1 |
/* |
2 |
* Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. |
3 |
* |
4 |
* The University of Notre Dame grants you ("Licensee") a |
5 |
* non-exclusive, royalty free, license to use, modify and |
6 |
* redistribute this software in source and binary code form, provided |
7 |
* that the following conditions are met: |
8 |
* |
9 |
* 1. Acknowledgement of the program authors must be made in any |
10 |
* publication of scientific results based in part on use of the |
11 |
* program. An acceptable form of acknowledgement is citation of |
12 |
* the article in which the program was described (Matthew |
13 |
* A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher |
14 |
* J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented |
15 |
* Parallel Simulation Engine for Molecular Dynamics," |
16 |
* J. Comput. Chem. 26, pp. 252-271 (2005)) |
17 |
* |
18 |
* 2. Redistributions of source code must retain the above copyright |
19 |
* notice, this list of conditions and the following disclaimer. |
20 |
* |
21 |
* 3. Redistributions in binary form must reproduce the above copyright |
22 |
* notice, this list of conditions and the following disclaimer in the |
23 |
* documentation and/or other materials provided with the |
24 |
* distribution. |
25 |
* |
26 |
* This software is provided "AS IS," without a warranty of any |
27 |
* kind. All express or implied conditions, representations and |
28 |
* warranties, including any implied warranty of merchantability, |
29 |
* fitness for a particular purpose or non-infringement, are hereby |
30 |
* excluded. The University of Notre Dame and its licensors shall not |
31 |
* be liable for any damages suffered by licensee as a result of |
32 |
* using, modifying or distributing the software or its |
33 |
* derivatives. In no event will the University of Notre Dame or its |
34 |
* licensors be liable for any lost revenue, profit or data, or for |
35 |
* direct, indirect, special, consequential, incidental or punitive |
36 |
* damages, however caused and regardless of the theory of liability, |
37 |
* arising out of the use of or inability to use software, even if the |
38 |
* University of Notre Dame has been advised of the possibility of |
39 |
* such damages. |
40 |
*/ |
41 |
|
42 |
/** |
43 |
* @file ForceField.cpp |
44 |
* @author tlin |
45 |
* @date 11/04/2004 |
46 |
* @time 22:51am |
47 |
* @version 1.0 |
48 |
*/ |
49 |
|
50 |
#include <algorithm> |
51 |
#include "UseTheForce/ForceField.hpp" |
52 |
#include "utils/simError.h" |
53 |
#include "utils/Tuple.hpp" |
54 |
#include "UseTheForce/DarkSide/atype_interface.h" |
55 |
#include "UseTheForce/DarkSide/fForceOptions_interface.h" |
56 |
#include "UseTheForce/DarkSide/switcheroo_interface.h" |
57 |
namespace oopse { |
58 |
|
59 |
ForceField::ForceField() { |
60 |
char* tempPath; |
61 |
tempPath = getenv("FORCE_PARAM_PATH"); |
62 |
|
63 |
if (tempPath == NULL) { |
64 |
//convert a macro from compiler to a string in c++ |
65 |
STR_DEFINE(ffPath_, FRC_PATH ); |
66 |
} else { |
67 |
ffPath_ = tempPath; |
68 |
} |
69 |
} |
70 |
|
71 |
|
72 |
ForceField::~ForceField() { |
73 |
deleteAtypes(); |
74 |
deleteSwitch(); |
75 |
} |
76 |
|
77 |
AtomType* ForceField::getAtomType(const std::string &at) { |
78 |
std::vector<std::string> keys; |
79 |
keys.push_back(at); |
80 |
return atomTypeCont_.find(keys); |
81 |
} |
82 |
|
83 |
BondType* ForceField::getBondType(const std::string &at1, |
84 |
const std::string &at2) { |
85 |
std::vector<std::string> keys; |
86 |
keys.push_back(at1); |
87 |
keys.push_back(at2); |
88 |
|
89 |
//try exact match first |
90 |
BondType* bondType = bondTypeCont_.find(keys); |
91 |
if (bondType) { |
92 |
return bondType; |
93 |
} else { |
94 |
AtomType* atype1; |
95 |
AtomType* atype2; |
96 |
std::vector<std::string> at1key; |
97 |
at1key.push_back(at1); |
98 |
atype1 = atomTypeCont_.find(at1key); |
99 |
|
100 |
std::vector<std::string> at2key; |
101 |
at2key.push_back(at2); |
102 |
atype2 = atomTypeCont_.find(at2key); |
103 |
|
104 |
// query atom types for their chains of responsibility |
105 |
std::vector<AtomType*> at1Chain = atype1->allYourBase(); |
106 |
std::vector<AtomType*> at2Chain = atype2->allYourBase(); |
107 |
|
108 |
std::vector<AtomType*>::iterator i; |
109 |
std::vector<AtomType*>::iterator j; |
110 |
|
111 |
int ii = 0; |
112 |
int jj = 0; |
113 |
int bondTypeScore; |
114 |
|
115 |
std::vector<std::pair<int, std::vector<std::string> > > foundBonds; |
116 |
|
117 |
for (i = at1Chain.begin(); i != at1Chain.end(); i++) { |
118 |
jj = 0; |
119 |
for (j = at2Chain.begin(); j != at2Chain.end(); j++) { |
120 |
|
121 |
bondTypeScore = ii + jj; |
122 |
|
123 |
std::vector<std::string> myKeys; |
124 |
myKeys.push_back((*i)->getName()); |
125 |
myKeys.push_back((*j)->getName()); |
126 |
|
127 |
BondType* bondType = bondTypeCont_.find(myKeys); |
128 |
if (bondType) { |
129 |
foundBonds.push_back(std::make_pair(bondTypeScore, myKeys)); |
130 |
} |
131 |
jj++; |
132 |
} |
133 |
ii++; |
134 |
} |
135 |
|
136 |
// sort the foundBonds by the score: |
137 |
|
138 |
std::sort(foundBonds.begin(), foundBonds.end()); |
139 |
|
140 |
int bestScore = foundBonds[0].first; |
141 |
std::vector<std::string> theKeys = foundBonds[0].second; |
142 |
|
143 |
std::cout << "best matching bond = " << theKeys[0] << "\t" << theKeys[1] << "\t(score = "<< bestScore << ")\n"; |
144 |
BondType* bestType = bondTypeCont_.find(theKeys); |
145 |
if (bestType) |
146 |
return bestType; |
147 |
else { |
148 |
//if no exact match found, try wild card match |
149 |
return bondTypeCont_.find(keys, wildCardAtomTypeName_); |
150 |
} |
151 |
} |
152 |
} |
153 |
|
154 |
BendType* ForceField::getBendType(const std::string &at1, |
155 |
const std::string &at2, |
156 |
const std::string &at3) { |
157 |
std::vector<std::string> keys; |
158 |
keys.push_back(at1); |
159 |
keys.push_back(at2); |
160 |
keys.push_back(at3); |
161 |
|
162 |
//try exact match first |
163 |
BendType* bendType = bendTypeCont_.find(keys); |
164 |
if (bendType) { |
165 |
return bendType; |
166 |
} else { |
167 |
|
168 |
AtomType* atype1; |
169 |
AtomType* atype2; |
170 |
AtomType* atype3; |
171 |
std::vector<std::string> at1key; |
172 |
at1key.push_back(at1); |
173 |
atype1 = atomTypeCont_.find(at1key); |
174 |
|
175 |
std::vector<std::string> at2key; |
176 |
at2key.push_back(at2); |
177 |
atype2 = atomTypeCont_.find(at2key); |
178 |
|
179 |
std::vector<std::string> at3key; |
180 |
at3key.push_back(at3); |
181 |
atype3 = atomTypeCont_.find(at3key); |
182 |
|
183 |
// query atom types for their chains of responsibility |
184 |
std::vector<AtomType*> at1Chain = atype1->allYourBase(); |
185 |
std::vector<AtomType*> at2Chain = atype2->allYourBase(); |
186 |
std::vector<AtomType*> at3Chain = atype3->allYourBase(); |
187 |
|
188 |
std::vector<AtomType*>::iterator i; |
189 |
std::vector<AtomType*>::iterator j; |
190 |
std::vector<AtomType*>::iterator k; |
191 |
|
192 |
int ii = 0; |
193 |
int jj = 0; |
194 |
int kk = 0; |
195 |
int IKscore; |
196 |
|
197 |
std::vector<tuple3<int, int, std::vector<std::string> > > foundBends; |
198 |
|
199 |
for (j = at2Chain.begin(); j != at2Chain.end(); j++) { |
200 |
ii = 0; |
201 |
for (i = at1Chain.begin(); i != at1Chain.end(); i++) { |
202 |
kk = 0; |
203 |
for (k = at3Chain.begin(); k != at3Chain.end(); k++) { |
204 |
|
205 |
IKscore = ii + kk; |
206 |
|
207 |
std::vector<std::string> myKeys; |
208 |
myKeys.push_back((*i)->getName()); |
209 |
myKeys.push_back((*j)->getName()); |
210 |
myKeys.push_back((*k)->getName()); |
211 |
|
212 |
BendType* bendType = bendTypeCont_.find(myKeys); |
213 |
if (bendType) { |
214 |
foundBends.push_back( make_tuple3(jj, IKscore, myKeys) ); |
215 |
} |
216 |
kk++; |
217 |
} |
218 |
ii++; |
219 |
} |
220 |
jj++; |
221 |
} |
222 |
|
223 |
std::sort(foundBends.begin(), foundBends.end()); |
224 |
|
225 |
int jscore = foundBends[0].first; |
226 |
int ikscore = foundBends[0].second; |
227 |
std::vector<std::string> theKeys = foundBends[0].third; |
228 |
|
229 |
std::cout << "best matching bend = " << theKeys[0] << "\t" <<theKeys[1] << "\t" << theKeys[2] << "\t(scores = "<< jscore << "\t" << ikscore << ")\n"; |
230 |
|
231 |
BendType* bestType = bendTypeCont_.find(theKeys); |
232 |
if (bestType) |
233 |
return bestType; |
234 |
else { |
235 |
|
236 |
//if no exact match found, try wild card match |
237 |
return bendTypeCont_.find(keys, wildCardAtomTypeName_); |
238 |
} |
239 |
} |
240 |
} |
241 |
|
242 |
|
243 |
TorsionType* ForceField::getTorsionType(const std::string &at1, |
244 |
const std::string &at2, |
245 |
const std::string &at3, |
246 |
const std::string &at4) { |
247 |
std::vector<std::string> keys; |
248 |
keys.push_back(at1); |
249 |
keys.push_back(at2); |
250 |
keys.push_back(at3); |
251 |
keys.push_back(at4); |
252 |
|
253 |
|
254 |
//try exact match first |
255 |
TorsionType* torsionType = torsionTypeCont_.find(keys); |
256 |
if (torsionType) { |
257 |
return torsionType; |
258 |
} else { |
259 |
|
260 |
AtomType* atype1; |
261 |
AtomType* atype2; |
262 |
AtomType* atype3; |
263 |
AtomType* atype4; |
264 |
std::vector<std::string> at1key; |
265 |
at1key.push_back(at1); |
266 |
atype1 = atomTypeCont_.find(at1key); |
267 |
|
268 |
std::vector<std::string> at2key; |
269 |
at2key.push_back(at2); |
270 |
atype2 = atomTypeCont_.find(at2key); |
271 |
|
272 |
std::vector<std::string> at3key; |
273 |
at3key.push_back(at3); |
274 |
atype3 = atomTypeCont_.find(at3key); |
275 |
|
276 |
std::vector<std::string> at4key; |
277 |
at4key.push_back(at4); |
278 |
atype4 = atomTypeCont_.find(at4key); |
279 |
|
280 |
// query atom types for their chains of responsibility |
281 |
std::vector<AtomType*> at1Chain = atype1->allYourBase(); |
282 |
std::vector<AtomType*> at2Chain = atype2->allYourBase(); |
283 |
std::vector<AtomType*> at3Chain = atype3->allYourBase(); |
284 |
std::vector<AtomType*> at4Chain = atype4->allYourBase(); |
285 |
|
286 |
std::vector<AtomType*>::iterator i; |
287 |
std::vector<AtomType*>::iterator j; |
288 |
std::vector<AtomType*>::iterator k; |
289 |
std::vector<AtomType*>::iterator l; |
290 |
|
291 |
int ii = 0; |
292 |
int jj = 0; |
293 |
int kk = 0; |
294 |
int ll = 0; |
295 |
int ILscore; |
296 |
int JKscore; |
297 |
|
298 |
std::vector<tuple3<int, int, std::vector<std::string> > > foundTorsions; |
299 |
|
300 |
for (j = at2Chain.begin(); j != at2Chain.end(); j++) { |
301 |
kk = 0; |
302 |
for (k = at3Chain.begin(); k != at3Chain.end(); k++) { |
303 |
ii = 0; |
304 |
for (i = at1Chain.begin(); i != at1Chain.end(); i++) { |
305 |
ll = 0; |
306 |
for (l = at4Chain.begin(); l != at4Chain.end(); l++) { |
307 |
|
308 |
ILscore = ii + ll; |
309 |
JKscore = jj + kk; |
310 |
|
311 |
std::vector<std::string> myKeys; |
312 |
myKeys.push_back((*i)->getName()); |
313 |
myKeys.push_back((*j)->getName()); |
314 |
myKeys.push_back((*k)->getName()); |
315 |
myKeys.push_back((*l)->getName()); |
316 |
|
317 |
TorsionType* torsionType = torsionTypeCont_.find(myKeys); |
318 |
if (torsionType) { |
319 |
foundTorsions.push_back( make_tuple3(JKscore, ILscore, myKeys) ); |
320 |
} |
321 |
ll++; |
322 |
} |
323 |
ii++; |
324 |
} |
325 |
kk++; |
326 |
} |
327 |
jj++; |
328 |
} |
329 |
|
330 |
std::sort(foundTorsions.begin(), foundTorsions.end()); |
331 |
|
332 |
int jkscore = foundTorsions[0].first; |
333 |
int ilscore = foundTorsions[0].second; |
334 |
std::vector<std::string> theKeys = foundTorsions[0].third; |
335 |
|
336 |
std::cout << "best matching torsion = " << theKeys[0] << "\t" <<theKeys[1] << "\t" << theKeys[2] << "\t" << theKeys[3] << "\t(scores = "<< jkscore << "\t" << ilscore << ")\n"; |
337 |
|
338 |
|
339 |
TorsionType* bestType = torsionTypeCont_.find(theKeys); |
340 |
if (bestType) { |
341 |
return bestType; |
342 |
} else { |
343 |
//if no exact match found, try wild card match |
344 |
return torsionTypeCont_.find(keys, wildCardAtomTypeName_); |
345 |
} |
346 |
} |
347 |
} |
348 |
|
349 |
InversionType* ForceField::getInversionType(const std::string &at1, |
350 |
const std::string &at2, |
351 |
const std::string &at3, |
352 |
const std::string &at4) { |
353 |
std::vector<std::string> keys; |
354 |
keys.push_back(at1); |
355 |
keys.push_back(at2); |
356 |
keys.push_back(at3); |
357 |
keys.push_back(at4); |
358 |
|
359 |
//try exact match first |
360 |
InversionType* inversionType = inversionTypeCont_.find(keys); |
361 |
if (inversionType) { |
362 |
return inversionType; |
363 |
} else { |
364 |
|
365 |
AtomType* atype1; |
366 |
AtomType* atype2; |
367 |
AtomType* atype3; |
368 |
AtomType* atype4; |
369 |
std::vector<std::string> at1key; |
370 |
at1key.push_back(at1); |
371 |
atype1 = atomTypeCont_.find(at1key); |
372 |
|
373 |
std::vector<std::string> at2key; |
374 |
at2key.push_back(at2); |
375 |
atype2 = atomTypeCont_.find(at2key); |
376 |
|
377 |
std::vector<std::string> at3key; |
378 |
at3key.push_back(at3); |
379 |
atype3 = atomTypeCont_.find(at3key); |
380 |
|
381 |
std::vector<std::string> at4key; |
382 |
at4key.push_back(at4); |
383 |
atype4 = atomTypeCont_.find(at4key); |
384 |
|
385 |
// query atom types for their chains of responsibility |
386 |
std::vector<AtomType*> at1Chain = atype1->allYourBase(); |
387 |
std::vector<AtomType*> at2Chain = atype2->allYourBase(); |
388 |
std::vector<AtomType*> at3Chain = atype3->allYourBase(); |
389 |
std::vector<AtomType*> at4Chain = atype4->allYourBase(); |
390 |
|
391 |
std::vector<AtomType*>::iterator i; |
392 |
std::vector<AtomType*>::iterator j; |
393 |
std::vector<AtomType*>::iterator k; |
394 |
std::vector<AtomType*>::iterator l; |
395 |
|
396 |
int ii = 0; |
397 |
int jj = 0; |
398 |
int kk = 0; |
399 |
int ll = 0; |
400 |
int Iscore; |
401 |
int JKLscore; |
402 |
|
403 |
std::vector<tuple3<int, int, std::vector<std::string> > > foundInversions; |
404 |
|
405 |
for (j = at2Chain.begin(); j != at2Chain.end(); j++) { |
406 |
kk = 0; |
407 |
for (k = at3Chain.begin(); k != at3Chain.end(); k++) { |
408 |
ii = 0; |
409 |
for (i = at1Chain.begin(); i != at1Chain.end(); i++) { |
410 |
ll = 0; |
411 |
for (l = at4Chain.begin(); l != at4Chain.end(); l++) { |
412 |
|
413 |
Iscore = ii; |
414 |
JKLscore = jj + kk + ll; |
415 |
|
416 |
std::vector<std::string> myKeys; |
417 |
myKeys.push_back((*i)->getName()); |
418 |
myKeys.push_back((*j)->getName()); |
419 |
myKeys.push_back((*k)->getName()); |
420 |
myKeys.push_back((*l)->getName()); |
421 |
|
422 |
InversionType* inversionType = inversionTypeCont_.find(myKeys); |
423 |
if (inversionType) { |
424 |
foundInversions.push_back( make_tuple3(Iscore, JKLscore, myKeys) ); |
425 |
} |
426 |
ll++; |
427 |
} |
428 |
ii++; |
429 |
} |
430 |
kk++; |
431 |
} |
432 |
jj++; |
433 |
} |
434 |
|
435 |
std::sort(foundInversions.begin(), foundInversions.end()); |
436 |
|
437 |
int iscore = foundInversions[0].first; |
438 |
int jklscore = foundInversions[0].second; |
439 |
std::vector<std::string> theKeys = foundInversions[0].third; |
440 |
|
441 |
std::cout << "best matching inversion = " << theKeys[0] << "\t" <<theKeys[1] << "\t" << theKeys[2] << "\t" << theKeys[3] << "\t(scores = "<< iscore << "\t" << jklscore << ")\n"; |
442 |
|
443 |
|
444 |
InversionType* bestType = inversionTypeCont_.find(theKeys); |
445 |
if (bestType) { |
446 |
return bestType; |
447 |
} else { |
448 |
//if no exact match found, try wild card match |
449 |
return inversionTypeCont_.find(keys, wildCardAtomTypeName_); |
450 |
} |
451 |
} |
452 |
} |
453 |
|
454 |
NonBondedInteractionType* ForceField::getNonBondedInteractionType(const std::string &at1, const std::string &at2) { |
455 |
std::vector<std::string> keys; |
456 |
keys.push_back(at1); |
457 |
keys.push_back(at2); |
458 |
|
459 |
//try exact match first |
460 |
NonBondedInteractionType* nbiType = nonBondedInteractionTypeCont_.find(keys); |
461 |
if (nbiType) { |
462 |
return nbiType; |
463 |
} else { |
464 |
//if no exact match found, try wild card match |
465 |
return nonBondedInteractionTypeCont_.find(keys, wildCardAtomTypeName_); |
466 |
} |
467 |
} |
468 |
|
469 |
BondType* ForceField::getExactBondType(const std::string &at1, |
470 |
const std::string &at2){ |
471 |
std::vector<std::string> keys; |
472 |
keys.push_back(at1); |
473 |
keys.push_back(at2); |
474 |
return bondTypeCont_.find(keys); |
475 |
} |
476 |
|
477 |
BendType* ForceField::getExactBendType(const std::string &at1, |
478 |
const std::string &at2, |
479 |
const std::string &at3){ |
480 |
std::vector<std::string> keys; |
481 |
keys.push_back(at1); |
482 |
keys.push_back(at2); |
483 |
keys.push_back(at3); |
484 |
return bendTypeCont_.find(keys); |
485 |
} |
486 |
|
487 |
TorsionType* ForceField::getExactTorsionType(const std::string &at1, |
488 |
const std::string &at2, |
489 |
const std::string &at3, |
490 |
const std::string &at4){ |
491 |
std::vector<std::string> keys; |
492 |
keys.push_back(at1); |
493 |
keys.push_back(at2); |
494 |
keys.push_back(at3); |
495 |
keys.push_back(at4); |
496 |
return torsionTypeCont_.find(keys); |
497 |
} |
498 |
|
499 |
InversionType* ForceField::getExactInversionType(const std::string &at1, |
500 |
const std::string &at2, |
501 |
const std::string &at3, |
502 |
const std::string &at4){ |
503 |
std::vector<std::string> keys; |
504 |
keys.push_back(at1); |
505 |
keys.push_back(at2); |
506 |
keys.push_back(at3); |
507 |
keys.push_back(at4); |
508 |
return inversionTypeCont_.find(keys); |
509 |
} |
510 |
|
511 |
NonBondedInteractionType* ForceField::getExactNonBondedInteractionType(const std::string &at1, const std::string &at2){ |
512 |
std::vector<std::string> keys; |
513 |
keys.push_back(at1); |
514 |
keys.push_back(at2); |
515 |
return nonBondedInteractionTypeCont_.find(keys); |
516 |
} |
517 |
|
518 |
|
519 |
bool ForceField::addAtomType(const std::string &at, AtomType* atomType) { |
520 |
std::vector<std::string> keys; |
521 |
keys.push_back(at); |
522 |
return atomTypeCont_.add(keys, atomType); |
523 |
} |
524 |
|
525 |
bool ForceField::addBondType(const std::string &at1, const std::string &at2, |
526 |
BondType* bondType) { |
527 |
std::vector<std::string> keys; |
528 |
keys.push_back(at1); |
529 |
keys.push_back(at2); |
530 |
return bondTypeCont_.add(keys, bondType); |
531 |
} |
532 |
|
533 |
bool ForceField::addBendType(const std::string &at1, const std::string &at2, |
534 |
const std::string &at3, BendType* bendType) { |
535 |
std::vector<std::string> keys; |
536 |
keys.push_back(at1); |
537 |
keys.push_back(at2); |
538 |
keys.push_back(at3); |
539 |
return bendTypeCont_.add(keys, bendType); |
540 |
} |
541 |
|
542 |
bool ForceField::addTorsionType(const std::string &at1, |
543 |
const std::string &at2, |
544 |
const std::string &at3, |
545 |
const std::string &at4, |
546 |
TorsionType* torsionType) { |
547 |
std::vector<std::string> keys; |
548 |
keys.push_back(at1); |
549 |
keys.push_back(at2); |
550 |
keys.push_back(at3); |
551 |
keys.push_back(at4); |
552 |
return torsionTypeCont_.add(keys, torsionType); |
553 |
} |
554 |
|
555 |
bool ForceField::addInversionType(const std::string &at1, |
556 |
const std::string &at2, |
557 |
const std::string &at3, |
558 |
const std::string &at4, |
559 |
InversionType* inversionType) { |
560 |
std::vector<std::string> keys; |
561 |
keys.push_back(at1); |
562 |
keys.push_back(at2); |
563 |
keys.push_back(at3); |
564 |
keys.push_back(at4); |
565 |
return inversionTypeCont_.add(keys, inversionType); |
566 |
} |
567 |
|
568 |
bool ForceField::addNonBondedInteractionType(const std::string &at1, |
569 |
const std::string &at2, |
570 |
NonBondedInteractionType* nbiType) { |
571 |
std::vector<std::string> keys; |
572 |
keys.push_back(at1); |
573 |
keys.push_back(at2); |
574 |
return nonBondedInteractionTypeCont_.add(keys, nbiType); |
575 |
} |
576 |
|
577 |
RealType ForceField::getRcutFromAtomType(AtomType* at) { |
578 |
/**@todo */ |
579 |
GenericData* data; |
580 |
RealType rcut = 0.0; |
581 |
|
582 |
if (at->isLennardJones()) { |
583 |
data = at->getPropertyByName("LennardJones"); |
584 |
if (data != NULL) { |
585 |
LJParamGenericData* ljData = dynamic_cast<LJParamGenericData*>(data); |
586 |
|
587 |
if (ljData != NULL) { |
588 |
LJParam ljParam = ljData->getData(); |
589 |
|
590 |
//by default use 2.5*sigma as cutoff radius |
591 |
rcut = 2.5 * ljParam.sigma; |
592 |
|
593 |
} else { |
594 |
sprintf( painCave.errMsg, |
595 |
"Can not cast GenericData to LJParam\n"); |
596 |
painCave.severity = OOPSE_ERROR; |
597 |
painCave.isFatal = 1; |
598 |
simError(); |
599 |
} |
600 |
} else { |
601 |
sprintf( painCave.errMsg, "Can not find Parameters for LennardJones\n"); |
602 |
painCave.severity = OOPSE_ERROR; |
603 |
painCave.isFatal = 1; |
604 |
simError(); |
605 |
} |
606 |
} |
607 |
return rcut; |
608 |
} |
609 |
|
610 |
|
611 |
ifstrstream* ForceField::openForceFieldFile(const std::string& filename) { |
612 |
std::string forceFieldFilename(filename); |
613 |
ifstrstream* ffStream = new ifstrstream(); |
614 |
|
615 |
//try to open the force filed file in current directory first |
616 |
ffStream->open(forceFieldFilename.c_str()); |
617 |
if(!ffStream->is_open()){ |
618 |
|
619 |
forceFieldFilename = ffPath_ + "/" + forceFieldFilename; |
620 |
ffStream->open( forceFieldFilename.c_str() ); |
621 |
|
622 |
//if current directory does not contain the force field file, |
623 |
//try to open it in the path |
624 |
if(!ffStream->is_open()){ |
625 |
|
626 |
sprintf( painCave.errMsg, |
627 |
"Error opening the force field parameter file:\n" |
628 |
"\t%s\n" |
629 |
"\tHave you tried setting the FORCE_PARAM_PATH environment " |
630 |
"variable?\n", |
631 |
forceFieldFilename.c_str() ); |
632 |
painCave.severity = OOPSE_ERROR; |
633 |
painCave.isFatal = 1; |
634 |
simError(); |
635 |
} |
636 |
} |
637 |
return ffStream; |
638 |
} |
639 |
|
640 |
void ForceField::setFortranForceOptions(){ |
641 |
ForceOptions theseFortranOptions; |
642 |
forceFieldOptions_.makeFortranOptions(theseFortranOptions); |
643 |
setfForceOptions(&theseFortranOptions); |
644 |
} |
645 |
} //end namespace oopse |