| 1 | #include <math.h> | 
| 2 | #include "minimizers/OOPSEMinimizer.hpp" | 
| 3 | #include "integrators/Integrator.cpp" | 
| 4 |  | 
| 5 | OOPSEMinimizer::OOPSEMinimizer( SimInfo *theInfo, ForceFields* the_ff , | 
| 6 | MinimizerParameterSet * param) : | 
| 7 | RealIntegrator(theInfo, the_ff), bShake(true), bVerbose(false) { | 
| 8 | dumpOut = NULL; | 
| 9 | statOut = NULL; | 
| 10 |  | 
| 11 | tStats = new Thermo(info); | 
| 12 |  | 
| 13 |  | 
| 14 | paramSet = param; | 
| 15 |  | 
| 16 | calcDim(); | 
| 17 |  | 
| 18 | curX = getCoor(); | 
| 19 | curG.resize(ndim); | 
| 20 |  | 
| 21 | preMove(); | 
| 22 | } | 
| 23 |  | 
| 24 | OOPSEMinimizer::~OOPSEMinimizer(){ | 
| 25 | delete tStats; | 
| 26 | if(dumpOut) | 
| 27 | delete dumpOut; | 
| 28 | if(statOut) | 
| 29 | delete statOut; | 
| 30 | delete paramSet; | 
| 31 | } | 
| 32 |  | 
| 33 | void OOPSEMinimizer::calcEnergyGradient(vector<double>& x, vector<double>& grad, | 
| 34 | double& energy, int& status){ | 
| 35 |  | 
| 36 | DirectionalAtom* dAtom; | 
| 37 | int index; | 
| 38 | double force[3]; | 
| 39 | double dAtomGrad[6]; | 
| 40 | int shakeStatus; | 
| 41 |  | 
| 42 | status = 1; | 
| 43 |  | 
| 44 | setCoor(x); | 
| 45 |  | 
| 46 | if (nConstrained && bShake){ | 
| 47 | shakeStatus = shakeR(); | 
| 48 | } | 
| 49 |  | 
| 50 | calcForce(1, 1); | 
| 51 |  | 
| 52 | if (nConstrained && bShake){ | 
| 53 | shakeStatus = shakeF(); | 
| 54 | } | 
| 55 |  | 
| 56 | x = getCoor(); | 
| 57 |  | 
| 58 |  | 
| 59 | index = 0; | 
| 60 |  | 
| 61 | for(int i = 0; i < integrableObjects.size(); i++){ | 
| 62 |  | 
| 63 | if (integrableObjects[i]->isDirectional()) { | 
| 64 |  | 
| 65 | integrableObjects[i]->getGrad(dAtomGrad); | 
| 66 |  | 
| 67 | //gradient is equal to -f | 
| 68 | grad[index++] = -dAtomGrad[0]; | 
| 69 | grad[index++] = -dAtomGrad[1]; | 
| 70 | grad[index++] = -dAtomGrad[2]; | 
| 71 | grad[index++] = -dAtomGrad[3]; | 
| 72 | grad[index++] = -dAtomGrad[4]; | 
| 73 | grad[index++] = -dAtomGrad[5]; | 
| 74 |  | 
| 75 | } | 
| 76 | else{ | 
| 77 | integrableObjects[i]->getFrc(force); | 
| 78 |  | 
| 79 | grad[index++] = -force[0]; | 
| 80 | grad[index++] = -force[1]; | 
| 81 | grad[index++] = -force[2]; | 
| 82 |  | 
| 83 | } | 
| 84 |  | 
| 85 | } | 
| 86 |  | 
| 87 | energy = tStats->getPotential(); | 
| 88 |  | 
| 89 | } | 
| 90 |  | 
| 91 | void OOPSEMinimizer::setCoor(vector<double>& x){ | 
| 92 |  | 
| 93 | DirectionalAtom* dAtom; | 
| 94 | int index; | 
| 95 | double position[3]; | 
| 96 | double eulerAngle[3]; | 
| 97 |  | 
| 98 |  | 
| 99 | index = 0; | 
| 100 |  | 
| 101 | for(int i = 0; i < integrableObjects.size(); i++){ | 
| 102 |  | 
| 103 | position[0] = x[index++]; | 
| 104 | position[1] = x[index++]; | 
| 105 | position[2] = x[index++]; | 
| 106 |  | 
| 107 | integrableObjects[i]->setPos(position); | 
| 108 |  | 
| 109 | if (integrableObjects[i]->isDirectional()){ | 
| 110 |  | 
| 111 | eulerAngle[0] = x[index++]; | 
| 112 | eulerAngle[1] = x[index++]; | 
| 113 | eulerAngle[2] = x[index++]; | 
| 114 |  | 
| 115 | integrableObjects[i]->setEuler(eulerAngle[0], | 
| 116 | eulerAngle[1], | 
| 117 | eulerAngle[2]); | 
| 118 |  | 
| 119 | } | 
| 120 |  | 
| 121 | } | 
| 122 |  | 
| 123 | } | 
| 124 |  | 
| 125 | vector<double> OOPSEMinimizer::getCoor(){ | 
| 126 |  | 
| 127 | DirectionalAtom* dAtom; | 
| 128 | int index; | 
| 129 | double position[3]; | 
| 130 | double eulerAngle[3]; | 
| 131 | vector<double> x; | 
| 132 |  | 
| 133 | x.resize(getDim()); | 
| 134 |  | 
| 135 | index = 0; | 
| 136 |  | 
| 137 | for(int i = 0; i < integrableObjects.size(); i++){ | 
| 138 | integrableObjects[i]->getPos(position); | 
| 139 |  | 
| 140 | x[index++] = position[0]; | 
| 141 | x[index++] = position[1]; | 
| 142 | x[index++] = position[2]; | 
| 143 |  | 
| 144 | if (integrableObjects[i]->isDirectional()){ | 
| 145 |  | 
| 146 | integrableObjects[i]->getEulerAngles(eulerAngle); | 
| 147 |  | 
| 148 | x[index++] = eulerAngle[0]; | 
| 149 | x[index++] = eulerAngle[1]; | 
| 150 | x[index++] = eulerAngle[2]; | 
| 151 |  | 
| 152 | } | 
| 153 |  | 
| 154 | } | 
| 155 |  | 
| 156 | return x; | 
| 157 |  | 
| 158 | } | 
| 159 |  | 
| 160 |  | 
| 161 | int OOPSEMinimizer::shakeR(){ | 
| 162 | int i, j; | 
| 163 | int done; | 
| 164 | double posA[3], posB[3]; | 
| 165 | double velA[3], velB[3]; | 
| 166 | double pab[3]; | 
| 167 | double rab[3]; | 
| 168 | int a, b, ax, ay, az, bx, by, bz; | 
| 169 | double rma, rmb; | 
| 170 | double dx, dy, dz; | 
| 171 | double rpab; | 
| 172 | double rabsq, pabsq, rpabsq; | 
| 173 | double diffsq; | 
| 174 | double gab; | 
| 175 | int iteration; | 
| 176 |  | 
| 177 | for (i = 0; i < nAtoms; i++){ | 
| 178 | moving[i] = 0; | 
| 179 | moved[i] = 1; | 
| 180 | } | 
| 181 |  | 
| 182 | iteration = 0; | 
| 183 | done = 0; | 
| 184 | while (!done && (iteration < maxIteration)){ | 
| 185 | done = 1; | 
| 186 | for (i = 0; i < nConstrained; i++){ | 
| 187 | a = constrainedA[i]; | 
| 188 | b = constrainedB[i]; | 
| 189 |  | 
| 190 | ax = (a * 3) + 0; | 
| 191 | ay = (a * 3) + 1; | 
| 192 | az = (a * 3) + 2; | 
| 193 |  | 
| 194 | bx = (b * 3) + 0; | 
| 195 | by = (b * 3) + 1; | 
| 196 | bz = (b * 3) + 2; | 
| 197 |  | 
| 198 | if (moved[a] || moved[b]){ | 
| 199 | atoms[a]->getPos(posA); | 
| 200 | atoms[b]->getPos(posB); | 
| 201 |  | 
| 202 | for (j = 0; j < 3; j++) | 
| 203 | pab[j] = posA[j] - posB[j]; | 
| 204 |  | 
| 205 | //periodic boundary condition | 
| 206 |  | 
| 207 | info->wrapVector(pab); | 
| 208 |  | 
| 209 | pabsq = pab[0] * pab[0] + pab[1] * pab[1] + pab[2] * pab[2]; | 
| 210 |  | 
| 211 | rabsq = constrainedDsqr[i]; | 
| 212 | diffsq = rabsq - pabsq; | 
| 213 |  | 
| 214 | // the original rattle code from alan tidesley | 
| 215 | if (fabs(diffsq) > (tol * rabsq * 2)){ | 
| 216 | rab[0] = oldPos[ax] - oldPos[bx]; | 
| 217 | rab[1] = oldPos[ay] - oldPos[by]; | 
| 218 | rab[2] = oldPos[az] - oldPos[bz]; | 
| 219 |  | 
| 220 | info->wrapVector(rab); | 
| 221 |  | 
| 222 | rpab = rab[0] * pab[0] + rab[1] * pab[1] + rab[2] * pab[2]; | 
| 223 |  | 
| 224 | rpabsq = rpab * rpab; | 
| 225 |  | 
| 226 |  | 
| 227 | if (rpabsq < (rabsq * -diffsq)){ | 
| 228 | #ifdef IS_MPI | 
| 229 | a = atoms[a]->getGlobalIndex(); | 
| 230 | b = atoms[b]->getGlobalIndex(); | 
| 231 | #endif //is_mpi | 
| 232 | //cerr << "Waring: constraint failure" << endl; | 
| 233 | gab = sqrt(rabsq/pabsq); | 
| 234 | rab[0] = (posA[0] - posB[0])*gab; | 
| 235 | rab[1]= (posA[1] - posB[1])*gab; | 
| 236 | rab[2] = (posA[2] - posB[2])*gab; | 
| 237 |  | 
| 238 | info->wrapVector(rab); | 
| 239 |  | 
| 240 | rpab = rab[0] * pab[0] + rab[1] * pab[1] + rab[2] * pab[2]; | 
| 241 |  | 
| 242 | } | 
| 243 |  | 
| 244 | //rma = 1.0 / atoms[a]->getMass(); | 
| 245 | //rmb = 1.0 / atoms[b]->getMass(); | 
| 246 | rma = 1.0; | 
| 247 | rmb =1.0; | 
| 248 |  | 
| 249 | gab = diffsq / (2.0 * (rma + rmb) * rpab); | 
| 250 |  | 
| 251 | dx = rab[0] * gab; | 
| 252 | dy = rab[1] * gab; | 
| 253 | dz = rab[2] * gab; | 
| 254 |  | 
| 255 | posA[0] += rma * dx; | 
| 256 | posA[1] += rma * dy; | 
| 257 | posA[2] += rma * dz; | 
| 258 |  | 
| 259 | atoms[a]->setPos(posA); | 
| 260 |  | 
| 261 | posB[0] -= rmb * dx; | 
| 262 | posB[1] -= rmb * dy; | 
| 263 | posB[2] -= rmb * dz; | 
| 264 |  | 
| 265 | atoms[b]->setPos(posB); | 
| 266 |  | 
| 267 | moving[a] = 1; | 
| 268 | moving[b] = 1; | 
| 269 | done = 0; | 
| 270 | } | 
| 271 | } | 
| 272 | } | 
| 273 |  | 
| 274 | for (i = 0; i < nAtoms; i++){ | 
| 275 | moved[i] = moving[i]; | 
| 276 | moving[i] = 0; | 
| 277 | } | 
| 278 |  | 
| 279 | iteration++; | 
| 280 | } | 
| 281 |  | 
| 282 | if (!done){ | 
| 283 | cerr << "Waring: can not constraint within maxIteration" << endl; | 
| 284 | return -1; | 
| 285 | } | 
| 286 | else | 
| 287 | return 1; | 
| 288 | } | 
| 289 |  | 
| 290 |  | 
| 291 | //remove constraint force along the bond direction | 
| 292 | int OOPSEMinimizer::shakeF(){ | 
| 293 | int i, j; | 
| 294 | int done; | 
| 295 | double posA[3], posB[3]; | 
| 296 | double frcA[3], frcB[3]; | 
| 297 | double rab[3], fpab[3]; | 
| 298 | int a, b, ax, ay, az, bx, by, bz; | 
| 299 | double rma, rmb; | 
| 300 | double rvab; | 
| 301 | double gab; | 
| 302 | double rabsq; | 
| 303 | double rfab; | 
| 304 | int iteration; | 
| 305 |  | 
| 306 | for (i = 0; i < nAtoms; i++){ | 
| 307 | moving[i] = 0; | 
| 308 | moved[i] = 1; | 
| 309 | } | 
| 310 |  | 
| 311 | done = 0; | 
| 312 | iteration = 0; | 
| 313 | while (!done && (iteration < maxIteration)){ | 
| 314 | done = 1; | 
| 315 |  | 
| 316 | for (i = 0; i < nConstrained; i++){ | 
| 317 | a = constrainedA[i]; | 
| 318 | b = constrainedB[i]; | 
| 319 |  | 
| 320 | ax = (a * 3) + 0; | 
| 321 | ay = (a * 3) + 1; | 
| 322 | az = (a * 3) + 2; | 
| 323 |  | 
| 324 | bx = (b * 3) + 0; | 
| 325 | by = (b * 3) + 1; | 
| 326 | bz = (b * 3) + 2; | 
| 327 |  | 
| 328 | if (moved[a] || moved[b]){ | 
| 329 |  | 
| 330 | atoms[a]->getPos(posA); | 
| 331 | atoms[b]->getPos(posB); | 
| 332 |  | 
| 333 | for (j = 0; j < 3; j++) | 
| 334 | rab[j] = posA[j] - posB[j]; | 
| 335 |  | 
| 336 | info->wrapVector(rab); | 
| 337 |  | 
| 338 | atoms[a]->getFrc(frcA); | 
| 339 | atoms[b]->getFrc(frcB); | 
| 340 |  | 
| 341 | //rma = 1.0 / atoms[a]->getMass(); | 
| 342 | //rmb = 1.0 / atoms[b]->getMass(); | 
| 343 | rma = 1.0; | 
| 344 | rmb = 1.0; | 
| 345 |  | 
| 346 |  | 
| 347 | fpab[0] = frcA[0] * rma - frcB[0] * rmb; | 
| 348 | fpab[1] = frcA[1] * rma - frcB[1] * rmb; | 
| 349 | fpab[2] = frcA[2] * rma - frcB[2] * rmb; | 
| 350 |  | 
| 351 |  | 
| 352 | gab=fpab[0] * fpab[0] + fpab[1] * fpab[1] + fpab[2] * fpab[2]; | 
| 353 |  | 
| 354 | if (gab < 1.0) | 
| 355 | gab = 1.0; | 
| 356 |  | 
| 357 | rabsq = rab[0] * rab[0] + rab[1] * rab[1] + rab[2] * rab[2]; | 
| 358 | rfab = rab[0] * fpab[0] + rab[1] * fpab[1] + rab[2] * fpab[2]; | 
| 359 |  | 
| 360 | if (fabs(rfab) > sqrt(rabsq*gab) * 0.00001){ | 
| 361 |  | 
| 362 | gab = -rfab /(rabsq*(rma + rmb)); | 
| 363 |  | 
| 364 | frcA[0] = rab[0] * gab; | 
| 365 | frcA[1] = rab[1] * gab; | 
| 366 | frcA[2] = rab[2] * gab; | 
| 367 |  | 
| 368 | atoms[a]->addFrc(frcA); | 
| 369 |  | 
| 370 |  | 
| 371 | frcB[0] = -rab[0] * gab; | 
| 372 | frcB[1] = -rab[1] * gab; | 
| 373 | frcB[2] = -rab[2] * gab; | 
| 374 |  | 
| 375 | atoms[b]->addFrc(frcB); | 
| 376 |  | 
| 377 | moving[a] = 1; | 
| 378 | moving[b] = 1; | 
| 379 | done = 0; | 
| 380 | } | 
| 381 | } | 
| 382 | } | 
| 383 |  | 
| 384 | for (i = 0; i < nAtoms; i++){ | 
| 385 | moved[i] = moving[i]; | 
| 386 | moving[i] = 0; | 
| 387 | } | 
| 388 |  | 
| 389 | iteration++; | 
| 390 | } | 
| 391 |  | 
| 392 | if (!done){ | 
| 393 | cerr << "Waring: can not constraint within maxIteration" << endl; | 
| 394 | return -1; | 
| 395 | } | 
| 396 | else | 
| 397 | return 1; | 
| 398 | } | 
| 399 |  | 
| 400 |  | 
| 401 |  | 
| 402 | //calculate the value of object function | 
| 403 | void OOPSEMinimizer::calcF(){ | 
| 404 | calcEnergyGradient(curX, curG, curF, egEvalStatus); | 
| 405 | } | 
| 406 |  | 
| 407 | void OOPSEMinimizer::calcF(vector<double>& x, double&f, int& status){ | 
| 408 | vector<double> tempG; | 
| 409 | tempG.resize(x.size()); | 
| 410 |  | 
| 411 | calcEnergyGradient(x, tempG, f, status); | 
| 412 | } | 
| 413 |  | 
| 414 | //calculate the gradient | 
| 415 | void OOPSEMinimizer::calcG(){ | 
| 416 | calcEnergyGradient(curX, curG, curF, egEvalStatus); | 
| 417 | } | 
| 418 |  | 
| 419 | void OOPSEMinimizer::calcG(vector<double>& x, vector<double>& g, double& f, int& status){ | 
| 420 | calcEnergyGradient(x, g, f, status); | 
| 421 | } | 
| 422 |  | 
| 423 | void OOPSEMinimizer::calcDim(){ | 
| 424 | DirectionalAtom* dAtom; | 
| 425 |  | 
| 426 | ndim = 0; | 
| 427 |  | 
| 428 | for(int i = 0; i < integrableObjects.size(); i++){ | 
| 429 | ndim += 3; | 
| 430 | if (integrableObjects[i]->isDirectional()) | 
| 431 | ndim += 3; | 
| 432 | } | 
| 433 | } | 
| 434 |  | 
| 435 | void OOPSEMinimizer::setX(vector < double > & x){ | 
| 436 |  | 
| 437 | if (x.size() != ndim && bVerbose){ | 
| 438 | //sprintf(painCave.errMsg, | 
| 439 | //          "OOPSEMinimizer Error: dimesion of x and curX does not match\n"); | 
| 440 | // painCave.isFatal = 1; | 
| 441 | // simError(); | 
| 442 | } | 
| 443 |  | 
| 444 | curX = x; | 
| 445 | } | 
| 446 |  | 
| 447 | void OOPSEMinimizer::setG(vector < double > & g){ | 
| 448 |  | 
| 449 | if (g.size() != ndim && bVerbose){ | 
| 450 | //sprintf(painCave.errMsg, | 
| 451 | //          "OOPSEMinimizer Error: dimesion of g and curG does not match\n"); | 
| 452 | // painCave.isFatal = 1; | 
| 453 | //simError(); | 
| 454 | } | 
| 455 |  | 
| 456 | curG = g; | 
| 457 | } | 
| 458 |  | 
| 459 | void OOPSEMinimizer::writeOut(vector<double>& x, double iter){ | 
| 460 |  | 
| 461 | setX(x); | 
| 462 |  | 
| 463 | calcG(); | 
| 464 |  | 
| 465 | dumpOut->writeDump(iter); | 
| 466 | statOut->writeStat(iter); | 
| 467 | } | 
| 468 |  | 
| 469 |  | 
| 470 | void OOPSEMinimizer::printMinimizerInfo(){ | 
| 471 | cout << "--------------------------------------------------------------------" << endl; | 
| 472 | cout << minimizerName << endl; | 
| 473 | cout << "minimization parameter set" << endl; | 
| 474 | cout << "function tolerance = " << paramSet->getFTol() << endl; | 
| 475 | cout << "gradient tolerance = " << paramSet->getGTol() << endl; | 
| 476 | cout << "step tolerance = "<< paramSet->getFTol() << endl; | 
| 477 | cout << "absolute gradient tolerance = " << endl; | 
| 478 | cout << "max iteration = " << paramSet->getMaxIteration() << endl; | 
| 479 | cout << "max line search iteration = " << paramSet->getLineSearchMaxIteration() <<endl; | 
| 480 | cout << "shake algorithm = " << bShake << endl; | 
| 481 | cout << "--------------------------------------------------------------------" << endl; | 
| 482 |  | 
| 483 | } | 
| 484 |  | 
| 485 | /** | 
| 486 | * In thoery, we need to find the minimum along the search direction | 
| 487 | * However, function evaluation is too expensive. | 
| 488 | * At the very begining of the problem, we check the search direction and make sure | 
| 489 | * it is a descent direction | 
| 490 | * we will compare the energy of two end points, | 
| 491 | * if the right end point has lower energy, we just take it | 
| 492 | * | 
| 493 | * | 
| 494 | * | 
| 495 | */ | 
| 496 |  | 
| 497 | int OOPSEMinimizer::doLineSearch(vector<double>& direction, double stepSize){ | 
| 498 | vector<double> xa; | 
| 499 | vector<double> xb; | 
| 500 | vector<double> xc; | 
| 501 | vector<double> ga; | 
| 502 | vector<double> gb; | 
| 503 | vector<double> gc; | 
| 504 | double fa; | 
| 505 | double fb; | 
| 506 | double fc; | 
| 507 | double a; | 
| 508 | double b; | 
| 509 | double c; | 
| 510 | int status; | 
| 511 | double initSlope; | 
| 512 | double slopeA; | 
| 513 | double slopeB; | 
| 514 | double slopeC; | 
| 515 | bool foundLower; | 
| 516 | int iter; | 
| 517 | int maxLSIter; | 
| 518 | double mu; | 
| 519 | double eta; | 
| 520 | double ftol; | 
| 521 | double lsTol; | 
| 522 |  | 
| 523 | xa.resize(ndim); | 
| 524 | xb.resize(ndim); | 
| 525 | xc.resize(ndim); | 
| 526 |  | 
| 527 | ga.resize(ndim); | 
| 528 | gb.resize(ndim); | 
| 529 | gc.resize(ndim); | 
| 530 |  | 
| 531 | a = 0.0; | 
| 532 | fa =  curF; | 
| 533 | xa = curX; | 
| 534 | ga = curG; | 
| 535 | c = a + stepSize; | 
| 536 | ftol = paramSet->getFTol(); | 
| 537 | lsTol = paramSet->getLineSearchTol(); | 
| 538 |  | 
| 539 | //calculate the derivative at a = 0 | 
| 540 | slopeA = 0; | 
| 541 | for (size_t i = 0; i < ndim; i++) | 
| 542 | slopeA += curG[i]*direction[i]; | 
| 543 |  | 
| 544 | initSlope = slopeA; | 
| 545 |  | 
| 546 | // if  going uphill, use negative gradient as searching direction | 
| 547 | if (slopeA > 0) { | 
| 548 |  | 
| 549 | if (bVerbose){ | 
| 550 | cout << "LineSearch Warning: initial searching direction is not a descent searching direction, " | 
| 551 | << " use negative gradient instead. Therefore, finding a smaller vaule of function " | 
| 552 | << " is guaranteed" | 
| 553 | << endl; | 
| 554 | } | 
| 555 |  | 
| 556 | for (size_t i = 0; i < ndim; i++) | 
| 557 | direction[i] = -curG[i]; | 
| 558 |  | 
| 559 | for (size_t i = 0; i < ndim; i++) | 
| 560 | slopeA += curG[i]*direction[i]; | 
| 561 |  | 
| 562 | initSlope = slopeA; | 
| 563 | } | 
| 564 |  | 
| 565 | // Take a trial step | 
| 566 | for(size_t i = 0; i < ndim; i++) | 
| 567 | xc[i] = curX[i] + direction[i] * c; | 
| 568 |  | 
| 569 | calcG(xc, gc, fc, status); | 
| 570 |  | 
| 571 | if (status < 0){ | 
| 572 | if (bVerbose) | 
| 573 | cerr << "Function Evaluation Error" << endl; | 
| 574 | } | 
| 575 |  | 
| 576 | //calculate the derivative at c | 
| 577 | slopeC = 0; | 
| 578 | for (size_t i = 0; i < ndim; i++) | 
| 579 | slopeC += gc[i]*direction[i]; | 
| 580 |  | 
| 581 | // found a lower point | 
| 582 | if (fc < fa) { | 
| 583 | curX = xc; | 
| 584 | curG = gc; | 
| 585 | curF = fc; | 
| 586 | return LS_SUCCEED; | 
| 587 | } | 
| 588 | else { | 
| 589 |  | 
| 590 | if (slopeC > 0) | 
| 591 | stepSize *= 0.618034; | 
| 592 | } | 
| 593 |  | 
| 594 | maxLSIter = paramSet->getLineSearchMaxIteration(); | 
| 595 |  | 
| 596 | iter = 0; | 
| 597 |  | 
| 598 | do { | 
| 599 | // Select a new trial point. | 
| 600 | // If the derivatives at points a & c have different sign we use cubic interpolate | 
| 601 | //if (slopeC > 0){ | 
| 602 | eta = 3 *(fa -fc) /(c - a) + slopeA + slopeC; | 
| 603 | mu = sqrt(eta * eta - slopeA * slopeC); | 
| 604 | b = a + (c - a) * (1 - (slopeC + mu - eta) /(slopeC - slopeA + 2 * mu)); | 
| 605 |  | 
| 606 | if (b < lsTol){ | 
| 607 | if (bVerbose) | 
| 608 | cout << "stepSize is less than line search tolerance" << endl; | 
| 609 | break; | 
| 610 | } | 
| 611 | //} | 
| 612 |  | 
| 613 | // Take a trial step to this new point - new coords in xb | 
| 614 | for(size_t i = 0; i < ndim; i++) | 
| 615 | xb[i] = curX[i] + direction[i] * b; | 
| 616 |  | 
| 617 | //function evaluation | 
| 618 | calcG(xb, gb, fb, status); | 
| 619 |  | 
| 620 | if (status < 0){ | 
| 621 | if (bVerbose) | 
| 622 | cerr << "Function Evaluation Error" << endl; | 
| 623 | } | 
| 624 |  | 
| 625 | //calculate the derivative at c | 
| 626 | slopeB = 0; | 
| 627 | for (size_t i = 0; i < ndim; i++) | 
| 628 | slopeB += gb[i]*direction[i]; | 
| 629 |  | 
| 630 | //Amijo Rule to stop the line search | 
| 631 | if (fb <= curF +  initSlope * ftol * b) { | 
| 632 | curF = fb; | 
| 633 | curX = xb; | 
| 634 | curG = gb; | 
| 635 | return LS_SUCCEED; | 
| 636 | } | 
| 637 |  | 
| 638 | if (slopeB <0 &&  fb < fa) { | 
| 639 | //replace a by b | 
| 640 | fa = fb; | 
| 641 | a = b; | 
| 642 | slopeA = slopeB; | 
| 643 |  | 
| 644 | // swap coord  a/b | 
| 645 | std::swap(xa, xb); | 
| 646 | std::swap(ga, gb); | 
| 647 | } | 
| 648 | else { | 
| 649 | //replace c by b | 
| 650 | fc = fb; | 
| 651 | c = b; | 
| 652 | slopeC = slopeB; | 
| 653 |  | 
| 654 | // swap coord  b/c | 
| 655 | std::swap(gb, gc); | 
| 656 | std::swap(xb, xc); | 
| 657 | } | 
| 658 |  | 
| 659 |  | 
| 660 | iter++; | 
| 661 | } while((fb > fa || fb > fc) && (iter < maxLSIter)); | 
| 662 |  | 
| 663 | if(fb < curF || iter >= maxLSIter) { | 
| 664 | //could not find a lower value, we might just go uphill. | 
| 665 | return LS_ERROR; | 
| 666 | } | 
| 667 |  | 
| 668 | //select the end point | 
| 669 |  | 
| 670 | if (fa <= fc) { | 
| 671 | curX = xa; | 
| 672 | curG = ga; | 
| 673 | curF = fa; | 
| 674 | } | 
| 675 | else { | 
| 676 | curX = xc; | 
| 677 | curG = gc; | 
| 678 | curF = fc; | 
| 679 | } | 
| 680 |  | 
| 681 | return LS_SUCCEED; | 
| 682 |  | 
| 683 | } | 
| 684 |  | 
| 685 | void OOPSEMinimizer::minimize(){ | 
| 686 |  | 
| 687 | int convgStatus; | 
| 688 | int stepStatus; | 
| 689 | int maxIter; | 
| 690 | int writeFrq; | 
| 691 | int nextWriteIter; | 
| 692 |  | 
| 693 | if (bVerbose) | 
| 694 | printMinimizerInfo(); | 
| 695 |  | 
| 696 | dumpOut = new DumpWriter(info); | 
| 697 | statOut = new StatWriter(info); | 
| 698 |  | 
| 699 | init(); | 
| 700 |  | 
| 701 | writeFrq = paramSet->getWriteFrq(); | 
| 702 | nextWriteIter = writeFrq; | 
| 703 |  | 
| 704 | maxIter = paramSet->getMaxIteration(); | 
| 705 |  | 
| 706 | for (curIter = 1; curIter <= maxIter; curIter++){ | 
| 707 |  | 
| 708 | stepStatus = step(); | 
| 709 |  | 
| 710 | if (nConstrained && bShake) | 
| 711 | preMove(); | 
| 712 |  | 
| 713 | if (stepStatus < 0){ | 
| 714 | saveResult(); | 
| 715 | minStatus = MIN_LSERROR; | 
| 716 | cerr << "OOPSEMinimizer Error: line search error, please try a small stepsize" << endl; | 
| 717 | return; | 
| 718 | } | 
| 719 |  | 
| 720 | if (curIter == nextWriteIter){ | 
| 721 | nextWriteIter += writeFrq; | 
| 722 | writeOut(curX, curIter); | 
| 723 | } | 
| 724 |  | 
| 725 | convgStatus = checkConvg(); | 
| 726 |  | 
| 727 | if (convgStatus > 0){ | 
| 728 | saveResult(); | 
| 729 | minStatus = MIN_CONVERGE; | 
| 730 | return; | 
| 731 | } | 
| 732 |  | 
| 733 | prepareStep(); | 
| 734 |  | 
| 735 | } | 
| 736 |  | 
| 737 |  | 
| 738 | if (bVerbose) { | 
| 739 | cout << "OOPSEMinimizer Warning: " | 
| 740 | << minimizerName << " algorithm did not converge within " | 
| 741 | << maxIter << " iteration" << endl; | 
| 742 | } | 
| 743 | minStatus = MIN_MAXITER; | 
| 744 | saveResult(); | 
| 745 |  | 
| 746 | } |