ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/NPthiols/Sup_Info.tex
Revision: 4388
Committed: Wed Oct 28 17:17:56 2015 UTC (9 years, 10 months ago) by gezelter
Content type: application/x-tex
File size: 11323 byte(s)
Log Message:
Updates

File Contents

# Content
1 \documentclass[aps,jcp,preprint,showpacs,superscriptaddress,groupedaddress]{revtex4-1}
2 \usepackage{graphicx} % needed for figures
3 \usepackage{dcolumn} % needed for some tables
4 \usepackage{bm} % for math
5 \usepackage{amssymb} % for math
6 \usepackage{booktabs}
7 \usepackage[english]{babel}
8 \usepackage{multirow}
9 \usepackage{times}
10 \usepackage[version=3]{mhchem}
11 \usepackage{lineno}
12 \usepackage{gensymb}
13 \usepackage{multirow}
14
15 \begin{document}
16
17 \title{Supporting Information for: Interfacial Thermal Conductance of Thiolate-Protected
18 Gold Nanospheres}
19 \author{Kelsey M. Stocker}
20 \author{Suzanne M. Neidhart}
21 \author{J. Daniel Gezelter}
22 \email{gezelter@nd.edu}
23 \affiliation{Department of Chemistry and Biochemistry, University of
24 Notre Dame, Notre Dame, IN 46556}
25 \date{\today}
26
27 \begin{abstract}
28 This document supplies force field parameters for the united-atom
29 sites, bond, bend, and torsion parameters, as well as the cross
30 interactions between the united-atom sites and the gold atoms. These
31 parameters were used in the simulations presented in the main text.
32 \end{abstract}
33
34
35 \maketitle
36
37 Gold -- gold interactions were described by the quantum Sutton-Chen
38 (QSC) model.\cite{Qi:1999ph} The hexane solvent is described by the
39 TraPPE united atom model,\cite{TraPPE-UA.alkanes} where sites are
40 located at the carbon centers for alkyl groups. Bonding interactions
41 were used for intra-molecular sites closer than 3 bonds. Effective
42 Lennard-Jones potentials were used for non-bonded interactions.
43
44 \begin{table}[h]
45 \bibpunct{}{}{,}{n}{}{,}
46 \centering
47 \caption{Non-bonded interaction parameters (including cross interactions with Au atoms). \label{tab:atypes}}
48 \begin{tabular}{ c|cccccl }
49 \toprule
50 Site & mass & $\sigma_{ii}$ & $\epsilon_{ii}$ & $\sigma_{\ce{Au}-i}$ & $\epsilon_{\ce{Au}-i}$ & source \\
51 & (amu)& (\AA) & (kcal/mol) & (\AA) & (kcal/mol) & \\
52 \colrule
53 \ce{CH3} & 15.04 & 3.75 & 0.1947 & 3.54 & 0.2146 & Refs. \protect\cite{TraPPE-UA.alkanes}, \protect\cite{vlugt:cpc2007154} and \protect\cite{landman:1998}\\
54 \ce{CH2} & 14.03 & 3.95 & 0.09141& 3.54 & 0.1749 & Refs. \protect\cite{TraPPE-UA.alkanes}, \protect\cite{vlugt:cpc2007154} and \protect\cite{landman:1998}\\
55 CHene & 13.02 & 3.73 & 0.09340& 3.4625 & 0.1680 & Refs. \protect\cite{TraPPE-UA.alkylbenzenes}, \protect\cite{vlugt:cpc2007154} and \protect\cite{landman:1998}\\
56 S & 32.0655 & 4.45 & 0.2504 & 2.40 & 8.465 & Refs. \protect\cite{landman:1998} ($\sigma$) and \protect\cite{vlugt:cpc2007154} ($\epsilon$) \\
57 CHar & 13.02 & 3.695 & 0.1004 & 3.4625 & 0.1680 & Refs. \protect\cite{TraPPE-UA.alkylbenzenes} and \protect\cite{vlugt:cpc2007154}\\
58 \ce{CH2ar} & 14.03 & 3.695 & 0.1004 & 3.4625 & 0.1680 & Refs. \protect\cite{TraPPE-UA.alkylbenzenes} and \protect\cite{vlugt:cpc2007154}\\
59 \botrule
60 \end{tabular}
61 \bibpunct{[}{]}{,}{n}{,}{,}
62 \end{table}
63
64 The TraPPE-UA force field includes parameters for thiol
65 molecules\cite{TraPPE-UA.thiols} which were used for the
66 alkanethiolate molecules in our simulations. To derive suitable
67 parameters for butanethiolate adsorbed on Au(111) surfaces, we adopted
68 the S parameters from Luedtke and Landman\cite{landman:1998} and
69 modified the parameters for the CTS atom to maintain charge neutrality
70 in the molecule.
71
72 Bonds are typically rigid in TraPPE-UA, so although we used
73 equilibrium bond distances from TraPPE-UA, for flexible bonds, we
74 adapted bond stretching spring constants from the OPLS-AA force
75 field.\cite{Jorgensen:1996sf}
76
77 \begin{table}[h]
78 \bibpunct{}{}{,}{n}{}{,}
79 \centering
80 \caption{Bond parameters. \label{tab:bond}}
81 \begin{tabular}{ cc|ccl }
82 \toprule
83 $i$&$j$ & $r_0$ & $k_\mathrm{bond}$ & source \\
84 & & (\AA) & $(\mathrm{~kcal/mole/\AA}^2)$ & \\
85 \colrule
86 \ce{CH3} & \ce{CH3} & 1.540 & 536 & Refs. \protect\cite{TraPPE-UA.alkanes} and \protect\cite{Jorgensen:1996sf}\\
87 \ce{CH3} & \ce{CH2} & 1.540 & 536 & Refs. \protect\cite{TraPPE-UA.alkanes} and \protect\cite{Jorgensen:1996sf} \\
88 \ce{CH2} & \ce{CH2} & 1.540 & 536 & Refs. \protect\cite{TraPPE-UA.alkanes} and \protect\cite{Jorgensen:1996sf} \\
89 CHene & CHene & 1.330 & 1098 & Refs. \protect\cite{TraPPE-UA.alkylbenzenes} and \protect\cite{Jorgensen:1996sf}\\
90 \ce{CH3} & CHene & 1.540 & 634 & Refs. \protect\cite{TraPPE-UA.alkylbenzenes} and \protect\cite{Jorgensen:1996sf} \\
91 \ce{CH2} & CHene & 1.540 & 634 & Refs. \protect\cite{TraPPE-UA.alkylbenzenes} and \protect\cite{Jorgensen:1996sf} \\
92 S & \ce{CH2} & 1.820 & 444 & Refs. \protect\cite{TraPPE-UA.thiols} and \protect\cite{Jorgensen:1996sf} \\
93 CHar & CHar & 1.40 & 938 & Refs. \protect\cite{TraPPE-UA.alkylbenzenes} and \protect\cite{Jorgensen:1996sf} \\
94 CHar & \ce{CH2} & 1.540 & 536 & Refs. \protect\cite{TraPPE-UA.alkylbenzenes} and \protect\cite{Jorgensen:1996sf}\\
95 CHar & \ce{CH3} & 1.540 & 536 & Refs. \protect\cite{TraPPE-UA.alkylbenzenes} and \protect\cite{Jorgensen:1996sf}\\
96 \ce{CH2ar} & CHar & 1.40 & 938 & Refs. \protect\cite{TraPPE-UA.alkylbenzenes} and \protect\cite{Jorgensen:1996sf} \\
97 S & CHar & 1.80384 & 527.951 & This Work \\
98 \botrule
99 \end{tabular}
100 \bibpunct{[}{]}{,}{n}{,}{,}
101 \end{table}
102
103 To describe the interactions between metal (Au) and non-metal atoms,
104 potential energy terms were adapted from an adsorption study of alkyl
105 thiols on gold surfaces by Vlugt, \textit{et
106 al.}\cite{vlugt:cpc2007154} They fit an effective pair-wise
107 Lennard-Jones form of potential parameters for the interaction between
108 Au and pseudo-atoms CH$_x$ and S based on a well-established and
109 widely-used effective potential of Hautman and Klein for the Au(111)
110 surface.\cite{hautman:4994}
111
112 Parameters not found in the TraPPE-UA force field for the
113 intramolecular interactions of the conjugated and the penultimate
114 alkenethiolate ligands were calculated using constrained geometry
115 scans using the B3LYP functional~\cite{Becke:1993kq,Lee:1988qf} and
116 the 6-31G(d,p) basis set. Structures were scanned starting at the
117 minimum energy gas phase structure for small ($C_4$) ligands. Only
118 one degree of freedom was constrained for any given scan -- all other
119 atoms were allowed to minimize subject to that constraint. The
120 resulting potential energy surfaces were fit to a harmonic potential
121 for the bond stretching,
122 \begin{equation}
123 V_\mathrm{bond} = \frac{k_\mathrm{bond}}{2} \left( r - r_0 \right)^2,
124 \end{equation}
125 and angle bending potentials,
126 \begin{equation}
127 V_\mathrm{bend} = \frac{k_\mathrm{bend}}{2} \left(\theta - \theta_0\right)^2.
128 \end{equation}
129 Torsional potentials were fit to the TraPPE torsional function,
130 \begin{equation}
131 V_\mathrm{tor} = c_0 + c_1 \left(1 + \cos\phi \right) + c_2 \left(1 - \cos 2\phi \right) + c_3 \left(1 + \cos 3 \phi \right).
132 \end{equation}
133
134 For the penultimate thiolate ligands, the model molecule used was
135 2-Butene-1-thiol, for which one bend angle (\ce{S-CH2-CHene}) was
136 scanned to fit an equilibrium angle and force constant, as well as one
137 torsion (\ce{S-CH2-CHene-CHene}). The parameters for these two
138 potentials also served as model for the longer conjugated thiolate
139 ligands which require bend angle parameters for (\ce{S-CH2-CHar}) and
140 torsion parameters for (\ce{S-CH2-CHar-CHar}).
141
142 For the $C_4$ conjugated thiolate ligands, the model molecule for the
143 quantum mechanical calculations was 1,3-Butadiene-1-thiol. This
144 ligand required fitting one bond (\ce{S-CHar}), and one bend angle
145 (\ce{S-CHar-CHar}).
146
147 The geometries of the model molecules were optimized prior to
148 performing the constrained angle scans, and the fit values for the
149 bond, bend, and torsional parameters were in relatively good agreement
150 with similar parameters already present in TraPPE.
151
152
153 \begin{table}[h]
154 \bibpunct{}{}{,}{n}{,}{,}
155 \centering
156 \caption{Bend angle parameters. The central atom in the bend is atom $j$.\label{tab:bend}}
157 \begin{tabular}{ ccc|ccl }
158 \toprule
159 $i$&$j$&$k$ & $\theta_0$ & $k_\mathrm{bend}$ & source\\
160 & & & ($\degree$) & (kcal/mol/rad\textsuperscript{2}) & \\
161 \colrule
162 \ce{CH2} & \ce{CH2} & S & 114.0 & 124.20& Ref. \protect\cite{TraPPE-UA.thiols}\\
163 \ce{CH3} & \ce{CH2} & \ce{CH2} & 114.0 & 124.20& Ref. \protect\cite{TraPPE-UA.thiols}\\
164 \ce{CH2} & \ce{CH2} & \ce{CH2} & 114.0 & 124.20& Ref. \protect\cite{TraPPE-UA.thiols}\\
165 CHene & CHene & \ce{CH3} & 119.7 & 139.94& Ref. \protect\cite{TraPPE-UA.alkylbenzenes}\\
166 CHene & CHene & \ce{CH2} & 119.7 & 139.94& Ref. \protect\cite{TraPPE-UA.alkylbenzenes}\\
167 \ce{CH2} & \ce{CH2} & CHene & 114.0 & 124.20& Ref. \protect\cite{TraPPE-UA.alkylbenzenes}\\
168 CHar & CHar & CHar & 120.0 & 126.0 & Refs. \protect\cite{TraPPE-UA.alkylbenzenes} and \protect\cite{Jorgensen:1996sf}\\
169 CHar & CHar & \ce{CH2} & 120.0 & 140.0 & Refs. \protect\cite{TraPPE-UA.alkylbenzenes} and \protect\cite{Jorgensen:1996sf}\\
170 CHar & CHar & \ce{CH3} & 120.0 & 140.0 & Refs. \protect\cite{TraPPE-UA.alkylbenzenes} and \protect\cite{Jorgensen:1996sf}\\
171 CHar & CHar & \ce{CH2ar}& 120.0 & 126.0 & Refs. \protect\cite{TraPPE-UA.alkylbenzenes} and \protect\cite{Jorgensen:1996sf}\\
172 S & \ce{CH2} & CHene & 109.97 & 127.37 & This work \\
173 S & \ce{CH2} & CHar & 109.97 & 127.37 & This work \\
174 S & CHar & CHar & 123.911 & 138.093 & This work \\
175 \botrule
176 \end{tabular}
177 \bibpunct{[}{]}{,}{n}{,}{,}
178 \end{table}
179
180 \begin{table}[h]
181 \bibpunct{}{}{,}{n}{,}{,}
182 \centering
183 \caption{Torsion parameters. The central atoms for each torsion are atoms $j$ and $k$,
184 and wildcard atom types are denoted by ``X''. All $c_n$ parameters
185 have units of kcal/mol. The torsions around carbon-carbon double bonds
186 are harmonic and assume a trans (180$\degree$) geometry. The force
187 constant for this torsion is given in $\mathrm{kcal~mol~}^{-1}\mathrm{degrees}^{-2}$. \label{tab:torsion}}
188 \begin{tabular}{ cccc|ccccl }
189 \toprule
190 $i$&$j$&$k$&$l$& $c_0$&$c_1$& $c_2$ & $c_3$ & source\\
191 \colrule
192 \ce{CH3} & \ce{CH2} & \ce{CH2} & \ce{CH2} & 0.0 & 0.7055 & -0.13551 & 1.5725 & Ref. \protect\cite{TraPPE-UA.alkanes}\\
193 \ce{CH2} & \ce{CH2} & \ce{CH2} & \ce{CH2} & 0.0 & 0.7055 & -0.13551 & 1.5725 & Ref. \protect\cite{TraPPE-UA.alkanes}\\
194 \ce{CH2} & \ce{CH2} & \ce{CH2} & S & 0.0 & 0.7055 & -0.13551 & 1.5725 & Ref. \protect\cite{TraPPE-UA.thiols}\\ \colrule
195 X & CHene & CHene & X & \multicolumn{4}{c}{\multirow{2}{*}{$V = \frac{0.008112}{2} (\phi - 180.0)^2$}} & \multirow{2}{*}{Ref. \protect\cite{TraPPE-UA.alkylbenzenes}} \\
196 X & CHar & CHar & X & & & & & \\ \colrule
197 \ce{CH2} & \ce{CH2} & CHene & CHene & 1.368 & 0.1716 & -0.2181 & -0.56081 & Ref. \protect\cite{TraPPE-UA.alkylbenzenes}\\
198 \ce{CH2} & \ce{CH2} & \ce{CH2} & CHene & 0.0 & 0.7055 & -0.13551 & 1.5725 & Ref. \protect\cite{TraPPE-UA.alkylbenzenes}\\
199 CHene & CHene & \ce{CH2} & S & 3.20753 & 0.207417 & -0.912929& -0.958538 & This work \\
200 CHar & CHar & \ce{CH2} & S & 3.20753 & 0.207417 & -0.912929& -0.958538 & This work \\
201 \botrule
202 \end{tabular}
203 \bibpunct{[}{]}{,}{n}{,}{,}
204 \end{table}
205
206 \newpage
207 \bibliographystyle{aip}
208 \bibliography{NPthiols}
209 \end{document}