1 |
\documentclass[aps,jcp,preprint,showpacs,superscriptaddress,groupedaddress]{revtex4-1} |
2 |
\usepackage{graphicx} % needed for figures |
3 |
\usepackage{dcolumn} % needed for some tables |
4 |
\usepackage{bm} % for math |
5 |
\usepackage{amssymb} % for math |
6 |
\usepackage{booktabs} |
7 |
\usepackage[english]{babel} |
8 |
\usepackage{multirow} |
9 |
\usepackage{times} |
10 |
\usepackage[version=3]{mhchem} |
11 |
\usepackage{lineno} |
12 |
\usepackage{gensymb} |
13 |
\usepackage{multirow} |
14 |
|
15 |
\begin{document} |
16 |
|
17 |
\title{Supporting Information for: Interfacial Thermal Conductance of Thiolate-Protected |
18 |
Gold Nanospheres} |
19 |
\author{Kelsey M. Stocker} |
20 |
\author{Suzanne M. Neidhart} |
21 |
\author{J. Daniel Gezelter} |
22 |
\email{gezelter@nd.edu} |
23 |
\affiliation{Department of Chemistry and Biochemistry, University of |
24 |
Notre Dame, Notre Dame, IN 46556} |
25 |
\date{\today} |
26 |
|
27 |
\begin{abstract} |
28 |
This document supplies force field parameters for the united-atom |
29 |
sites, bond, bend, and torsion parameters, as well as the cross |
30 |
interactions between the united-atom sites and the gold atoms. These |
31 |
parameters were used in the simulations presented in the main text. |
32 |
\end{abstract} |
33 |
|
34 |
|
35 |
\maketitle |
36 |
|
37 |
Gold -- gold interactions were described by the quantum Sutton-Chen |
38 |
(QSC) model.\cite{Qi:1999ph} The hexane solvent is described by the |
39 |
TraPPE united atom model,\cite{TraPPE-UA.alkanes} where sites are |
40 |
located at the carbon centers for alkyl groups. Bonding interactions |
41 |
were used for intra-molecular sites closer than 3 bonds. Effective |
42 |
Lennard-Jones potentials were used for non-bonded interactions. |
43 |
|
44 |
\begin{table}[h] |
45 |
\bibpunct{}{}{,}{n}{}{,} |
46 |
\centering |
47 |
\caption{Non-bonded interaction parameters (including cross interactions with Au atoms). \label{tab:atypes}} |
48 |
\begin{tabular}{ c|cccccl } |
49 |
\toprule |
50 |
Site & mass & $\sigma_{ii}$ & $\epsilon_{ii}$ & $\sigma_{\ce{Au}-i}$ & $\epsilon_{\ce{Au}-i}$ & source \\ |
51 |
& (amu)& (\AA) & (kcal/mol) & (\AA) & (kcal/mol) & \\ |
52 |
\colrule |
53 |
\ce{CH3} & 15.04 & 3.75 & 0.1947 & 3.54 & 0.2146 & Refs. \protect\cite{TraPPE-UA.alkanes}, \protect\cite{vlugt:cpc2007154} and \protect\cite{landman:1998}\\ |
54 |
\ce{CH2} & 14.03 & 3.95 & 0.09141& 3.54 & 0.1749 & Refs. \protect\cite{TraPPE-UA.alkanes}, \protect\cite{vlugt:cpc2007154} and \protect\cite{landman:1998}\\ |
55 |
CHene & 13.02 & 3.73 & 0.09340& 3.4625 & 0.1680 & Refs. \protect\cite{TraPPE-UA.alkylbenzenes}, \protect\cite{vlugt:cpc2007154} and \protect\cite{landman:1998}\\ |
56 |
S & 32.0655 & 4.45 & 0.2504 & 2.40 & 8.465 & Refs. \protect\cite{landman:1998} ($\sigma$) and \protect\cite{vlugt:cpc2007154} ($\epsilon$) \\ |
57 |
CHar & 13.02 & 3.695 & 0.1004 & 3.4625 & 0.1680 & Refs. \protect\cite{TraPPE-UA.alkylbenzenes} and \protect\cite{vlugt:cpc2007154}\\ |
58 |
\ce{CH2ar} & 14.03 & 3.695 & 0.1004 & 3.4625 & 0.1680 & Refs. \protect\cite{TraPPE-UA.alkylbenzenes} and \protect\cite{vlugt:cpc2007154}\\ |
59 |
\botrule |
60 |
\end{tabular} |
61 |
\bibpunct{[}{]}{,}{n}{,}{,} |
62 |
\end{table} |
63 |
|
64 |
The TraPPE-UA force field includes parameters for thiol |
65 |
molecules\cite{TraPPE-UA.thiols} which were used for the |
66 |
alkanethiolate molecules in our simulations. To derive suitable |
67 |
parameters for butanethiolate adsorbed on Au(111) surfaces, we adopted |
68 |
the S parameters from Luedtke and Landman\cite{landman:1998} and |
69 |
modified the parameters for the CTS atom to maintain charge neutrality |
70 |
in the molecule. |
71 |
|
72 |
Bonds are typically rigid in TraPPE-UA, so although we used |
73 |
equilibrium bond distances from TraPPE-UA, for flexible bonds, we |
74 |
adapted bond stretching spring constants from the OPLS-AA force |
75 |
field.\cite{Jorgensen:1996sf} |
76 |
|
77 |
\begin{table}[h] |
78 |
\bibpunct{}{}{,}{n}{}{,} |
79 |
\centering |
80 |
\caption{Bond parameters. \label{tab:bond}} |
81 |
\begin{tabular}{ cc|ccl } |
82 |
\toprule |
83 |
$i$&$j$ & $r_0$ & $k_\mathrm{bond}$ & source \\ |
84 |
& & (\AA) & $(\mathrm{~kcal/mole/\AA}^2)$ & \\ |
85 |
\colrule |
86 |
\ce{CH3} & \ce{CH3} & 1.540 & 536 & Refs. \protect\cite{TraPPE-UA.alkanes} and \protect\cite{Jorgensen:1996sf}\\ |
87 |
\ce{CH3} & \ce{CH2} & 1.540 & 536 & Refs. \protect\cite{TraPPE-UA.alkanes} and \protect\cite{Jorgensen:1996sf} \\ |
88 |
\ce{CH2} & \ce{CH2} & 1.540 & 536 & Refs. \protect\cite{TraPPE-UA.alkanes} and \protect\cite{Jorgensen:1996sf} \\ |
89 |
CHene & CHene & 1.330 & 1098 & Refs. \protect\cite{TraPPE-UA.alkylbenzenes} and \protect\cite{Jorgensen:1996sf}\\ |
90 |
\ce{CH3} & CHene & 1.540 & 634 & Refs. \protect\cite{TraPPE-UA.alkylbenzenes} and \protect\cite{Jorgensen:1996sf} \\ |
91 |
\ce{CH2} & CHene & 1.540 & 634 & Refs. \protect\cite{TraPPE-UA.alkylbenzenes} and \protect\cite{Jorgensen:1996sf} \\ |
92 |
S & \ce{CH2} & 1.820 & 444 & Refs. \protect\cite{TraPPE-UA.thiols} and \protect\cite{Jorgensen:1996sf} \\ |
93 |
CHar & CHar & 1.40 & 938 & Refs. \protect\cite{TraPPE-UA.alkylbenzenes} and \protect\cite{Jorgensen:1996sf} \\ |
94 |
CHar & \ce{CH2} & 1.540 & 536 & Refs. \protect\cite{TraPPE-UA.alkylbenzenes} and \protect\cite{Jorgensen:1996sf}\\ |
95 |
CHar & \ce{CH3} & 1.540 & 536 & Refs. \protect\cite{TraPPE-UA.alkylbenzenes} and \protect\cite{Jorgensen:1996sf}\\ |
96 |
\ce{CH2ar} & CHar & 1.40 & 938 & Refs. \protect\cite{TraPPE-UA.alkylbenzenes} and \protect\cite{Jorgensen:1996sf} \\ |
97 |
S & CHar & 1.80384 & 527.951 & This Work \\ |
98 |
\botrule |
99 |
\end{tabular} |
100 |
\bibpunct{[}{]}{,}{n}{,}{,} |
101 |
\end{table} |
102 |
|
103 |
To describe the interactions between metal (Au) and non-metal atoms, |
104 |
potential energy terms were adapted from an adsorption study of alkyl |
105 |
thiols on gold surfaces by Vlugt, \textit{et |
106 |
al.}\cite{vlugt:cpc2007154} They fit an effective pair-wise |
107 |
Lennard-Jones form of potential parameters for the interaction between |
108 |
Au and pseudo-atoms CH$_x$ and S based on a well-established and |
109 |
widely-used effective potential of Hautman and Klein for the Au(111) |
110 |
surface.\cite{hautman:4994} |
111 |
|
112 |
Parameters not found in the TraPPE-UA force field for the |
113 |
intramolecular interactions of the conjugated and the penultimate |
114 |
alkenethiolate ligands were calculated using constrained geometry |
115 |
scans using the B3LYP functional~\cite{Becke:1993kq,Lee:1988qf} and |
116 |
the 6-31G(d,p) basis set. Structures were scanned starting at the |
117 |
minimum energy gas phase structure for small ($C_4$) ligands. Only |
118 |
one degree of freedom was constrained for any given scan -- all other |
119 |
atoms were allowed to minimize subject to that constraint. The |
120 |
resulting potential energy surfaces were fit to a harmonic potential |
121 |
for the bond stretching, |
122 |
\begin{equation} |
123 |
V_\mathrm{bond} = \frac{k_\mathrm{bond}}{2} \left( r - r_0 \right)^2, |
124 |
\end{equation} |
125 |
and angle bending potentials, |
126 |
\begin{equation} |
127 |
V_\mathrm{bend} = \frac{k_\mathrm{bend}}{2} \left(\theta - \theta_0\right)^2. |
128 |
\end{equation} |
129 |
Torsional potentials were fit to the TraPPE torsional function, |
130 |
\begin{equation} |
131 |
V_\mathrm{tor} = c_0 + c_1 \left(1 + \cos\phi \right) + c_2 \left(1 - \cos 2\phi \right) + c_3 \left(1 + \cos 3 \phi \right). |
132 |
\end{equation} |
133 |
|
134 |
For the penultimate thiolate ligands, the model molecule used was |
135 |
2-Butene-1-thiol, for which one bend angle (\ce{S-CH2-CHene}) was |
136 |
scanned to fit an equilibrium angle and force constant, as well as one |
137 |
torsion (\ce{S-CH2-CHene-CHene}). The parameters for these two |
138 |
potentials also served as model for the longer conjugated thiolate |
139 |
ligands which require bend angle parameters for (\ce{S-CH2-CHar}) and |
140 |
torsion parameters for (\ce{S-CH2-CHar-CHar}). |
141 |
|
142 |
For the $C_4$ conjugated thiolate ligands, the model molecule for the |
143 |
quantum mechanical calculations was 1,3-Butadiene-1-thiol. This |
144 |
ligand required fitting one bond (\ce{S-CHar}), and one bend angle |
145 |
(\ce{S-CHar-CHar}). |
146 |
|
147 |
The geometries of the model molecules were optimized prior to |
148 |
performing the constrained angle scans, and the fit values for the |
149 |
bond, bend, and torsional parameters were in relatively good agreement |
150 |
with similar parameters already present in TraPPE. |
151 |
|
152 |
|
153 |
\begin{table}[h] |
154 |
\bibpunct{}{}{,}{n}{,}{,} |
155 |
\centering |
156 |
\caption{Bend angle parameters. The central atom in the bend is atom $j$.\label{tab:bend}} |
157 |
\begin{tabular}{ ccc|ccl } |
158 |
\toprule |
159 |
$i$&$j$&$k$ & $\theta_0$ & $k_\mathrm{bend}$ & source\\ |
160 |
& & & ($\degree$) & (kcal/mol/rad\textsuperscript{2}) & \\ |
161 |
\colrule |
162 |
\ce{CH2} & \ce{CH2} & S & 114.0 & 124.20& Ref. \protect\cite{TraPPE-UA.thiols}\\ |
163 |
\ce{CH3} & \ce{CH2} & \ce{CH2} & 114.0 & 124.20& Ref. \protect\cite{TraPPE-UA.thiols}\\ |
164 |
\ce{CH2} & \ce{CH2} & \ce{CH2} & 114.0 & 124.20& Ref. \protect\cite{TraPPE-UA.thiols}\\ |
165 |
CHene & CHene & \ce{CH3} & 119.7 & 139.94& Ref. \protect\cite{TraPPE-UA.alkylbenzenes}\\ |
166 |
CHene & CHene & \ce{CH2} & 119.7 & 139.94& Ref. \protect\cite{TraPPE-UA.alkylbenzenes}\\ |
167 |
\ce{CH2} & \ce{CH2} & CHene & 114.0 & 124.20& Ref. \protect\cite{TraPPE-UA.alkylbenzenes}\\ |
168 |
CHar & CHar & CHar & 120.0 & 126.0 & Refs. \protect\cite{TraPPE-UA.alkylbenzenes} and \protect\cite{Jorgensen:1996sf}\\ |
169 |
CHar & CHar & \ce{CH2} & 120.0 & 140.0 & Refs. \protect\cite{TraPPE-UA.alkylbenzenes} and \protect\cite{Jorgensen:1996sf}\\ |
170 |
CHar & CHar & \ce{CH3} & 120.0 & 140.0 & Refs. \protect\cite{TraPPE-UA.alkylbenzenes} and \protect\cite{Jorgensen:1996sf}\\ |
171 |
CHar & CHar & \ce{CH2ar}& 120.0 & 126.0 & Refs. \protect\cite{TraPPE-UA.alkylbenzenes} and \protect\cite{Jorgensen:1996sf}\\ |
172 |
S & \ce{CH2} & CHene & 109.97 & 127.37 & This work \\ |
173 |
S & \ce{CH2} & CHar & 109.97 & 127.37 & This work \\ |
174 |
S & CHar & CHar & 123.911 & 138.093 & This work \\ |
175 |
\botrule |
176 |
\end{tabular} |
177 |
\bibpunct{[}{]}{,}{n}{,}{,} |
178 |
\end{table} |
179 |
|
180 |
\begin{table}[h] |
181 |
\bibpunct{}{}{,}{n}{,}{,} |
182 |
\centering |
183 |
\caption{Torsion parameters. The central atoms for each torsion are atoms $j$ and $k$, |
184 |
and wildcard atom types are denoted by ``X''. All $c_n$ parameters |
185 |
have units of kcal/mol. The torsions around carbon-carbon double bonds |
186 |
are harmonic and assume a trans (180$\degree$) geometry. The force |
187 |
constant for this torsion is given in $\mathrm{kcal~mol~}^{-1}\mathrm{degrees}^{-2}$. \label{tab:torsion}} |
188 |
\begin{tabular}{ cccc|ccccl } |
189 |
\toprule |
190 |
$i$&$j$&$k$&$l$& $c_0$&$c_1$& $c_2$ & $c_3$ & source\\ |
191 |
\colrule |
192 |
\ce{CH3} & \ce{CH2} & \ce{CH2} & \ce{CH2} & 0.0 & 0.7055 & -0.13551 & 1.5725 & Ref. \protect\cite{TraPPE-UA.alkanes}\\ |
193 |
\ce{CH2} & \ce{CH2} & \ce{CH2} & \ce{CH2} & 0.0 & 0.7055 & -0.13551 & 1.5725 & Ref. \protect\cite{TraPPE-UA.alkanes}\\ |
194 |
\ce{CH2} & \ce{CH2} & \ce{CH2} & S & 0.0 & 0.7055 & -0.13551 & 1.5725 & Ref. \protect\cite{TraPPE-UA.thiols}\\ \colrule |
195 |
X & CHene & CHene & X & \multicolumn{4}{c}{\multirow{2}{*}{$V = \frac{0.008112}{2} (\phi - 180.0)^2$}} & \multirow{2}{*}{Ref. \protect\cite{TraPPE-UA.alkylbenzenes}} \\ |
196 |
X & CHar & CHar & X & & & & & \\ \colrule |
197 |
\ce{CH2} & \ce{CH2} & CHene & CHene & 1.368 & 0.1716 & -0.2181 & -0.56081 & Ref. \protect\cite{TraPPE-UA.alkylbenzenes}\\ |
198 |
\ce{CH2} & \ce{CH2} & \ce{CH2} & CHene & 0.0 & 0.7055 & -0.13551 & 1.5725 & Ref. \protect\cite{TraPPE-UA.alkylbenzenes}\\ |
199 |
CHene & CHene & \ce{CH2} & S & 3.20753 & 0.207417 & -0.912929& -0.958538 & This work \\ |
200 |
CHar & CHar & \ce{CH2} & S & 3.20753 & 0.207417 & -0.912929& -0.958538 & This work \\ |
201 |
\botrule |
202 |
\end{tabular} |
203 |
\bibpunct{[}{]}{,}{n}{,}{,} |
204 |
\end{table} |
205 |
|
206 |
\newpage |
207 |
\bibliographystyle{aip} |
208 |
\bibliography{NPthiols} |
209 |
\end{document} |