| 1 | /********************************************************************** | 
| 2 | matrix3x3.cpp - Handle 3D Rotation matrix. | 
| 3 |  | 
| 4 | Copyright (C) 1998-2001 by OpenEye Scientific Software, Inc. | 
| 5 | Some portions Copyright (C) 2001-2005 by Geoffrey R. Hutchison | 
| 6 |  | 
| 7 | This file is part of the Open Babel project. | 
| 8 | For more information, see <http://openbabel.sourceforge.net/> | 
| 9 |  | 
| 10 | This program is free software; you can redistribute it and/or modify | 
| 11 | it under the terms of the GNU General Public License as published by | 
| 12 | the Free Software Foundation version 2 of the License. | 
| 13 |  | 
| 14 | This program is distributed in the hope that it will be useful, | 
| 15 | but WITHOUT ANY WARRANTY; without even the implied warranty of | 
| 16 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
| 17 | GNU General Public License for more details. | 
| 18 | ***********************************************************************/ | 
| 19 |  | 
| 20 | #ifndef OB_MATRIX3x3_H | 
| 21 | #define OB_MATRIX3x3_H | 
| 22 |  | 
| 23 | #include "oberror.hpp" | 
| 24 |  | 
| 25 | #if HAVE_IOSTREAM | 
| 26 | #include <iostream> | 
| 27 | #elif HAVE_IOSTREAM_H | 
| 28 | #include <iostream.h> | 
| 29 | #endif | 
| 30 |  | 
| 31 | #if HAVE_FSTREAM | 
| 32 | #include <fstream> | 
| 33 | #elif HAVE_FSTREAM_H | 
| 34 | #include <fstream.h> | 
| 35 | #endif | 
| 36 |  | 
| 37 | #include <math.h> | 
| 38 |  | 
| 39 | #include "obutil.hpp" | 
| 40 | #include "vector3.hpp" | 
| 41 |  | 
| 42 | #ifndef PI | 
| 43 | #define PI 3.1415926535897932384626433 | 
| 44 | #endif | 
| 45 |  | 
| 46 | #ifndef RAD_TO_DEG | 
| 47 | #define RAD_TO_DEG 180.0/PI | 
| 48 | #endif | 
| 49 |  | 
| 50 | #ifndef DEG_TO_RAD | 
| 51 | #define DEG_TO_RAD PI/180.0 | 
| 52 | #endif | 
| 53 |  | 
| 54 | namespace OpenBabel | 
| 55 | { | 
| 56 |  | 
| 57 | // class introduction in matrix3x3.cpp | 
| 58 | class OBAPI matrix3x3 | 
| 59 | { | 
| 60 | //! Elements of the matrix | 
| 61 | /*! This array holds the matrix. The first index refers to the | 
| 62 | row, the second the column. */ | 
| 63 | double ele[3][3]; | 
| 64 |  | 
| 65 | public: | 
| 66 | //! constructs the zero-matrix | 
| 67 | matrix3x3(void) | 
| 68 | { | 
| 69 | ele[0][0] = 0.0; | 
| 70 | ele[0][1] = 0.0; | 
| 71 | ele[0][2] = 0.0; | 
| 72 | ele[1][0] = 0.0; | 
| 73 | ele[1][1] = 0.0; | 
| 74 | ele[1][2] = 0.0; | 
| 75 | ele[2][0] = 0.0; | 
| 76 | ele[2][1] = 0.0; | 
| 77 | ele[2][2] = 0.0; | 
| 78 | } | 
| 79 |  | 
| 80 | //! constructs s times the unit matrix | 
| 81 | matrix3x3(double s) | 
| 82 | { | 
| 83 | ele[0][0] = s; | 
| 84 | ele[0][1] = 0.0; | 
| 85 | ele[0][2] = 0.0; | 
| 86 | ele[1][0] = 0.0; | 
| 87 | ele[1][1] = s; | 
| 88 | ele[1][2] = 0.0; | 
| 89 | ele[2][0] = 0.0; | 
| 90 | ele[2][1] = 0.0; | 
| 91 | ele[2][2] = s; | 
| 92 | } | 
| 93 |  | 
| 94 | //! constructs a matrix from row vectors | 
| 95 | matrix3x3(vector3 row1,vector3 row2,vector3 row3) | 
| 96 | { | 
| 97 | ele[0][0] = row1.x(); | 
| 98 | ele[0][1] = row1.y(); | 
| 99 | ele[0][2] = row1.z(); | 
| 100 | ele[1][0] = row2.x(); | 
| 101 | ele[1][1] = row2.y(); | 
| 102 | ele[1][2] = row2.z(); | 
| 103 | ele[2][0] = row3.x(); | 
| 104 | ele[2][1] = row3.y(); | 
| 105 | ele[2][2] = row3.z(); | 
| 106 | } | 
| 107 |  | 
| 108 | //! constructs a matrix from a 3x3-array of doubles | 
| 109 | /*! constructs a matrix from a 3x3-array of doubles. The first | 
| 110 | index represents the row, the second index the column */ | 
| 111 | matrix3x3(double d[3][3]) | 
| 112 | { | 
| 113 | ele[0][0] = d[0][0]; | 
| 114 | ele[0][1] = d[0][1]; | 
| 115 | ele[0][2] = d[0][2]; | 
| 116 | ele[1][0] = d[1][0]; | 
| 117 | ele[1][1] = d[1][1]; | 
| 118 | ele[1][2] = d[1][2]; | 
| 119 | ele[2][0] = d[2][0]; | 
| 120 | ele[2][1] = d[2][1]; | 
| 121 | ele[2][2] = d[2][2]; | 
| 122 | } | 
| 123 |  | 
| 124 | //! access function | 
| 125 | /*! writes the matrix into the 1-dimensional array m, row by | 
| 126 | row. The array must be able to hold 9 doubles, otherwise your | 
| 127 | prgram will segfault. */ | 
| 128 | void GetArray(double *m) | 
| 129 | { | 
| 130 | m[0] = ele[0][0]; | 
| 131 | m[1] = ele[0][1]; | 
| 132 | m[2] = ele[0][2]; | 
| 133 | m[3] = ele[1][0]; | 
| 134 | m[4] = ele[1][1]; | 
| 135 | m[5] = ele[1][2]; | 
| 136 | m[6] = ele[2][0]; | 
| 137 | m[7] = ele[2][1]; | 
| 138 | m[8] = ele[2][2]; | 
| 139 | } | 
| 140 |  | 
| 141 | //! Calculates the inverse of a matrix. | 
| 142 | matrix3x3 inverse(void) const throw(OBError); | 
| 143 |  | 
| 144 | //! Calculates the transpose of a matrix. | 
| 145 | matrix3x3 transpose(void) const; | 
| 146 |  | 
| 147 | //! generates a matrix for a random rotation | 
| 148 | void randomRotation(OBRandom &rnd); | 
| 149 |  | 
| 150 | //! returns the determinant of the matrix | 
| 151 | double determinant() const; | 
| 152 |  | 
| 153 | //! Checks if a matrix is symmetric | 
| 154 | bool isSymmetric(void) const; | 
| 155 |  | 
| 156 | //! Checks if a matrix is orthogonal | 
| 157 | /*! This method checks if a matrix describes an orthogonal | 
| 158 | transformation, i.e. if all column vectors are normalized and | 
| 159 | are mutually orthogonal. An orthogonal transformation is a | 
| 160 | transformation the preserves length and angle. | 
| 161 |  | 
| 162 | The check is performed using the method isUnitMatrix() to | 
| 163 | check if | 
| 164 | \code | 
| 165 | *this * transpose() | 
| 166 | \endcode | 
| 167 | is a unit matrix. The criterion is therefore numerically quite | 
| 168 | tight. */ | 
| 169 | bool isOrthogonal(void) const | 
| 170 | { | 
| 171 | return (*this * transpose()).isUnitMatrix(); | 
| 172 | }; | 
| 173 |  | 
| 174 | //! Checks if a matrix is diagonal | 
| 175 | bool isDiagonal(void) const; | 
| 176 |  | 
| 177 | //! Checks if a matrix is the unit matrix | 
| 178 | bool isUnitMatrix(void) const; | 
| 179 |  | 
| 180 | //! access function | 
| 181 | /*! \warning row or column are not in the range 0..2, random | 
| 182 | results are returned, and your program may even | 
| 183 | segfault. (Stefan Kebekus) | 
| 184 |  | 
| 185 | \todo Replace this method with a more fool-proof version. | 
| 186 | */ | 
| 187 | double Get(int row,int column) const | 
| 188 | { | 
| 189 | if (row >= 0 && row <= 2 && column >= 0 && column <= 2) | 
| 190 | return(ele[row][column]); | 
| 191 | else | 
| 192 | return 0.0f; | 
| 193 | } | 
| 194 |  | 
| 195 | //! access function | 
| 196 | /*! \warning if row or column are not in the range 0..2, random | 
| 197 | variables are overwritten, and your program may | 
| 198 | segfault. (Stefan Kebekus) | 
| 199 |  | 
| 200 | \todo Replace this method with a more fool-proof version. | 
| 201 | */ | 
| 202 | void Set(int row,int column, double v) | 
| 203 | { | 
| 204 | if (row >= 0 && row <= 2 && column >= 0 && column <= 2) | 
| 205 | ele[row][column]= v; | 
| 206 | } | 
| 207 |  | 
| 208 | //! access function | 
| 209 | /*! \warning If column is not in the range 0..2, the vector | 
| 210 | remains unchanged and an exception is thrown. */ | 
| 211 | void SetColumn(int column, const vector3 &v) throw(OBError); | 
| 212 |  | 
| 213 | //! access function | 
| 214 | /*! \warning If column is not in the range 0..2, the vector | 
| 215 | remains unchanged and an exception is thrown. */ | 
| 216 | void SetRow(int row, const vector3 &v) throw(OBError); | 
| 217 |  | 
| 218 | //! access function | 
| 219 | /*! \warning If col is not in the range 0..2, an exception is | 
| 220 | thrown. */ | 
| 221 | vector3 GetColumn(unsigned int col) const throw(OBError); | 
| 222 |  | 
| 223 | //! access function | 
| 224 | /*! \warning If row is not in the range 0..2, an exception is | 
| 225 | thrown. */ | 
| 226 | vector3 GetRow(unsigned int row) const throw(OBError); | 
| 227 |  | 
| 228 |  | 
| 229 | //! divides all entries of the matrix by a scalar c | 
| 230 | matrix3x3 &operator/=(const double &c); | 
| 231 |  | 
| 232 | void SetupRotMat(double,double,double); | 
| 233 |  | 
| 234 | //! calculates a matrix that represents reflection on a plane | 
| 235 | void PlaneReflection(const vector3 &norm); | 
| 236 |  | 
| 237 | //! calculates a rotation matrix | 
| 238 | void RotAboutAxisByAngle(const vector3 &axis, const double angle); | 
| 239 |  | 
| 240 | void FillOrth(double,double,double,double,double,double); | 
| 241 |  | 
| 242 | //! find the eigenvalues and -vectors of a symmetric matrix | 
| 243 | matrix3x3 findEigenvectorsIfSymmetric(vector3 &eigenvals) const throw(OBError); | 
| 244 |  | 
| 245 | //! matrix-vector multiplication | 
| 246 | friend OBAPI vector3 operator *(const matrix3x3 &,const vector3 &); | 
| 247 |  | 
| 248 | //! matrix-matrix multiplication | 
| 249 | friend OBAPI matrix3x3 operator *(const matrix3x3 &,const matrix3x3 &); | 
| 250 |  | 
| 251 | friend OBAPI std::ostream& operator<< ( std::ostream&, const matrix3x3 & ) ; | 
| 252 |  | 
| 253 | //! eigenvalue calculation | 
| 254 | static void jacobi(unsigned int n, double *a, double *d, double *v); | 
| 255 | }; | 
| 256 |  | 
| 257 | OBAPI vector3 center_coords(double*,int); | 
| 258 | } | 
| 259 |  | 
| 260 | #endif // OB_MATRIX3x3_H | 
| 261 |  | 
| 262 | //! \file matrix3x3.h | 
| 263 | //! \brief Handle 3D Rotation matrix. |