1 |
/* |
2 |
* Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. |
3 |
* |
4 |
* The University of Notre Dame grants you ("Licensee") a |
5 |
* non-exclusive, royalty free, license to use, modify and |
6 |
* redistribute this software in source and binary code form, provided |
7 |
* that the following conditions are met: |
8 |
* |
9 |
* 1. Acknowledgement of the program authors must be made in any |
10 |
* publication of scientific results based in part on use of the |
11 |
* program. An acceptable form of acknowledgement is citation of |
12 |
* the article in which the program was described (Matthew |
13 |
* A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher |
14 |
* J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented |
15 |
* Parallel Simulation Engine for Molecular Dynamics," |
16 |
* J. Comput. Chem. 26, pp. 252-271 (2005)) |
17 |
* |
18 |
* 2. Redistributions of source code must retain the above copyright |
19 |
* notice, this list of conditions and the following disclaimer. |
20 |
* |
21 |
* 3. Redistributions in binary form must reproduce the above copyright |
22 |
* notice, this list of conditions and the following disclaimer in the |
23 |
* documentation and/or other materials provided with the |
24 |
* distribution. |
25 |
* |
26 |
* This software is provided "AS IS," without a warranty of any |
27 |
* kind. All express or implied conditions, representations and |
28 |
* warranties, including any implied warranty of merchantability, |
29 |
* fitness for a particular purpose or non-infringement, are hereby |
30 |
* excluded. The University of Notre Dame and its licensors shall not |
31 |
* be liable for any damages suffered by licensee as a result of |
32 |
* using, modifying or distributing the software or its |
33 |
* derivatives. In no event will the University of Notre Dame or its |
34 |
* licensors be liable for any lost revenue, profit or data, or for |
35 |
* direct, indirect, special, consequential, incidental or punitive |
36 |
* damages, however caused and regardless of the theory of liability, |
37 |
* arising out of the use of or inability to use software, even if the |
38 |
* University of Notre Dame has been advised of the possibility of |
39 |
* such damages. |
40 |
*/ |
41 |
|
42 |
#include <cstring> |
43 |
#include "visitors/AtomVisitor.hpp" |
44 |
#include "primitives/DirectionalAtom.hpp" |
45 |
#include "primitives/RigidBody.hpp" |
46 |
|
47 |
namespace oopse { |
48 |
void BaseAtomVisitor::visit(RigidBody *rb) { |
49 |
//vector<Atom*> myAtoms; |
50 |
//vector<Atom*>::iterator atomIter; |
51 |
|
52 |
//myAtoms = rb->getAtoms(); |
53 |
|
54 |
//for(atomIter = myAtoms.begin(); atomIter != myAtoms.end(); ++atomIter) |
55 |
// (*atomIter)->accept(this); |
56 |
} |
57 |
|
58 |
void BaseAtomVisitor::setVisited(Atom *atom) { |
59 |
GenericData *data; |
60 |
data = atom->getPropertyByName("VISITED"); |
61 |
|
62 |
//if visited property is not existed, add it as new property |
63 |
if (data == NULL) { |
64 |
data = new GenericData(); |
65 |
data->setID("VISITED"); |
66 |
atom->addProperty(data); |
67 |
} |
68 |
} |
69 |
|
70 |
bool BaseAtomVisitor::isVisited(Atom *atom) { |
71 |
GenericData *data; |
72 |
data = atom->getPropertyByName("VISITED"); |
73 |
return data == NULL ? false : true; |
74 |
} |
75 |
|
76 |
bool SSDAtomVisitor::isSSDAtom(const std::string&atomType) { |
77 |
std::set<std::string>::iterator strIter; |
78 |
strIter = ssdAtomType.find(atomType); |
79 |
return strIter != ssdAtomType.end() ? true : false; |
80 |
} |
81 |
|
82 |
void SSDAtomVisitor::visit(DirectionalAtom *datom) { |
83 |
std::vector<AtomInfo*>atoms; |
84 |
|
85 |
//we need to convert SSD into 4 differnet atoms |
86 |
//one oxygen atom, two hydrogen atoms and one pseudo atom which is the center of the mass |
87 |
//of the water with a dipole moment |
88 |
Vector3d h1(0.0, -0.75695, 0.5206); |
89 |
Vector3d h2(0.0, 0.75695, 0.5206); |
90 |
Vector3d ox(0.0, 0.0, -0.0654); |
91 |
Vector3d u(0, 0, 1); |
92 |
RotMat3x3d rotMatrix; |
93 |
RotMat3x3d rotTrans; |
94 |
AtomInfo * atomInfo; |
95 |
Vector3d pos; |
96 |
Vector3d newVec; |
97 |
Quat4d q; |
98 |
AtomData * atomData; |
99 |
GenericData *data; |
100 |
bool haveAtomData; |
101 |
|
102 |
//if atom is not SSD atom, just skip it |
103 |
if (!isSSDAtom(datom->getType())) |
104 |
return; |
105 |
|
106 |
data = datom->getPropertyByName("ATOMDATA"); |
107 |
|
108 |
if (data != NULL) { |
109 |
atomData = dynamic_cast<AtomData *>(data); |
110 |
|
111 |
if (atomData == NULL) { |
112 |
std::cerr << "can not get Atom Data from " << datom->getType() << std::endl; |
113 |
atomData = new AtomData; |
114 |
haveAtomData = false; |
115 |
} else |
116 |
haveAtomData = true; |
117 |
} else { |
118 |
atomData = new AtomData; |
119 |
haveAtomData = false; |
120 |
} |
121 |
|
122 |
pos = datom->getPos(); |
123 |
q = datom->getQ(); |
124 |
rotMatrix = datom->getA(); |
125 |
|
126 |
// We need A^T to convert from body-fixed to space-fixed: |
127 |
//transposeMat3(rotMatrix, rotTrans); |
128 |
rotTrans = rotMatrix.transpose(); |
129 |
|
130 |
//center of mass of the water molecule |
131 |
//matVecMul3(rotTrans, u, newVec); |
132 |
newVec = rotTrans * u; |
133 |
|
134 |
atomInfo = new AtomInfo; |
135 |
atomInfo->atomTypeName = "X"; |
136 |
atomInfo->pos[0] = pos[0]; |
137 |
atomInfo->pos[1] = pos[1]; |
138 |
atomInfo->pos[2] = pos[2]; |
139 |
atomInfo->dipole[0] = newVec[0]; |
140 |
atomInfo->dipole[1] = newVec[1]; |
141 |
atomInfo->dipole[2] = newVec[2]; |
142 |
|
143 |
atomData->addAtomInfo(atomInfo); |
144 |
|
145 |
//oxygen |
146 |
//matVecMul3(rotTrans, ox, newVec); |
147 |
newVec = rotTrans * ox; |
148 |
|
149 |
atomInfo = new AtomInfo; |
150 |
atomInfo->atomTypeName = "O"; |
151 |
atomInfo->pos[0] = pos[0] + newVec[0]; |
152 |
atomInfo->pos[1] = pos[1] + newVec[1]; |
153 |
atomInfo->pos[2] = pos[2] + newVec[2]; |
154 |
atomInfo->dipole[0] = 0.0; |
155 |
atomInfo->dipole[1] = 0.0; |
156 |
atomInfo->dipole[2] = 0.0; |
157 |
atomData->addAtomInfo(atomInfo); |
158 |
|
159 |
//hydrogen1 |
160 |
//matVecMul3(rotTrans, h1, newVec); |
161 |
newVec = rotTrans * h1; |
162 |
atomInfo = new AtomInfo; |
163 |
atomInfo->atomTypeName = "H"; |
164 |
atomInfo->pos[0] = pos[0] + newVec[0]; |
165 |
atomInfo->pos[1] = pos[1] + newVec[1]; |
166 |
atomInfo->pos[2] = pos[2] + newVec[2]; |
167 |
atomInfo->dipole[0] = 0.0; |
168 |
atomInfo->dipole[1] = 0.0; |
169 |
atomInfo->dipole[2] = 0.0; |
170 |
atomData->addAtomInfo(atomInfo); |
171 |
|
172 |
//hydrogen2 |
173 |
//matVecMul3(rotTrans, h2, newVec); |
174 |
newVec = rotTrans * h2; |
175 |
atomInfo = new AtomInfo; |
176 |
atomInfo->atomTypeName = "H"; |
177 |
atomInfo->pos[0] = pos[0] + newVec[0]; |
178 |
atomInfo->pos[1] = pos[1] + newVec[1]; |
179 |
atomInfo->pos[2] = pos[2] + newVec[2]; |
180 |
atomInfo->dipole[0] = 0.0; |
181 |
atomInfo->dipole[1] = 0.0; |
182 |
atomInfo->dipole[2] = 0.0; |
183 |
atomData->addAtomInfo(atomInfo); |
184 |
|
185 |
//add atom data into atom's property |
186 |
|
187 |
if (!haveAtomData) { |
188 |
atomData->setID("ATOMDATA"); |
189 |
datom->addProperty(atomData); |
190 |
} |
191 |
|
192 |
setVisited(datom); |
193 |
} |
194 |
|
195 |
const std::string SSDAtomVisitor::toString() { |
196 |
char buffer[65535]; |
197 |
std::string result; |
198 |
|
199 |
sprintf(buffer, |
200 |
"------------------------------------------------------------------\n"); |
201 |
result += buffer; |
202 |
|
203 |
sprintf(buffer, "Visitor name: %s\n", visitorName.c_str()); |
204 |
result += buffer; |
205 |
|
206 |
sprintf(buffer, |
207 |
"Visitor Description: Convert SSD into 4 different atoms\n"); |
208 |
result += buffer; |
209 |
|
210 |
sprintf(buffer, |
211 |
"------------------------------------------------------------------\n"); |
212 |
result += buffer; |
213 |
|
214 |
return result; |
215 |
} |
216 |
|
217 |
bool LinearAtomVisitor::isLinearAtom(const std::string& atomType){ |
218 |
std::set<std::string>::iterator strIter; |
219 |
strIter = linearAtomType.find(atomType); |
220 |
|
221 |
return strIter != linearAtomType.end() ? true : false; |
222 |
} |
223 |
|
224 |
void LinearAtomVisitor::addGayBerneAtomType(const std::string& atomType){ |
225 |
linearAtomType.insert(atomType); |
226 |
} |
227 |
|
228 |
void LinearAtomVisitor::visit(DirectionalAtom* datom){ |
229 |
std::vector<AtomInfo*> atoms; |
230 |
//we need to convert linear into 4 different atoms |
231 |
Vector3d c1(0.0, 0.0, -1.8); |
232 |
Vector3d c2(0.0, 0.0, -0.6); |
233 |
Vector3d c3(0.0, 0.0, 0.6); |
234 |
Vector3d c4(0.0, 0.0, 1.8); |
235 |
RotMat3x3d rotMatrix; |
236 |
RotMat3x3d rotTrans; |
237 |
AtomInfo* atomInfo; |
238 |
Vector3d pos; |
239 |
Vector3d newVec; |
240 |
Quat4d q; |
241 |
AtomData* atomData; |
242 |
GenericData* data; |
243 |
bool haveAtomData; |
244 |
AtomType* atomType; |
245 |
//if atom is not SSD atom, just skip it |
246 |
if(!isLinearAtom(datom->getType()) || !datom->getAtomType()->isGayBerne()) |
247 |
return; |
248 |
|
249 |
//setup GayBerne type in fortran side |
250 |
data = datom->getAtomType()->getPropertyByName("GayBerne"); |
251 |
if (data != NULL) { |
252 |
GayBerneParamGenericData* gayBerneData = dynamic_cast<GayBerneParamGenericData*>(data); |
253 |
|
254 |
if (gayBerneData != NULL) { |
255 |
GayBerneParam gayBerneParam = gayBerneData->getData(); |
256 |
|
257 |
// double halfLen = gayBerneParam.GB_sigma * gayBerneParam.GB_l2b_ratio/2.0; |
258 |
double halfLen = gayBerneParam.GB_l/2.0; |
259 |
c1[2] = -halfLen; |
260 |
c2[2] = -halfLen /2; |
261 |
c3[2] = halfLen/2; |
262 |
c4[2] = halfLen; |
263 |
|
264 |
} |
265 |
|
266 |
else { |
267 |
sprintf( painCave.errMsg, |
268 |
"Can not cast GenericData to GayBerneParam\n"); |
269 |
painCave.severity = OOPSE_ERROR; |
270 |
painCave.isFatal = 1; |
271 |
simError(); |
272 |
} |
273 |
} |
274 |
|
275 |
|
276 |
data = datom->getPropertyByName("ATOMDATA"); |
277 |
if(data != NULL){ |
278 |
atomData = dynamic_cast<AtomData*>(data); |
279 |
if(atomData == NULL){ |
280 |
std::cerr << "can not get Atom Data from " << datom->getType() << std::endl; |
281 |
atomData = new AtomData; |
282 |
haveAtomData = false; |
283 |
} else { |
284 |
haveAtomData = true; |
285 |
} |
286 |
} else { |
287 |
atomData = new AtomData; |
288 |
haveAtomData = false; |
289 |
} |
290 |
|
291 |
|
292 |
pos = datom->getPos(); |
293 |
q = datom->getQ(); |
294 |
rotMatrix = datom->getA(); |
295 |
|
296 |
// We need A^T to convert from body-fixed to space-fixed: |
297 |
rotTrans = rotMatrix.transpose(); |
298 |
|
299 |
newVec = rotTrans * c1; |
300 |
atomInfo = new AtomInfo; |
301 |
atomInfo->atomTypeName = "C"; |
302 |
atomInfo->pos[0] = pos[0] + newVec[0]; |
303 |
atomInfo->pos[1] = pos[1] + newVec[1]; |
304 |
atomInfo->pos[2] = pos[2] + newVec[2]; |
305 |
atomInfo->dipole[0] = 0.0; |
306 |
atomInfo->dipole[1] = 0.0; |
307 |
atomInfo->dipole[2] = 0.0; |
308 |
atomData->addAtomInfo(atomInfo); |
309 |
|
310 |
newVec = rotTrans * c2; |
311 |
atomInfo = new AtomInfo; |
312 |
atomInfo->atomTypeName = "C"; |
313 |
atomInfo->pos[0] = pos[0] + newVec[0]; |
314 |
atomInfo->pos[1] = pos[1] + newVec[1]; |
315 |
atomInfo->pos[2] = pos[2] + newVec[2]; |
316 |
atomInfo->dipole[0] = 0.0; |
317 |
atomInfo->dipole[1] = 0.0; |
318 |
atomInfo->dipole[2] = 0.0; |
319 |
atomData->addAtomInfo(atomInfo); |
320 |
|
321 |
newVec = rotTrans * c3; |
322 |
atomInfo = new AtomInfo; |
323 |
atomInfo->atomTypeName = "C"; |
324 |
atomInfo->pos[0] = pos[0] + newVec[0]; |
325 |
atomInfo->pos[1] = pos[1] + newVec[1]; |
326 |
atomInfo->pos[2] = pos[2] + newVec[2]; |
327 |
atomInfo->dipole[0] = 0.0; |
328 |
atomInfo->dipole[1] = 0.0; |
329 |
atomInfo->dipole[2] = 0.0; |
330 |
atomData->addAtomInfo(atomInfo); |
331 |
|
332 |
newVec = rotTrans * c4; |
333 |
atomInfo = new AtomInfo; |
334 |
atomInfo->atomTypeName = "C"; |
335 |
atomInfo->pos[0] = pos[0] + newVec[0]; |
336 |
atomInfo->pos[1] = pos[1] + newVec[1]; |
337 |
atomInfo->pos[2] = pos[2] + newVec[2]; |
338 |
atomInfo->dipole[0] = 0.0; |
339 |
atomInfo->dipole[1] = 0.0; |
340 |
atomInfo->dipole[2] = 0.0; |
341 |
atomData->addAtomInfo(atomInfo); |
342 |
|
343 |
//add atom data into atom's property |
344 |
|
345 |
if(!haveAtomData){ |
346 |
atomData->setID("ATOMDATA"); |
347 |
datom->addProperty(atomData); |
348 |
} |
349 |
|
350 |
setVisited(datom); |
351 |
|
352 |
} |
353 |
|
354 |
const std::string LinearAtomVisitor::toString(){ |
355 |
char buffer[65535]; |
356 |
std::string result; |
357 |
|
358 |
sprintf(buffer ,"------------------------------------------------------------------\n"); |
359 |
result += buffer; |
360 |
|
361 |
sprintf(buffer ,"Visitor name: %s\n", visitorName.c_str()); |
362 |
result += buffer; |
363 |
|
364 |
sprintf(buffer , "Visitor Description: Convert linear into 4 different atoms\n"); |
365 |
result += buffer; |
366 |
|
367 |
sprintf(buffer ,"------------------------------------------------------------------\n"); |
368 |
result += buffer; |
369 |
|
370 |
return result; |
371 |
} |
372 |
|
373 |
bool GBLipidAtomVisitor::isGBLipidAtom(const std::string& atomType){ |
374 |
std::set<std::string>::iterator strIter; |
375 |
strIter = GBLipidAtomType.find(atomType); |
376 |
|
377 |
return strIter != GBLipidAtomType.end() ? true : false; |
378 |
} |
379 |
|
380 |
void GBLipidAtomVisitor::visit(DirectionalAtom* datom){ |
381 |
std::vector<AtomInfo*> atoms; |
382 |
//we need to convert linear into 4 different atoms |
383 |
Vector3d c1(0.0, 0.0, -6.25); |
384 |
Vector3d c2(0.0, 0.0, -2.1); |
385 |
Vector3d c3(0.0, 0.0, 2.1); |
386 |
Vector3d c4(0.0, 0.0, 6.25); |
387 |
RotMat3x3d rotMatrix; |
388 |
RotMat3x3d rotTrans; |
389 |
AtomInfo* atomInfo; |
390 |
Vector3d pos; |
391 |
Vector3d newVec; |
392 |
Quat4d q; |
393 |
AtomData* atomData; |
394 |
GenericData* data; |
395 |
bool haveAtomData; |
396 |
|
397 |
//if atom is not GBlipid atom, just skip it |
398 |
if(!isGBLipidAtom(datom->getType())) |
399 |
return; |
400 |
|
401 |
data = datom->getPropertyByName("ATOMDATA"); |
402 |
if(data != NULL){ |
403 |
atomData = dynamic_cast<AtomData*>(data); |
404 |
if(atomData == NULL){ |
405 |
std::cerr << "can not get Atom Data from " << datom->getType() << std::endl; |
406 |
atomData = new AtomData; |
407 |
haveAtomData = false; |
408 |
} else { |
409 |
haveAtomData = true; |
410 |
} |
411 |
} else { |
412 |
atomData = new AtomData; |
413 |
haveAtomData = false; |
414 |
} |
415 |
|
416 |
|
417 |
pos = datom->getPos(); |
418 |
q = datom->getQ(); |
419 |
rotMatrix = datom->getA(); |
420 |
|
421 |
// We need A^T to convert from body-fixed to space-fixed: |
422 |
rotTrans = rotMatrix.transpose(); |
423 |
|
424 |
newVec = rotTrans * c1; |
425 |
atomInfo = new AtomInfo; |
426 |
atomInfo->atomTypeName = "K"; |
427 |
atomInfo->pos[0] = pos[0] + newVec[0]; |
428 |
atomInfo->pos[1] = pos[1] + newVec[1]; |
429 |
atomInfo->pos[2] = pos[2] + newVec[2]; |
430 |
atomInfo->dipole[0] = 0.0; |
431 |
atomInfo->dipole[1] = 0.0; |
432 |
atomInfo->dipole[2] = 0.0; |
433 |
atomData->addAtomInfo(atomInfo); |
434 |
|
435 |
newVec = rotTrans * c2; |
436 |
atomInfo = new AtomInfo; |
437 |
atomInfo->atomTypeName = "K"; |
438 |
atomInfo->pos[0] = pos[0] + newVec[0]; |
439 |
atomInfo->pos[1] = pos[1] + newVec[1]; |
440 |
atomInfo->pos[2] = pos[2] + newVec[2]; |
441 |
atomInfo->dipole[0] = 0.0; |
442 |
atomInfo->dipole[1] = 0.0; |
443 |
atomInfo->dipole[2] = 0.0; |
444 |
atomData->addAtomInfo(atomInfo); |
445 |
|
446 |
newVec = rotTrans * c3; |
447 |
atomInfo = new AtomInfo; |
448 |
atomInfo->atomTypeName = "K"; |
449 |
atomInfo->pos[0] = pos[0] + newVec[0]; |
450 |
atomInfo->pos[1] = pos[1] + newVec[1]; |
451 |
atomInfo->pos[2] = pos[2] + newVec[2]; |
452 |
atomInfo->dipole[0] = 0.0; |
453 |
atomInfo->dipole[1] = 0.0; |
454 |
atomInfo->dipole[2] = 0.0; |
455 |
atomData->addAtomInfo(atomInfo); |
456 |
|
457 |
newVec = rotTrans * c4; |
458 |
atomInfo = new AtomInfo; |
459 |
atomInfo->atomTypeName = "K"; |
460 |
atomInfo->pos[0] = pos[0] + newVec[0]; |
461 |
atomInfo->pos[1] = pos[1] + newVec[1]; |
462 |
atomInfo->pos[2] = pos[2] + newVec[2]; |
463 |
atomInfo->dipole[0] = 0.0; |
464 |
atomInfo->dipole[1] = 0.0; |
465 |
atomInfo->dipole[2] = 0.0; |
466 |
atomData->addAtomInfo(atomInfo); |
467 |
|
468 |
//add atom data into atom's property |
469 |
|
470 |
if(!haveAtomData){ |
471 |
atomData->setID("ATOMDATA"); |
472 |
datom->addProperty(atomData); |
473 |
} |
474 |
|
475 |
setVisited(datom); |
476 |
|
477 |
} |
478 |
|
479 |
const std::string GBLipidAtomVisitor::toString(){ |
480 |
char buffer[65535]; |
481 |
std::string result; |
482 |
|
483 |
sprintf(buffer ,"------------------------------------------------------------------\n"); |
484 |
result += buffer; |
485 |
|
486 |
sprintf(buffer ,"Visitor name: %s\n", visitorName.c_str()); |
487 |
result += buffer; |
488 |
|
489 |
sprintf(buffer , "Visitor Description: Convert GBlipid into 4 different K atoms\n"); |
490 |
result += buffer; |
491 |
|
492 |
sprintf(buffer ,"------------------------------------------------------------------\n"); |
493 |
result += buffer; |
494 |
|
495 |
return result; |
496 |
} |
497 |
|
498 |
//----------------------------------------------------------------------------// |
499 |
|
500 |
void DefaultAtomVisitor::visit(Atom *atom) { |
501 |
AtomData *atomData; |
502 |
AtomInfo *atomInfo; |
503 |
Vector3d pos; |
504 |
|
505 |
if (isVisited(atom)) |
506 |
return; |
507 |
|
508 |
atomInfo = new AtomInfo; |
509 |
|
510 |
atomData = new AtomData; |
511 |
atomData->setID("ATOMDATA"); |
512 |
|
513 |
pos = atom->getPos(); |
514 |
atomInfo->atomTypeName = atom->getType(); |
515 |
atomInfo->pos[0] = pos[0]; |
516 |
atomInfo->pos[1] = pos[1]; |
517 |
atomInfo->pos[2] = pos[2]; |
518 |
atomInfo->dipole[0] = 0.0; |
519 |
atomInfo->dipole[1] = 0.0; |
520 |
atomInfo->dipole[2] = 0.0; |
521 |
|
522 |
atomData->addAtomInfo(atomInfo); |
523 |
|
524 |
atom->addProperty(atomData); |
525 |
|
526 |
setVisited(atom); |
527 |
} |
528 |
|
529 |
void DefaultAtomVisitor::visit(DirectionalAtom *datom) { |
530 |
AtomData *atomData; |
531 |
AtomInfo *atomInfo; |
532 |
Vector3d pos; |
533 |
Vector3d u; |
534 |
|
535 |
if (isVisited(datom)) |
536 |
return; |
537 |
|
538 |
pos = datom->getPos(); |
539 |
if (datom->getAtomType()->isGayBerne()) { |
540 |
u = datom->getA().transpose()*V3Z; |
541 |
} else if (datom->getAtomType()->isMultipole()) { |
542 |
u = datom->getElectroFrame().getColumn(2); |
543 |
} |
544 |
atomData = new AtomData; |
545 |
atomData->setID("ATOMDATA"); |
546 |
atomInfo = new AtomInfo; |
547 |
|
548 |
atomInfo->atomTypeName = datom->getType(); |
549 |
atomInfo->pos[0] = pos[0]; |
550 |
atomInfo->pos[1] = pos[1]; |
551 |
atomInfo->pos[2] = pos[2]; |
552 |
atomInfo->dipole[0] = u[0]; |
553 |
atomInfo->dipole[1] = u[1]; |
554 |
atomInfo->dipole[2] = u[2]; |
555 |
|
556 |
atomData->addAtomInfo(atomInfo); |
557 |
|
558 |
datom->addProperty(atomData); |
559 |
|
560 |
setVisited(datom); |
561 |
} |
562 |
|
563 |
const std::string DefaultAtomVisitor::toString() { |
564 |
char buffer[65535]; |
565 |
std::string result; |
566 |
|
567 |
sprintf(buffer, |
568 |
"------------------------------------------------------------------\n"); |
569 |
result += buffer; |
570 |
|
571 |
sprintf(buffer, "Visitor name: %s\n", visitorName.c_str()); |
572 |
result += buffer; |
573 |
|
574 |
sprintf(buffer, |
575 |
"Visitor Description: copy atom infomation into atom data\n"); |
576 |
result += buffer; |
577 |
|
578 |
sprintf(buffer, |
579 |
"------------------------------------------------------------------\n"); |
580 |
result += buffer; |
581 |
|
582 |
return result; |
583 |
} |
584 |
} //namespace oopse |