largestRcut)
701     VisitCutoffsAfterComputing = .false.
702 gezelter 2461 endif
703    
704 gezelter 1610 if (.not. haveSIMvariables) then
705     call setSimVariables()
706     endif
707    
708     if (.not. haveNeighborList) then
709     write(default_error, *) 'neighbor list has not been initialized in doForces!'
710     error = -1
711     return
712     end if
713 gezelter 2722
714 gezelter 1610 if (.not. haveSaneForceField) then
715     write(default_error, *) 'Force Field is not sane in doForces!'
716     error = -1
717     return
718     end if
719 gezelter 2722
720 gezelter 1610 #ifdef IS_MPI
721     if (.not. isMPISimSet()) then
722     write(default_error,*) "ERROR: mpiSimulation has not been initialized!"
723     error = -1
724     return
725     endif
726     #endif
727     return
728     end subroutine doReadyCheck
729    
730 chrisfen 2229
731 gezelter 2461 subroutine init_FF(thisStat)
732 gezelter 1610
733     integer, intent(out) :: thisStat
734     integer :: my_status, nMatches
735     integer, pointer :: MatchList(:) => null()
736    
737     !! assume things are copacetic, unless they aren't
738     thisStat = 0
739    
740     !! init_FF is called *after* all of the atom types have been
741     !! defined in atype_module using the new_atype subroutine.
742     !!
743     !! this will scan through the known atypes and figure out what
744     !! interactions are used by the force field.
745 chrisfen 2229
746 gezelter 1634 FF_uses_DirectionalAtoms = .false.
747     FF_uses_Dipoles = .false.
748     FF_uses_GayBerne = .false.
749 gezelter 1610 FF_uses_EAM = .false.
750 chuckv 2533 FF_uses_SC = .false.
751 chrisfen 2229
752 gezelter 1634 call getMatchingElementList(atypes, "is_Directional", .true., &
753     nMatches, MatchList)
754     if (nMatches .gt. 0) FF_uses_DirectionalAtoms = .true.
755    
756     call getMatchingElementList(atypes, "is_Dipole", .true., &
757     nMatches, MatchList)
758 gezelter 2270 if (nMatches .gt. 0) FF_uses_Dipoles = .true.
759 chrisfen 2220
760 gezelter 1634 call getMatchingElementList(atypes, "is_GayBerne", .true., &
761     nMatches, MatchList)
762 gezelter 2270 if (nMatches .gt. 0) FF_uses_GayBerne = .true.
763 chrisfen 2229
764 gezelter 1610 call getMatchingElementList(atypes, "is_EAM", .true., nMatches, MatchList)
765     if (nMatches .gt. 0) FF_uses_EAM = .true.
766 chrisfen 2229
767 chuckv 2533 call getMatchingElementList(atypes, "is_SC", .true., nMatches, MatchList)
768     if (nMatches .gt. 0) FF_uses_SC = .true.
769 gezelter 1634
770 chuckv 2533
771 gezelter 1610 haveSaneForceField = .true.
772 chrisfen 2229
773 gezelter 1610 if (FF_uses_EAM) then
774 chrisfen 2229 call init_EAM_FF(my_status)
775 gezelter 1610 if (my_status /= 0) then
776     write(default_error, *) "init_EAM_FF returned a bad status"
777     thisStat = -1
778     haveSaneForceField = .false.
779     return
780     end if
781     endif
782    
783     if (.not. haveNeighborList) then
784     !! Create neighbor lists
785     call expandNeighborList(nLocal, my_status)
786     if (my_Status /= 0) then
787     write(default_error,*) "SimSetup: ExpandNeighborList returned error."
788     thisStat = -1
789     return
790     endif
791     haveNeighborList = .true.
792 chrisfen 2229 endif
793    
794 gezelter 1610 end subroutine init_FF
795    
796 chrisfen 2229
797 gezelter 1610 !! Does force loop over i,j pairs. Calls do_pair to calculates forces.
798     !------------------------------------------------------------->
799 gezelter 3440 subroutine do_force_loop(q, q_group, A, eFrame, f, t, tau, pot, particle_pot, &
800 gezelter 1610 do_pot_c, do_stress_c, error)
801     !! Position array provided by C, dimensioned by getNlocal
802     real ( kind = dp ), dimension(3, nLocal) :: q
803     !! molecular center-of-mass position array
804     real ( kind = dp ), dimension(3, nGroups) :: q_group
805     !! Rotation Matrix for each long range particle in simulation.
806     real( kind = dp), dimension(9, nLocal) :: A
807     !! Unit vectors for dipoles (lab frame)
808 gezelter 1930 real( kind = dp ), dimension(9,nLocal) :: eFrame
809 gezelter 1610 !! Force array provided by C, dimensioned by getNlocal
810     real ( kind = dp ), dimension(3,nLocal) :: f
811     !! Torsion array provided by C, dimensioned by getNlocal
812     real( kind = dp ), dimension(3,nLocal) :: t
813    
814     !! Stress Tensor
815     real( kind = dp), dimension(9) :: tau
816 gezelter 2361 real ( kind = dp ),dimension(LR_POT_TYPES) :: pot
817 chuckv 3397 real( kind = dp ), dimension(nLocal) :: particle_pot
818 gezelter 1610 logical ( kind = 2) :: do_pot_c, do_stress_c
819     logical :: do_pot
820     logical :: do_stress
821     logical :: in_switching_region
822     #ifdef IS_MPI
823 gezelter 2361 real( kind = DP ), dimension(LR_POT_TYPES) :: pot_local
824 gezelter 1610 integer :: nAtomsInRow
825     integer :: nAtomsInCol
826     integer :: nprocs
827     integer :: nGroupsInRow
828     integer :: nGroupsInCol
829     #endif
830     integer :: natoms
831     logical :: update_nlist
832     integer :: i, j, jstart, jend, jnab
833     integer :: istart, iend
834     integer :: ia, jb, atom1, atom2
835     integer :: nlist
836 gezelter 3126 real( kind = DP ) :: ratmsq, rgrpsq, rgrp, rag, vpair, vij
837 gezelter 1610 real( kind = DP ) :: sw, dswdr, swderiv, mf
838 chrisfen 2398 real( kind = DP ) :: rVal
839 gezelter 3126 real(kind=dp),dimension(3) :: d_atm, d_grp, fpair, fij, fg, dag
840     real(kind=dp) :: rfpot, mu_i
841 gezelter 2461 real(kind=dp):: rCut
842 gezelter 1610 integer :: me_i, me_j, n_in_i, n_in_j
843     logical :: is_dp_i
844     integer :: neighborListSize
845     integer :: listerror, error
846     integer :: localError
847     integer :: propPack_i, propPack_j
848     integer :: loopStart, loopEnd, loop
849 gezelter 2270 integer :: iHash
850 gezelter 3441 integer :: i1, topoDist
851 chrisfen 2229
852 chrisfen 2917 !! the variables for the box dipole moment
853     #ifdef IS_MPI
854     integer :: pChgCount_local
855     integer :: nChgCount_local
856     real(kind=dp) :: pChg_local
857     real(kind=dp) :: nChg_local
858     real(kind=dp), dimension(3) :: pChgPos_local
859     real(kind=dp), dimension(3) :: nChgPos_local
860     real(kind=dp), dimension(3) :: dipVec_local
861     #endif
862     integer :: pChgCount
863     integer :: nChgCount
864     real(kind=dp) :: pChg
865     real(kind=dp) :: nChg
866     real(kind=dp) :: chg_value
867     real(kind=dp), dimension(3) :: pChgPos
868     real(kind=dp), dimension(3) :: nChgPos
869     real(kind=dp), dimension(3) :: dipVec
870     real(kind=dp), dimension(3) :: chgVec
871    
872     !! initialize box dipole variables
873     if (do_box_dipole) then
874     #ifdef IS_MPI
875     pChg_local = 0.0_dp
876     nChg_local = 0.0_dp
877     pChgCount_local = 0
878     nChgCount_local = 0
879     do i=1, 3
880     pChgPos_local = 0.0_dp
881     nChgPos_local = 0.0_dp
882     dipVec_local = 0.0_dp
883     enddo
884     #endif
885     pChg = 0.0_dp
886     nChg = 0.0_dp
887     pChgCount = 0
888     nChgCount = 0
889     chg_value = 0.0_dp
890    
891     do i=1, 3
892     pChgPos(i) = 0.0_dp
893     nChgPos(i) = 0.0_dp
894     dipVec(i) = 0.0_dp
895     chgVec(i) = 0.0_dp
896     boxDipole(i) = 0.0_dp
897     enddo
898     endif
899    
900 gezelter 1610 !! initialize local variables
901 chrisfen 2229
902 gezelter 1610 #ifdef IS_MPI
903     pot_local = 0.0_dp
904     nAtomsInRow = getNatomsInRow(plan_atom_row)
905     nAtomsInCol = getNatomsInCol(plan_atom_col)
906     nGroupsInRow = getNgroupsInRow(plan_group_row)
907     nGroupsInCol = getNgroupsInCol(plan_group_col)
908     #else
909     natoms = nlocal
910     #endif
911 chrisfen 2229
912 gezelter 1610 call doReadyCheck(localError)
913     if ( localError .ne. 0 ) then
914     call handleError("do_force_loop", "Not Initialized")
915     error = -1
916     return
917     end if
918     call zero_work_arrays()
919 chrisfen 2229
920 gezelter 1610 do_pot = do_pot_c
921     do_stress = do_stress_c
922 chrisfen 2229
923 gezelter 1610 ! Gather all information needed by all force loops:
924 chrisfen 2229
925 gezelter 1610 #ifdef IS_MPI
926 chrisfen 2229
927 gezelter 1610 call gather(q, q_Row, plan_atom_row_3d)
928     call gather(q, q_Col, plan_atom_col_3d)
929    
930     call gather(q_group, q_group_Row, plan_group_row_3d)
931     call gather(q_group, q_group_Col, plan_group_col_3d)
932 chrisfen 2229
933 gezelter 1634 if (FF_UsesDirectionalAtoms() .and. SIM_uses_DirectionalAtoms) then
934 gezelter 1930 call gather(eFrame, eFrame_Row, plan_atom_row_rotation)
935     call gather(eFrame, eFrame_Col, plan_atom_col_rotation)
936 chrisfen 2229
937 gezelter 1610 call gather(A, A_Row, plan_atom_row_rotation)
938     call gather(A, A_Col, plan_atom_col_rotation)
939     endif
940 chrisfen 2229
941 gezelter 1610 #endif
942 chrisfen 2229
943 gezelter 1610 !! Begin force loop timing:
944     #ifdef PROFILE
945     call cpu_time(forceTimeInitial)
946     nloops = nloops + 1
947     #endif
948 chrisfen 2229
949 gezelter 1610 loopEnd = PAIR_LOOP
950     if (FF_RequiresPrepairCalc() .and. SIM_requires_prepair_calc) then
951     loopStart = PREPAIR_LOOP
952     else
953     loopStart = PAIR_LOOP
954     endif
955    
956     do loop = loopStart, loopEnd
957    
958     ! See if we need to update neighbor lists
959     ! (but only on the first time through):
960     if (loop .eq. loopStart) then
961     #ifdef IS_MPI
962 gezelter 2461 call checkNeighborList(nGroupsInRow, q_group_row, skinThickness, &
963 chrisfen 2229 update_nlist)
964 gezelter 1610 #else
965 gezelter 2461 call checkNeighborList(nGroups, q_group, skinThickness, &
966 chrisfen 2229 update_nlist)
967 gezelter 1610 #endif
968     endif
969 chrisfen 2229
970 gezelter 1610 if (update_nlist) then
971     !! save current configuration and construct neighbor list
972     #ifdef IS_MPI
973     call saveNeighborList(nGroupsInRow, q_group_row)
974     #else
975     call saveNeighborList(nGroups, q_group)
976     #endif
977     neighborListSize = size(list)
978     nlist = 0
979     endif
980 chrisfen 2229
981 gezelter 1610 istart = 1
982     #ifdef IS_MPI
983     iend = nGroupsInRow
984     #else
985     iend = nGroups - 1
986     #endif
987     outer: do i = istart, iend
988    
989     if (update_nlist) point(i) = nlist + 1
990 chrisfen 2229
991 gezelter 1610 n_in_i = groupStartRow(i+1) - groupStartRow(i)
992 chrisfen 2229
993 gezelter 1610 if (update_nlist) then
994     #ifdef IS_MPI
995     jstart = 1
996     jend = nGroupsInCol
997     #else
998     jstart = i+1
999     jend = nGroups
1000     #endif
1001     else
1002     jstart = point(i)
1003     jend = point(i+1) - 1
1004     ! make sure group i has neighbors
1005     if (jstart .gt. jend) cycle outer
1006     endif
1007 chrisfen 2229
1008 gezelter 1610 do jnab = jstart, jend
1009     if (update_nlist) then
1010     j = jnab
1011     else
1012     j = list(jnab)
1013     endif
1014    
1015     #ifdef IS_MPI
1016 chuckv 2266 me_j = atid_col(j)
1017 gezelter 1610 call get_interatomic_vector(q_group_Row(:,i), &
1018     q_group_Col(:,j), d_grp, rgrpsq)
1019     #else
1020 chuckv 2266 me_j = atid(j)
1021 gezelter 1610 call get_interatomic_vector(q_group(:,i), &
1022     q_group(:,j), d_grp, rgrpsq)
1023 chrisfen 2317 #endif
1024 gezelter 1610
1025 chuckv 2350 if (rgrpsq < gtypeCutoffMap(groupToGtypeRow(i),groupToGtypeCol(j))%rListsq) then
1026 gezelter 1610 if (update_nlist) then
1027     nlist = nlist + 1
1028 chrisfen 2229
1029 gezelter 1610 if (nlist > neighborListSize) then
1030     #ifdef IS_MPI
1031     call expandNeighborList(nGroupsInRow, listerror)
1032     #else
1033     call expandNeighborList(nGroups, listerror)
1034     #endif
1035     if (listerror /= 0) then
1036     error = -1
1037     write(DEFAULT_ERROR,*) "ERROR: nlist > list size and max allocations exceeded."
1038     return
1039     end if
1040     neighborListSize = size(list)
1041     endif
1042 chrisfen 2229
1043 gezelter 1610 list(nlist) = j
1044     endif
1045 gezelter 2722
1046 chrisfen 2407 if (rgrpsq < gtypeCutoffMap(groupToGtypeRow(i),groupToGtypeCol(j))%rCutsq) then
1047 chrisfen 2229
1048 gezelter 2461 rCut = gtypeCutoffMap(groupToGtypeRow(i),groupToGtypeCol(j))%rCut
1049 chrisfen 2407 if (loop .eq. PAIR_LOOP) then
1050 gezelter 2756 vij = 0.0_dp
1051 gezelter 2717 fij(1) = 0.0_dp
1052     fij(2) = 0.0_dp
1053     fij(3) = 0.0_dp
1054 chrisfen 2407 endif
1055    
1056 gezelter 2722 call get_switch(rgrpsq, sw, dswdr,rgrp, in_switching_region)
1057 chrisfen 2407
1058     n_in_j = groupStartCol(j+1) - groupStartCol(j)
1059    
1060     do ia = groupStartRow(i), groupStartRow(i+1)-1
1061 chrisfen 2402
1062 chrisfen 2407 atom1 = groupListRow(ia)
1063    
1064     inner: do jb = groupStartCol(j), groupStartCol(j+1)-1
1065    
1066     atom2 = groupListCol(jb)
1067    
1068     if (skipThisPair(atom1, atom2)) cycle inner
1069    
1070     if ((n_in_i .eq. 1).and.(n_in_j .eq. 1)) then
1071 gezelter 2717 d_atm(1) = d_grp(1)
1072     d_atm(2) = d_grp(2)
1073     d_atm(3) = d_grp(3)
1074 chrisfen 2407 ratmsq = rgrpsq
1075     else
1076 gezelter 1610 #ifdef IS_MPI
1077 chrisfen 2407 call get_interatomic_vector(q_Row(:,atom1), &
1078     q_Col(:,atom2), d_atm, ratmsq)
1079 gezelter 1610 #else
1080 chrisfen 2407 call get_interatomic_vector(q(:,atom1), &
1081     q(:,atom2), d_atm, ratmsq)
1082 gezelter 1610 #endif
1083 gezelter 3441 endif
1084    
1085     topoDist = getTopoDistance(atom1, atom2)
1086    
1087 chrisfen 2407 if (loop .eq. PREPAIR_LOOP) then
1088 gezelter 1610 #ifdef IS_MPI
1089 chrisfen 2407 call do_prepair(atom1, atom2, ratmsq, d_atm, sw, &
1090 gezelter 2461 rgrpsq, d_grp, rCut, do_pot, do_stress, &
1091 chrisfen 2407 eFrame, A, f, t, pot_local)
1092 gezelter 1610 #else
1093 chrisfen 2407 call do_prepair(atom1, atom2, ratmsq, d_atm, sw, &
1094 gezelter 2461 rgrpsq, d_grp, rCut, do_pot, do_stress, &
1095 chrisfen 2407 eFrame, A, f, t, pot)
1096 gezelter 1610 #endif
1097 chrisfen 2407 else
1098 gezelter 1610 #ifdef IS_MPI
1099 chrisfen 2407 call do_pair(atom1, atom2, ratmsq, d_atm, sw, &
1100 gezelter 3466 do_pot, eFrame, A, f, t, pot_local, particle_pot, vpair, &
1101 gezelter 3441 fpair, d_grp, rgrp, rCut, topoDist)
1102 chuckv 3397 ! particle_pot will be accumulated from row & column
1103     ! arrays later
1104 gezelter 1610 #else
1105 chrisfen 2407 call do_pair(atom1, atom2, ratmsq, d_atm, sw, &
1106 gezelter 3466 do_pot, eFrame, A, f, t, pot, particle_pot, vpair, &
1107 gezelter 3441 fpair, d_grp, rgrp, rCut, topoDist)
1108 gezelter 1610 #endif
1109 chrisfen 2407 vij = vij + vpair
1110 gezelter 2717 fij(1) = fij(1) + fpair(1)
1111     fij(2) = fij(2) + fpair(2)
1112     fij(3) = fij(3) + fpair(3)
1113 gezelter 3127 if (do_stress) then
1114 gezelter 3126 call add_stress_tensor(d_atm, fpair, tau)
1115     endif
1116 chrisfen 2407 endif
1117     enddo inner
1118     enddo
1119 gezelter 1610
1120 chrisfen 2407 if (loop .eq. PAIR_LOOP) then
1121     if (in_switching_region) then
1122     swderiv = vij*dswdr/rgrp
1123 chrisfen 3131 fg = swderiv*d_grp
1124    
1125     fij(1) = fij(1) + fg(1)
1126     fij(2) = fij(2) + fg(2)
1127     fij(3) = fij(3) + fg(3)
1128 chrisfen 2407
1129 chrisfen 3132 if (do_stress .and. (n_in_i .eq. 1).and.(n_in_j .eq. 1)) then
1130 chrisfen 3131 call add_stress_tensor(d_atm, fg, tau)
1131     endif
1132    
1133 chrisfen 2407 do ia=groupStartRow(i), groupStartRow(i+1)-1
1134     atom1=groupListRow(ia)
1135     mf = mfactRow(atom1)
1136 gezelter 3126 ! fg is the force on atom ia due to cutoff group's
1137     ! presence in switching region
1138     fg = swderiv*d_grp*mf
1139 gezelter 1610 #ifdef IS_MPI
1140 gezelter 3126 f_Row(1,atom1) = f_Row(1,atom1) + fg(1)
1141     f_Row(2,atom1) = f_Row(2,atom1) + fg(2)
1142     f_Row(3,atom1) = f_Row(3,atom1) + fg(3)
1143 gezelter 1610 #else
1144 gezelter 3126 f(1,atom1) = f(1,atom1) + fg(1)
1145     f(2,atom1) = f(2,atom1) + fg(2)
1146     f(3,atom1) = f(3,atom1) + fg(3)
1147 gezelter 1610 #endif
1148 gezelter 3127 if (n_in_i .gt. 1) then
1149     if (do_stress.and.SIM_uses_AtomicVirial) then
1150     ! find the distance between the atom and the center of
1151     ! the cutoff group:
1152 gezelter 3126 #ifdef IS_MPI
1153 gezelter 3127 call get_interatomic_vector(q_Row(:,atom1), &
1154     q_group_Row(:,i), dag, rag)
1155 gezelter 3126 #else
1156 gezelter 3127 call get_interatomic_vector(q(:,atom1), &
1157     q_group(:,i), dag, rag)
1158 gezelter 3126 #endif
1159 gezelter 3127 call add_stress_tensor(dag,fg,tau)
1160     endif
1161 gezelter 3126 endif
1162 chrisfen 2407 enddo
1163    
1164     do jb=groupStartCol(j), groupStartCol(j+1)-1
1165     atom2=groupListCol(jb)
1166     mf = mfactCol(atom2)
1167 gezelter 3126 ! fg is the force on atom jb due to cutoff group's
1168     ! presence in switching region
1169     fg = -swderiv*d_grp*mf
1170 gezelter 1610 #ifdef IS_MPI
1171 gezelter 3126 f_Col(1,atom2) = f_Col(1,atom2) + fg(1)
1172     f_Col(2,atom2) = f_Col(2,atom2) + fg(2)
1173     f_Col(3,atom2) = f_Col(3,atom2) + fg(3)
1174 gezelter 1610 #else
1175 gezelter 3126 f(1,atom2) = f(1,atom2) + fg(1)
1176     f(2,atom2) = f(2,atom2) + fg(2)
1177     f(3,atom2) = f(3,atom2) + fg(3)
1178 gezelter 1610 #endif
1179 gezelter 3127 if (n_in_j .gt. 1) then
1180     if (do_stress.and.SIM_uses_AtomicVirial) then
1181     ! find the distance between the atom and the center of
1182     ! the cutoff group:
1183 gezelter 3126 #ifdef IS_MPI
1184 gezelter 3127 call get_interatomic_vector(q_Col(:,atom2), &
1185     q_group_Col(:,j), dag, rag)
1186 gezelter 3126 #else
1187 gezelter 3127 call get_interatomic_vector(q(:,atom2), &
1188     q_group(:,j), dag, rag)
1189 gezelter 3126 #endif
1190 gezelter 3127 call add_stress_tensor(dag,fg,tau)
1191     endif
1192     endif
1193 chrisfen 2407 enddo
1194     endif
1195 gezelter 3177 !if (do_stress.and.(.not.SIM_uses_AtomicVirial)) then
1196     ! call add_stress_tensor(d_grp, fij, tau)
1197     !endif
1198 gezelter 1610 endif
1199     endif
1200 chrisfen 2407 endif
1201 gezelter 1610 enddo
1202 chrisfen 2407
1203 gezelter 1610 enddo outer
1204 chrisfen 2229
1205 gezelter 1610 if (update_nlist) then
1206     #ifdef IS_MPI
1207     point(nGroupsInRow + 1) = nlist + 1
1208     #else
1209     point(nGroups) = nlist + 1
1210     #endif
1211     if (loop .eq. PREPAIR_LOOP) then
1212     ! we just did the neighbor list update on the first
1213     ! pass, so we don't need to do it
1214     ! again on the second pass
1215     update_nlist = .false.
1216     endif
1217     endif
1218 chrisfen 2229
1219 gezelter 1610 if (loop .eq. PREPAIR_LOOP) then
1220 chuckv 3133 #ifdef IS_MPI
1221 gezelter 3440 call do_preforce(nlocal, pot_local, particle_pot)
1222 chuckv 3133 #else
1223 gezelter 3440 call do_preforce(nlocal, pot, particle_pot)
1224 chuckv 3133 #endif
1225 gezelter 1610 endif
1226 chrisfen 2229
1227 gezelter 1610 enddo
1228 chrisfen 2229
1229 gezelter 1610 !! Do timing
1230     #ifdef PROFILE
1231     call cpu_time(forceTimeFinal)
1232     forceTime = forceTime + forceTimeFinal - forceTimeInitial
1233     #endif
1234 chrisfen 2229
1235 gezelter 1610 #ifdef IS_MPI
1236     !!distribute forces
1237 chrisfen 2229
1238 gezelter 1610 f_temp = 0.0_dp
1239     call scatter(f_Row,f_temp,plan_atom_row_3d)
1240     do i = 1,nlocal
1241     f(1:3,i) = f(1:3,i) + f_temp(1:3,i)
1242     end do
1243 chrisfen 2229
1244 gezelter 1610 f_temp = 0.0_dp
1245     call scatter(f_Col,f_temp,plan_atom_col_3d)
1246     do i = 1,nlocal
1247     f(1:3,i) = f(1:3,i) + f_temp(1:3,i)
1248     end do
1249 chrisfen 2229
1250 gezelter 1634 if (FF_UsesDirectionalAtoms() .and. SIM_uses_DirectionalAtoms) then
1251 gezelter 1610 t_temp = 0.0_dp
1252     call scatter(t_Row,t_temp,plan_atom_row_3d)
1253     do i = 1,nlocal
1254     t(1:3,i) = t(1:3,i) + t_temp(1:3,i)
1255     end do
1256     t_temp = 0.0_dp
1257     call scatter(t_Col,t_temp,plan_atom_col_3d)
1258 chrisfen 2229
1259 gezelter 1610 do i = 1,nlocal
1260     t(1:3,i) = t(1:3,i) + t_temp(1:3,i)
1261     end do
1262     endif
1263 chrisfen 2229
1264 gezelter 1610 if (do_pot) then
1265     ! scatter/gather pot_row into the members of my column
1266 gezelter 2361 do i = 1,LR_POT_TYPES
1267 chuckv 2356 call scatter(pot_Row(i,:), pot_Temp(i,:), plan_atom_row)
1268     end do
1269 gezelter 1610 ! scatter/gather pot_local into all other procs
1270     ! add resultant to get total pot
1271     do i = 1, nlocal
1272 gezelter 2361 pot_local(1:LR_POT_TYPES) = pot_local(1:LR_POT_TYPES) &
1273     + pot_Temp(1:LR_POT_TYPES,i)
1274 gezelter 1610 enddo
1275 chrisfen 2229
1276 chuckv 3397 do i = 1,LR_POT_TYPES
1277     particle_pot(1:nlocal) = particle_pot(1:nlocal) + pot_Temp(i,1:nlocal)
1278     enddo
1279    
1280 gezelter 1610 pot_Temp = 0.0_DP
1281 chuckv 3397
1282 gezelter 2361 do i = 1,LR_POT_TYPES
1283 chuckv 2356 call scatter(pot_Col(i,:), pot_Temp(i,:), plan_atom_col)
1284     end do
1285 chuckv 3397
1286 gezelter 1610 do i = 1, nlocal
1287 gezelter 2361 pot_local(1:LR_POT_TYPES) = pot_local(1:LR_POT_TYPES)&
1288     + pot_Temp(1:LR_POT_TYPES,i)
1289 gezelter 1610 enddo
1290 chrisfen 2229
1291 chuckv 3397 do i = 1,LR_POT_TYPES
1292     particle_pot(1:nlocal) = particle_pot(1:nlocal) + pot_Temp(i,1:nlocal)
1293     enddo
1294 gezelter 3466
1295     ppot_Temp = 0.0_DP
1296    
1297     call scatter(ppot_Row(:), ppot_Temp(:), plan_atom_row)
1298     do i = 1, nlocal
1299     particle_pot(i) = particle_pot(i) + ppot_Temp(i)
1300     enddo
1301 chuckv 3397
1302 gezelter 3466 ppot_Temp = 0.0_DP
1303 chuckv 3397
1304 gezelter 3466 call scatter(ppot_Col(:), ppot_Temp(:), plan_atom_col)
1305     do i = 1, nlocal
1306     particle_pot(i) = particle_pot(i) + ppot_Temp(i)
1307     enddo
1308    
1309    
1310 gezelter 1610 endif
1311     #endif
1312 chrisfen 2229
1313 chrisfen 2390 if (SIM_requires_postpair_calc) then
1314 chrisfen 2394 do i = 1, nlocal
1315    
1316     ! we loop only over the local atoms, so we don't need row and column
1317     ! lookups for the types
1318 chrisfen 2398
1319 chrisfen 2390 me_i = atid(i)
1320    
1321 chrisfen 2394 ! is the atom electrostatic? See if it would have an
1322     ! electrostatic interaction with itself
1323     iHash = InteractionHash(me_i,me_i)
1324 chrisfen 2398
1325 chrisfen 2390 if ( iand(iHash, ELECTROSTATIC_PAIR).ne.0 ) then
1326 gezelter 1610 #ifdef IS_MPI
1327 chrisfen 2402 call self_self(i, eFrame, pot_local(ELECTROSTATIC_POT), &
1328 chrisfen 2394 t, do_pot)
1329 gezelter 1610 #else
1330 chrisfen 2402 call self_self(i, eFrame, pot(ELECTROSTATIC_POT), &
1331 chrisfen 2394 t, do_pot)
1332 gezelter 1610 #endif
1333 chrisfen 2390 endif
1334 chrisfen 2398
1335 chrisfen 2402
1336 chrisfen 2407 if (electrostaticSummationMethod.eq.REACTION_FIELD) then
1337 chrisfen 2398
1338 chrisfen 2402 ! loop over the excludes to accumulate RF stuff we've
1339     ! left out of the normal pair loop
1340    
1341     do i1 = 1, nSkipsForAtom(i)
1342     j = skipsForAtom(i, i1)
1343    
1344     ! prevent overcounting of the skips
1345     if (i.lt.j) then
1346 gezelter 2722 call get_interatomic_vector(q(:,i), q(:,j), d_atm, ratmsq)
1347 gezelter 2756 rVal = sqrt(ratmsq)
1348 gezelter 2722 call get_switch(ratmsq, sw, dswdr, rVal,in_switching_region)
1349 chrisfen 2398 #ifdef IS_MPI
1350 gezelter 3441 call rf_self_excludes(i, j, sw, 1.0_dp, eFrame, d_atm, rVal, &
1351 chrisfen 2402 vpair, pot_local(ELECTROSTATIC_POT), f, t, do_pot)
1352 chrisfen 2398 #else
1353 gezelter 3441 call rf_self_excludes(i, j, sw, 1.0_dp, eFrame, d_atm, rVal, &
1354 chrisfen 2402 vpair, pot(ELECTROSTATIC_POT), f, t, do_pot)
1355 chrisfen 2398 #endif
1356 chrisfen 2402 endif
1357     enddo
1358 chrisfen 2407 endif
1359 chrisfen 2917
1360     if (do_box_dipole) then
1361     #ifdef IS_MPI
1362     call accumulate_box_dipole(i, eFrame, q(:,i), pChg_local, &
1363     nChg_local, pChgPos_local, nChgPos_local, dipVec_local, &
1364     pChgCount_local, nChgCount_local)
1365     #else
1366     call accumulate_box_dipole(i, eFrame, q(:,i), pChg, nChg, &
1367     pChgPos, nChgPos, dipVec, pChgCount, nChgCount)
1368     #endif
1369     endif
1370 chrisfen 2402 enddo
1371 gezelter 1610 endif
1372 chrisfen 2917
1373 gezelter 1610 #ifdef IS_MPI
1374     if (do_pot) then
1375 gezelter 2758 #ifdef SINGLE_PRECISION
1376     call mpi_allreduce(pot_local, pot, LR_POT_TYPES,mpi_real,mpi_sum, &
1377     mpi_comm_world,mpi_err)
1378     #else
1379 chrisfen 2917 call mpi_allreduce(pot_local, pot, LR_POT_TYPES,mpi_double_precision, &
1380     mpi_sum, mpi_comm_world,mpi_err)
1381 gezelter 2758 #endif
1382 gezelter 1610 endif
1383 gezelter 3126
1384 chrisfen 2917 if (do_box_dipole) then
1385    
1386     #ifdef SINGLE_PRECISION
1387     call mpi_allreduce(pChg_local, pChg, 1, mpi_real, mpi_sum, &
1388     mpi_comm_world, mpi_err)
1389     call mpi_allreduce(nChg_local, nChg, 1, mpi_real, mpi_sum, &
1390     mpi_comm_world, mpi_err)
1391     call mpi_allreduce(pChgCount_local, pChgCount, 1, mpi_integer, mpi_sum,&
1392     mpi_comm_world, mpi_err)
1393     call mpi_allreduce(nChgCount_local, nChgCount, 1, mpi_integer, mpi_sum,&
1394     mpi_comm_world, mpi_err)
1395     call mpi_allreduce(pChgPos_local, pChgPos, 3, mpi_real, mpi_sum, &
1396     mpi_comm_world, mpi_err)
1397     call mpi_allreduce(nChgPos_local, nChgPos, 3, mpi_real, mpi_sum, &
1398     mpi_comm_world, mpi_err)
1399     call mpi_allreduce(dipVec_local, dipVec, 3, mpi_real, mpi_sum, &
1400     mpi_comm_world, mpi_err)
1401 gezelter 1610 #else
1402 chrisfen 2917 call mpi_allreduce(pChg_local, pChg, 1, mpi_double_precision, mpi_sum, &
1403     mpi_comm_world, mpi_err)
1404     call mpi_allreduce(nChg_local, nChg, 1, mpi_double_precision, mpi_sum, &
1405     mpi_comm_world, mpi_err)
1406     call mpi_allreduce(pChgCount_local, pChgCount, 1, mpi_integer,&
1407     mpi_sum, mpi_comm_world, mpi_err)
1408     call mpi_allreduce(nChgCount_local, nChgCount, 1, mpi_integer,&
1409     mpi_sum, mpi_comm_world, mpi_err)
1410     call mpi_allreduce(pChgPos_local, pChgPos, 3, mpi_double_precision, &
1411     mpi_sum, mpi_comm_world, mpi_err)
1412     call mpi_allreduce(nChgPos_local, nChgPos, 3, mpi_double_precision, &
1413     mpi_sum, mpi_comm_world, mpi_err)
1414     call mpi_allreduce(dipVec_local, dipVec, 3, mpi_double_precision, &
1415     mpi_sum, mpi_comm_world, mpi_err)
1416     #endif
1417    
1418     endif
1419 chrisfen 2394
1420 gezelter 1610 #endif
1421 chrisfen 2917
1422     if (do_box_dipole) then
1423     ! first load the accumulated dipole moment (if dipoles were present)
1424     boxDipole(1) = dipVec(1)
1425     boxDipole(2) = dipVec(2)
1426     boxDipole(3) = dipVec(3)
1427    
1428     ! now include the dipole moment due to charges
1429     ! use the lesser of the positive and negative charge totals
1430     if (nChg .le. pChg) then
1431     chg_value = nChg
1432     else
1433     chg_value = pChg
1434     endif
1435    
1436     ! find the average positions
1437     if (pChgCount .gt. 0 .and. nChgCount .gt. 0) then
1438     pChgPos = pChgPos / pChgCount
1439     nChgPos = nChgPos / nChgCount
1440     endif
1441    
1442     ! dipole is from the negative to the positive (physics notation)
1443     chgVec(1) = pChgPos(1) - nChgPos(1)
1444     chgVec(2) = pChgPos(2) - nChgPos(2)
1445     chgVec(3) = pChgPos(3) - nChgPos(3)
1446    
1447     boxDipole(1) = boxDipole(1) + chgVec(1) * chg_value
1448     boxDipole(2) = boxDipole(2) + chgVec(2) * chg_value
1449     boxDipole(3) = boxDipole(3) + chgVec(3) * chg_value
1450    
1451     endif
1452    
1453 gezelter 1610 end subroutine do_force_loop
1454 chrisfen 2229
1455 gezelter 1610 subroutine do_pair(i, j, rijsq, d, sw, do_pot, &
1456 gezelter 3466 eFrame, A, f, t, pot, particle_pot, vpair, &
1457     fpair, d_grp, r_grp, rCut, topoDist)
1458 gezelter 1610
1459 chuckv 2355 real( kind = dp ) :: vpair, sw
1460 gezelter 2361 real( kind = dp ), dimension(LR_POT_TYPES) :: pot
1461 chuckv 3397 real( kind = dp ), dimension(nLocal) :: particle_pot
1462 gezelter 1610 real( kind = dp ), dimension(3) :: fpair
1463     real( kind = dp ), dimension(nLocal) :: mfact
1464 gezelter 1930 real( kind = dp ), dimension(9,nLocal) :: eFrame
1465 gezelter 1610 real( kind = dp ), dimension(9,nLocal) :: A
1466     real( kind = dp ), dimension(3,nLocal) :: f
1467     real( kind = dp ), dimension(3,nLocal) :: t
1468    
1469     logical, intent(inout) :: do_pot
1470     integer, intent(in) :: i, j
1471     real ( kind = dp ), intent(inout) :: rijsq
1472 chrisfen 2394 real ( kind = dp ), intent(inout) :: r_grp
1473 gezelter 1610 real ( kind = dp ), intent(inout) :: d(3)
1474 chrisfen 2394 real ( kind = dp ), intent(inout) :: d_grp(3)
1475 gezelter 2461 real ( kind = dp ), intent(inout) :: rCut
1476 gezelter 3441 integer, intent(inout) :: topoDist
1477     real ( kind = dp ) :: r, pair_pot, vdwMult, electroMult
1478 gezelter 2722 real ( kind = dp ) :: a_k, b_k, c_k, d_k, dx
1479 gezelter 1610 integer :: me_i, me_j
1480 gezelter 2722 integer :: k
1481 gezelter 1610
1482 gezelter 2270 integer :: iHash
1483 gezelter 2259
1484 gezelter 3470 !!$ write(*,*) i, j, rijsq, d(1), d(2), d(3), sw, do_pot
1485     !!$ write(*,*) particle_pot(1), vpair, fpair(1), fpair(2), fpair(3)
1486     !!$ write(*,*) rCut
1487    
1488    
1489 chrisfen 2727 r = sqrt(rijsq)
1490    
1491 gezelter 2756 vpair = 0.0_dp
1492     fpair(1:3) = 0.0_dp
1493 gezelter 1610
1494     #ifdef IS_MPI
1495     me_i = atid_row(i)
1496     me_j = atid_col(j)
1497     #else
1498     me_i = atid(i)
1499     me_j = atid(j)
1500     #endif
1501 gezelter 1706
1502 gezelter 2270 iHash = InteractionHash(me_i, me_j)
1503 cli2 3444
1504 gezelter 3441 vdwMult = vdwScale(topoDist)
1505     electroMult = electrostaticScale(topoDist)
1506 cli2 3444
1507 chrisfen 2402 if ( iand(iHash, LJ_PAIR).ne.0 ) then
1508 gezelter 3441 call do_lj_pair(i, j, d, r, rijsq, rcut, sw, vdwMult, vpair, fpair, &
1509 chrisfen 2402 pot(VDW_POT), f, do_pot)
1510 gezelter 1610 endif
1511 chrisfen 2229
1512 chrisfen 2402 if ( iand(iHash, ELECTROSTATIC_PAIR).ne.0 ) then
1513 gezelter 3441 call doElectrostaticPair(i, j, d, r, rijsq, rcut, sw, electroMult, &
1514     vpair, fpair, pot(ELECTROSTATIC_POT), eFrame, f, t, do_pot)
1515 chrisfen 2402 endif
1516    
1517     if ( iand(iHash, STICKY_PAIR).ne.0 ) then
1518     call do_sticky_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
1519     pot(HB_POT), A, f, t, do_pot)
1520     endif
1521    
1522     if ( iand(iHash, STICKYPOWER_PAIR).ne.0 ) then
1523     call do_sticky_power_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
1524     pot(HB_POT), A, f, t, do_pot)
1525     endif
1526    
1527     if ( iand(iHash, GAYBERNE_PAIR).ne.0 ) then
1528 gezelter 3441 call do_gb_pair(i, j, d, r, rijsq, sw, vdwMult, vpair, fpair, &
1529 chrisfen 2402 pot(VDW_POT), A, f, t, do_pot)
1530     endif
1531    
1532     if ( iand(iHash, GAYBERNE_LJ).ne.0 ) then
1533 gezelter 3441 call do_gb_pair(i, j, d, r, rijsq, sw, vdwMult, vpair, fpair, &
1534 chrisfen 2402 pot(VDW_POT), A, f, t, do_pot)
1535     endif
1536    
1537     if ( iand(iHash, EAM_PAIR).ne.0 ) then
1538 gezelter 3466 call do_eam_pair(i, j, d, r, rijsq, sw, vpair, particle_pot, &
1539     fpair, pot(METALLIC_POT), f, do_pot)
1540 chrisfen 2402 endif
1541    
1542     if ( iand(iHash, SHAPE_PAIR).ne.0 ) then
1543     call do_shape_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
1544     pot(VDW_POT), A, f, t, do_pot)
1545     endif
1546    
1547     if ( iand(iHash, SHAPE_LJ).ne.0 ) then
1548     call do_shape_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
1549     pot(VDW_POT), A, f, t, do_pot)
1550     endif
1551 chuckv 2432
1552     if ( iand(iHash, SC_PAIR).ne.0 ) then
1553 gezelter 3466 call do_SC_pair(i, j, d, r, rijsq, rcut, sw, vpair, particle_pot, &
1554     fpair, pot(METALLIC_POT), f, do_pot)
1555 chuckv 2432 endif
1556 chrisfen 2402
1557 gezelter 3177 if ( iand(iHash, MNM_PAIR).ne.0 ) then
1558 gezelter 3441 call do_mnm_pair(i, j, d, r, rijsq, rcut, sw, vdwMult, vpair, fpair, &
1559 gezelter 3177 pot(VDW_POT), A, f, t, do_pot)
1560     endif
1561 gezelter 3470 !!$
1562     !!$ particle_pot(i) = particle_pot(i) + vpair*sw
1563     !!$ particle_pot(j) = particle_pot(j) + vpair*sw
1564 gezelter 3177
1565 gezelter 1610 end subroutine do_pair
1566    
1567 gezelter 2461 subroutine do_prepair(i, j, rijsq, d, sw, rcijsq, dc, rCut, &
1568 gezelter 1930 do_pot, do_stress, eFrame, A, f, t, pot)
1569 gezelter 1610
1570 chuckv 2355 real( kind = dp ) :: sw
1571 gezelter 2361 real( kind = dp ), dimension(LR_POT_TYPES) :: pot
1572 chrisfen 2229 real( kind = dp ), dimension(9,nLocal) :: eFrame
1573     real (kind=dp), dimension(9,nLocal) :: A
1574     real (kind=dp), dimension(3,nLocal) :: f
1575     real (kind=dp), dimension(3,nLocal) :: t
1576 gezelter 1610
1577 chrisfen 2229 logical, intent(inout) :: do_pot, do_stress
1578     integer, intent(in) :: i, j
1579 gezelter 2461 real ( kind = dp ), intent(inout) :: rijsq, rcijsq, rCut
1580 chrisfen 2229 real ( kind = dp ) :: r, rc
1581     real ( kind = dp ), intent(inout) :: d(3), dc(3)
1582    
1583 gezelter 2270 integer :: me_i, me_j, iHash
1584 chrisfen 2229
1585 chrisfen 2727 r = sqrt(rijsq)
1586    
1587 gezelter 1610 #ifdef IS_MPI
1588 chrisfen 2229 me_i = atid_row(i)
1589     me_j = atid_col(j)
1590 gezelter 1610 #else
1591 chrisfen 2229 me_i = atid(i)
1592     me_j = atid(j)
1593 gezelter 1610 #endif
1594 chrisfen 2229
1595 gezelter 2270 iHash = InteractionHash(me_i, me_j)
1596 chrisfen 2229
1597 gezelter 2270 if ( iand(iHash, EAM_PAIR).ne.0 ) then
1598 gezelter 2461 call calc_EAM_prepair_rho(i, j, d, r, rijsq)
1599 chrisfen 2229 endif
1600 chuckv 2432
1601     if ( iand(iHash, SC_PAIR).ne.0 ) then
1602 gezelter 2461 call calc_SC_prepair_rho(i, j, d, r, rijsq, rcut )
1603 chuckv 2432 endif
1604 gezelter 2259
1605 chrisfen 2229 end subroutine do_prepair
1606    
1607    
1608 gezelter 3440 subroutine do_preforce(nlocal, pot, particle_pot)
1609 chrisfen 2229 integer :: nlocal
1610 gezelter 2361 real( kind = dp ),dimension(LR_POT_TYPES) :: pot
1611 gezelter 3440 real( kind = dp ),dimension(nlocal) :: particle_pot
1612 chrisfen 2229
1613     if (FF_uses_EAM .and. SIM_uses_EAM) then
1614 gezelter 3440 call calc_EAM_preforce_Frho(nlocal, pot(METALLIC_POT), particle_pot)
1615 chrisfen 2229 endif
1616 chuckv 2432 if (FF_uses_SC .and. SIM_uses_SC) then
1617 gezelter 3440 call calc_SC_preforce_Frho(nlocal, pot(METALLIC_POT), particle_pot)
1618 chuckv 2432 endif
1619 chrisfen 2229 end subroutine do_preforce
1620    
1621    
1622     subroutine get_interatomic_vector(q_i, q_j, d, r_sq)
1623    
1624     real (kind = dp), dimension(3) :: q_i
1625     real (kind = dp), dimension(3) :: q_j
1626     real ( kind = dp ), intent(out) :: r_sq
1627     real( kind = dp ) :: d(3), scaled(3)
1628     integer i
1629    
1630 gezelter 2717 d(1) = q_j(1) - q_i(1)
1631     d(2) = q_j(2) - q_i(2)
1632     d(3) = q_j(3) - q_i(3)
1633 chrisfen 2229
1634     ! Wrap back into periodic box if necessary
1635     if ( SIM_uses_PBC ) then
1636    
1637     if( .not.boxIsOrthorhombic ) then
1638     ! calc the scaled coordinates.
1639 gezelter 2722 ! scaled = matmul(HmatInv, d)
1640 chrisfen 2229
1641 gezelter 2722 scaled(1) = HmatInv(1,1)*d(1) + HmatInv(1,2)*d(2) + HmatInv(1,3)*d(3)
1642     scaled(2) = HmatInv(2,1)*d(1) + HmatInv(2,2)*d(2) + HmatInv(2,3)*d(3)
1643     scaled(3) = HmatInv(3,1)*d(1) + HmatInv(3,2)*d(2) + HmatInv(3,3)*d(3)
1644    
1645 chrisfen 2229 ! wrap the scaled coordinates
1646    
1647 gezelter 2756 scaled(1) = scaled(1) - anint(scaled(1), kind=dp)
1648     scaled(2) = scaled(2) - anint(scaled(2), kind=dp)
1649     scaled(3) = scaled(3) - anint(scaled(3), kind=dp)
1650 chrisfen 2229
1651     ! calc the wrapped real coordinates from the wrapped scaled
1652     ! coordinates
1653 gezelter 2722 ! d = matmul(Hmat,scaled)
1654     d(1)= Hmat(1,1)*scaled(1) + Hmat(1,2)*scaled(2) + Hmat(1,3)*scaled(3)
1655     d(2)= Hmat(2,1)*scaled(1) + Hmat(2,2)*scaled(2) + Hmat(2,3)*scaled(3)
1656     d(3)= Hmat(3,1)*scaled(1) + Hmat(3,2)*scaled(2) + Hmat(3,3)*scaled(3)
1657 chrisfen 2229
1658     else
1659     ! calc the scaled coordinates.
1660    
1661 gezelter 2717 scaled(1) = d(1) * HmatInv(1,1)
1662     scaled(2) = d(2) * HmatInv(2,2)
1663     scaled(3) = d(3) * HmatInv(3,3)
1664    
1665     ! wrap the scaled coordinates
1666    
1667 gezelter 2756 scaled(1) = scaled(1) - anint(scaled(1), kind=dp)
1668     scaled(2) = scaled(2) - anint(scaled(2), kind=dp)
1669     scaled(3) = scaled(3) - anint(scaled(3), kind=dp)
1670 chrisfen 2229
1671 gezelter 2717 ! calc the wrapped real coordinates from the wrapped scaled
1672     ! coordinates
1673 chrisfen 2229
1674 gezelter 2717 d(1) = scaled(1)*Hmat(1,1)
1675     d(2) = scaled(2)*Hmat(2,2)
1676     d(3) = scaled(3)*Hmat(3,3)
1677 chrisfen 2229
1678     endif
1679    
1680     endif
1681    
1682 gezelter 2717 r_sq = d(1)*d(1) + d(2)*d(2) + d(3)*d(3)
1683 chrisfen 2229
1684     end subroutine get_interatomic_vector
1685    
1686     subroutine zero_work_arrays()
1687    
1688 gezelter 1610 #ifdef IS_MPI
1689    
1690 chrisfen 2229 q_Row = 0.0_dp
1691     q_Col = 0.0_dp
1692    
1693     q_group_Row = 0.0_dp
1694     q_group_Col = 0.0_dp
1695    
1696     eFrame_Row = 0.0_dp
1697     eFrame_Col = 0.0_dp
1698    
1699     A_Row = 0.0_dp
1700     A_Col = 0.0_dp
1701    
1702     f_Row = 0.0_dp
1703     f_Col = 0.0_dp
1704     f_Temp = 0.0_dp
1705    
1706     t_Row = 0.0_dp
1707     t_Col = 0.0_dp
1708     t_Temp = 0.0_dp
1709    
1710     pot_Row = 0.0_dp
1711     pot_Col = 0.0_dp
1712     pot_Temp = 0.0_dp
1713 gezelter 3466 ppot_Temp = 0.0_dp
1714 chrisfen 2229
1715 gezelter 1610 #endif
1716 chrisfen 2229
1717     if (FF_uses_EAM .and. SIM_uses_EAM) then
1718     call clean_EAM()
1719     endif
1720    
1721     end subroutine zero_work_arrays
1722    
1723     function skipThisPair(atom1, atom2) result(skip_it)
1724     integer, intent(in) :: atom1
1725     integer, intent(in), optional :: atom2
1726     logical :: skip_it
1727     integer :: unique_id_1, unique_id_2
1728     integer :: me_i,me_j
1729     integer :: i
1730    
1731     skip_it = .false.
1732    
1733     !! there are a number of reasons to skip a pair or a particle
1734     !! mostly we do this to exclude atoms who are involved in short
1735     !! range interactions (bonds, bends, torsions), but we also need
1736     !! to exclude some overcounted interactions that result from
1737     !! the parallel decomposition
1738    
1739 gezelter 1610 #ifdef IS_MPI
1740 chrisfen 2229 !! in MPI, we have to look up the unique IDs for each atom
1741     unique_id_1 = AtomRowToGlobal(atom1)
1742     unique_id_2 = AtomColToGlobal(atom2)
1743     !! this situation should only arise in MPI simulations
1744     if (unique_id_1 == unique_id_2) then
1745     skip_it = .true.
1746     return
1747     end if
1748    
1749     !! this prevents us from doing the pair on multiple processors
1750     if (unique_id_1 < unique_id_2) then
1751     if (mod(unique_id_1 + unique_id_2,2) == 0) then
1752     skip_it = .true.
1753     return
1754     endif
1755     else
1756     if (mod(unique_id_1 + unique_id_2,2) == 1) then
1757     skip_it = .true.
1758     return
1759     endif
1760     endif
1761 gezelter 3441 #else
1762     !! in the normal loop, the atom numbers are unique
1763     unique_id_1 = atom1
1764     unique_id_2 = atom2
1765 gezelter 1610 #endif
1766 gezelter 3441
1767 chrisfen 2229 do i = 1, nSkipsForAtom(atom1)
1768     if (skipsForAtom(atom1, i) .eq. unique_id_2) then
1769     skip_it = .true.
1770     return
1771     endif
1772     end do
1773    
1774     return
1775     end function skipThisPair
1776    
1777 gezelter 3441 function getTopoDistance(atom1, atom2) result(topoDist)
1778     integer, intent(in) :: atom1
1779     integer, intent(in) :: atom2
1780     integer :: topoDist
1781     integer :: unique_id_2
1782     integer :: i
1783    
1784     #ifdef IS_MPI
1785     unique_id_2 = AtomColToGlobal(atom2)
1786     #else
1787     unique_id_2 = atom2
1788     #endif
1789    
1790     ! zero is default for unconnected (i.e. normal) pair interactions
1791    
1792     topoDist = 0
1793    
1794     do i = 1, nTopoPairsForAtom(atom1)
1795     if (toposForAtom(atom1, i) .eq. unique_id_2) then
1796     topoDist = topoDistance(atom1, i)
1797     return
1798     endif
1799     end do
1800    
1801     return
1802     end function getTopoDistance
1803    
1804 chrisfen 2229 function FF_UsesDirectionalAtoms() result(doesit)
1805     logical :: doesit
1806 gezelter 2270 doesit = FF_uses_DirectionalAtoms
1807 chrisfen 2229 end function FF_UsesDirectionalAtoms
1808    
1809     function FF_RequiresPrepairCalc() result(doesit)
1810     logical :: doesit
1811 chuckv 3164 doesit = FF_uses_EAM .or. FF_uses_SC
1812 chrisfen 2229 end function FF_RequiresPrepairCalc
1813    
1814 gezelter 1610 #ifdef PROFILE
1815 chrisfen 2229 function getforcetime() result(totalforcetime)
1816     real(kind=dp) :: totalforcetime
1817     totalforcetime = forcetime
1818     end function getforcetime
1819 gezelter 1610 #endif
1820    
1821 chrisfen 2229 !! This cleans componets of force arrays belonging only to fortran
1822    
1823 gezelter 3126 subroutine add_stress_tensor(dpair, fpair, tau)
1824 chrisfen 2229
1825     real( kind = dp ), dimension(3), intent(in) :: dpair, fpair
1826 gezelter 3126 real( kind = dp ), dimension(9), intent(inout) :: tau
1827 chrisfen 2229
1828     ! because the d vector is the rj - ri vector, and
1829     ! because fx, fy, fz are the force on atom i, we need a
1830     ! negative sign here:
1831    
1832 gezelter 3126 tau(1) = tau(1) - dpair(1) * fpair(1)
1833     tau(2) = tau(2) - dpair(1) * fpair(2)
1834     tau(3) = tau(3) - dpair(1) * fpair(3)
1835     tau(4) = tau(4) - dpair(2) * fpair(1)
1836     tau(5) = tau(5) - dpair(2) * fpair(2)
1837     tau(6) = tau(6) - dpair(2) * fpair(3)
1838     tau(7) = tau(7) - dpair(3) * fpair(1)
1839     tau(8) = tau(8) - dpair(3) * fpair(2)
1840     tau(9) = tau(9) - dpair(3) * fpair(3)
1841 chrisfen 2229
1842     end subroutine add_stress_tensor
1843    
1844 gezelter 1610 end module doForces