ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/NPthiols/Sup_Info.tex
Revision: 4387
Committed: Wed Oct 28 16:04:54 2015 UTC (9 years, 10 months ago) by gezelter
Content type: application/x-tex
File size: 12531 byte(s)
Log Message:
combining tables

File Contents

# Content
1 \documentclass[aps,jcp,preprint,showpacs,superscriptaddress,groupedaddress]{revtex4-1}
2 \usepackage{graphicx} % needed for figures
3 \usepackage{dcolumn} % needed for some tables
4 \usepackage{bm} % for math
5 \usepackage{amssymb} % for math
6 \usepackage{booktabs}
7 \usepackage[english]{babel}
8 \usepackage{multirow}
9 \usepackage{times}
10 \usepackage[version=3]{mhchem}
11 \usepackage{lineno}
12 \usepackage{gensymb}
13 \usepackage{multirow}
14
15 \begin{document}
16
17 \title{Supporting Information for: Interfacial Thermal Conductance of Thiolate-Protected
18 Gold Nanospheres}
19 \author{Kelsey M. Stocker}
20 \author{Suzanne M. Neidhart}
21 \author{J. Daniel Gezelter}
22 \email{gezelter@nd.edu}
23 \affiliation{Department of Chemistry and Biochemistry, University of
24 Notre Dame, Notre Dame, IN 46556}
25 \date{\today}
26
27 \begin{abstract}
28 This document supplies force field parameters for the united-atom
29 sites, bond, bend, and torsion parameters, as well as the cross
30 interactions between the united-atom sites and the gold atoms. These
31 parameters were used in the simulations presented in the main text.
32 \end{abstract}
33
34
35 \maketitle
36
37 Gold -- gold interactions were described by the quantum Sutton-Chen
38 (QSC) model.\cite{Qi:1999ph} The hexane solvent is described by the
39 TraPPE united atom model,\cite{TraPPE-UA.alkanes} where sites are
40 located at the carbon centers for alkyl groups. Bonding interactions
41 were used for intra-molecular sites closer than 3 bonds. Effective
42 Lennard-Jones potentials were used for non-bonded interactions.
43
44 \begin{table}[h]
45 \bibpunct{}{}{,}{n}{}{,}
46 \centering
47 \caption{Non-bonded interaction parameters (including cross interactions with Au atoms). \label{tab:atypes}}
48 \begin{tabular}{ c|cccccc }
49 \toprule
50 Site & mass & $\sigma_{ii}$ & $\epsilon_{ii}$ & $\sigma_{\ce{Au}-i}$ & $\epsilon_{\ce{Au}-i}$ & source \\
51 & (amu)& (\AA) & (kcal/mol) & (\AA) & (kcal/mol) & \\
52 \colrule
53 \ce{CH3} & 15.04 & 3.75 & 0.1947 & 3.54 & 0.2146 & Refs. \protect\cite{vlugt:cpc2007154} and \protect\cite{landman:1998}\\
54 \ce{CH2} & 14.03 & 3.95 & 0.09141& 3.54 & 0.1749 & Refs. \protect\cite{vlugt:cpc2007154} and \protect\cite{landman:1998}\\
55 CH & 13.02 & 4.68 & 0.01987& - & - & Refs. \protect\cite{TraPPE-UA.thiols} and \protect\cite{vlugt:cpc2007154}\\
56 CHene & 13.02 & 3.73 & 0.09340& 3.4625 & 0.1680 & Refs. \protect\cite{vlugt:cpc2007154} and \protect\cite{landman:1998}\\
57 \ce{CH2ene} & 14.03 & 3.675 & 0.16891& - & - & Refs. \protect\cite{vlugt:cpc2007154} and \protect\cite{landman:1998}\\
58 S & 32.0655 & 4.45 & 0.2504 & 2.40 & 8.465 & Refs. \protect\cite{landman:1998} ($\sigma$) and \protect\cite{vlugt:cpc2007154} ($\epsilon$) \\
59 CHar & 13.02 & 3.695 & 0.1004 & 3.4625 & 0.1680 & Refs. \protect\cite{TraPPE-UA.alkylbenzenes} and \protect\cite{vlugt:cpc2007154}\\
60 \ce{CH2ar} & 14.03 & 3.695 & 0.1004 & 3.4625 & 0.1680 & Ref. \protect\cite{TraPPE-UA.alkylbenzenes} and \protect\cite{vlugt:cpc2007154}\\
61 \botrule
62 \end{tabular}
63 \bibpunct{[}{]}{,}{n}{,}{,}
64 \end{table}
65
66 The TraPPE-UA force field includes parameters for thiol
67 molecules\cite{TraPPE-UA.thiols} which were used for the
68 alkanethiolate molecules in our simulations. To derive suitable
69 parameters for butanethiolate adsorbed on Au(111) surfaces, we adopted
70 the S parameters from Luedtke and Landman\cite{landman:1998} and
71 modified the parameters for the CTS atom to maintain charge neutrality
72 in the molecule.
73
74 Bonds are typically rigid in TraPPE-UA, so although we used
75 equilibrium bond distances from TraPPE-UA, for flexible bonds, we
76 adapted bond stretching spring constants from the OPLS-AA force
77 field.\cite{Jorgensen:1996sf}
78
79 \begin{table}[h]
80 \bibpunct{}{}{,}{n}{}{,}
81 \centering
82 \caption{Bond parameters. \label{tab:bond}}
83 \begin{tabular}{ cc|lll }
84 \toprule
85 $i$&$j$ & $r_0$ (\AA) & $k (\mathrm{~kcal/mole/\AA}^2)$ & source\\
86 \colrule
87 \ce{CH3} & \ce{CH3} & 1.540 & 536 & Refs. \protect\cite{TraPPE-UA.alkanes} and \protect\cite{Jorgensen:1996sf}\\
88 \ce{CH3} & \ce{CH2} & 1.540 & 536 & Refs. \protect\cite{TraPPE-UA.alkanes} and \protect\cite{Jorgensen:1996sf} \\
89 \ce{CH3} & CH & 1.540 & 536 & \\
90 \ce{CH2} & \ce{CH2} & 1.540 & 536 & Refs. \protect\cite{TraPPE-UA.alkanes} and \protect\cite{Jorgensen:1996sf} \\
91 \ce{CH2} & CH & 1.540 & 536 & \\
92 CH & CH & 1.540 & 536 & \\
93 CHene & CHene & 1.330 & 1098 & \\
94 \ce{CH2ene} & CHene & 1.330 & 1098 & \\
95 \ce{CH3} & CHene & 1.540 & 634 & \\
96 \ce{CH2} & CHene & 1.540 & 634 & \\
97 S & \ce{CH2} & 1.820 & 444 & \\
98 CHar & CHar & 1.40 & 938 & Refs. \protect\cite{TraPPE-UA.alkylbenzenes} and \protect\cite{Jorgensen:1996sf} \\
99 CHar & \ce{CH2} & 1.540 & 536 & Refs. \protect\cite{TraPPE-UA.alkylbenzenes} and \protect\cite{Jorgensen:1996sf}\\
100 CHar & \ce{CH3} & 1.540 & 536 & Refs. \protect\cite{TraPPE-UA.alkylbenzenes} and \protect\cite{Jorgensen:1996sf}\\
101 \ce{CH2ar} & CHar & 1.40 & 938 & Refs. and \protect\cite{Jorgensen:1996sf} \\
102 S & CHar & 1.80384 & 527.951 & This Work \\
103 \botrule
104 \end{tabular}
105 \bibpunct{[}{]}{,}{n}{,}{,}
106 \end{table}
107
108 To describe the interactions between metal (Au) and non-metal atoms,
109 potential energy terms were adapted from an adsorption study of alkyl
110 thiols on gold surfaces by Vlugt, \textit{et
111 al.}\cite{vlugt:cpc2007154} They fit an effective pair-wise
112 Lennard-Jones form of potential parameters for the interaction between
113 Au and pseudo-atoms CH$_x$ and S based on a well-established and
114 widely-used effective potential of Hautman and Klein for the Au(111)
115 surface.\cite{hautman:4994}
116
117 Parameters not found in the TraPPE-UA force field for the
118 intramolecular interactions of the conjugated and the penultimate
119 alkenethiolate ligands were calculated using constrained geometry
120 scans using the B3LYP functional~\cite{Becke:1993kq,Lee:1988qf} and
121 the 6-31G(d,p) basis set. Structures were scanned starting at the
122 minimum energy gas phase structure for small ($C_4$) ligands. Only
123 one degree of freedom was constrained for any given scan -- all other
124 atoms were allowed to minimize subject to that constraint. The
125 resulting potential energy surfaces were fit to a harmonic potential
126 for the bond stretching,
127 \begin{equation}
128 V_\mathrm{bond} = \frac{k_\mathrm{bond}}{2} \left( r - r_0 \right)^2,
129 \end{equation}
130 and angle bending potentials,
131 \begin{equation}
132 V_\mathrm{bend} = \frac{k_\mathrm{bend}}{2} \left(\theta - \theta_0\right)^2.
133 \end{equation}
134 Torsional potentials were fit to the TraPPE torsional function,
135 \begin{equation}
136 V_\mathrm{tor} = c_0 + c_1 \left(1 + \cos\phi \right) + c_2 \left(1 - \cos 2\phi \right) + c_3 \left(1 + \cos 3 \phi \right).
137 \end{equation}
138
139 For the penultimate thiolate ligands, the model molecule used was
140 2-Butene-1-thiol, for which one bend angle (\ce{S-CH2-CHene}) was
141 scanned to fit an equilibrium angle and force constant, as well as one
142 torsion (\ce{S-CH2-CHene-CHene}). The parameters for these two
143 potentials also served as model for the longer conjugated thiolate
144 ligands which require bend angle parameters for (\ce{S-CH2-CHar}) and
145 torsion parameters for (\ce{S-CH2-CHar-CHar}).
146
147 For the $C_4$ conjugated thiolate ligands, the model molecule for the
148 quantum mechanical calculations was 1,3-Butadiene-1-thiol. This
149 ligand required fitting one bond (\ce{S-CHar}), and one bend angle
150 (\ce{S-CHar-CHar}).
151
152 The geometries of the model molecules were optimized prior to
153 performing the constrained angle scans, and the fit values for the
154 bond, bend, and torsional parameters were in relatively good agreement
155 with similar parameters already present in TraPPE.
156
157
158 \begin{table}[h]
159 \bibpunct{}{}{,}{n}{,}{,}
160 \centering
161 \caption{Bend angle parameters. The central atom in the bend is atom $j$.\label{tab:bend}}
162 \begin{tabular}{ ccc|lll }
163 \toprule
164 $i$&$j$&$k$ & $\theta_0 (\degree)$ & $k (\mathrm{kcal/mole/rad}^2)$ & source\\
165 \colrule
166 \ce{CH2} & \ce{CH2} & S & 114.0 & 124.20& Ref. \protect\cite{TraPPE-UA.thiols}\\
167 \ce{CH3} & \ce{CH2} & S & 114.0 & 124.20& Ref. \protect\cite{TraPPE-UA.thiols}\\
168 \ce{CH3} & \ce{CH2} & \ce{CH3} & 114.0 & 124.20& Ref. \protect\cite{TraPPE-UA.thiols}\\
169 \ce{CH3} & \ce{CH2} & \ce{CH2} & 114.0 & 124.20& Ref. \protect\cite{TraPPE-UA.thiols}\\
170 \ce{CH2} & \ce{CH2} & \ce{CH2} & 114.0 & 124.20& Ref. \protect\cite{TraPPE-UA.thiols}\\
171 \ce{CH3} & \ce{CH2} & CH & 114.0 & 124.20& Ref. \protect\cite{TraPPE-UA.thiols}\\
172 CHene & CHene & \ce{CH3} & 119.7 & 139.94& Ref. \protect\cite{Maerzke:2009qy}\\
173 CHene & CHene & CHene & 119.7 & 139.94& Ref. \protect\cite{Maerzke:2009qy}\\
174 \ce{CH2ene} & CHene & \ce{CH3} & 119.7 & 139.94& Ref. \protect\cite{Maerzke:2009qy}\\
175 CHene & CHene & \ce{CH2} & 119.7 & 139.94& Ref. \protect\cite{Maerzke:2009qy}\\
176 \ce{CH2} & \ce{CH2} & CHene & 114.0 & 124.20& Ref. \protect\cite{TraPPE-UA.thiols}\\
177 CHar & CHar & CHar & 120.0 & 126.0 & Refs. \protect\cite{Maerzke:2009qy} and \\
178 CHar & CHar & \ce{CH2} & 120.0 & 140.0 & Refs. \protect\cite{Maerzke:2009qy} and \\
179 CHar & CHar & \ce{CH3} & 120.0 & 140.0 & Refs. \protect\cite{Maerzke:2009qy} and \\
180 CHar & CHar & \ce{CH2ar} & 120.0 & 126.0 & Refs. \protect\cite{Maerzke:2009qy} and \\
181 S & \ce{CH2} & CHene & 109.97 & 127.37 & This work \\
182 S & \ce{CH2} & CHar & 109.97 & 127.37 & This work \\
183 S & CHar & CHar & 123.911 & 138.093 & This work \\
184 \botrule
185 \end{tabular}
186 \bibpunct{[}{]}{,}{n}{,}{,}
187 \end{table}
188
189 \begin{table}[h]
190 \bibpunct{}{}{,}{n}{,}{,}
191 \centering
192 \caption{Torsion parameters. The central atoms for each torsion are atoms $j$ and $k$,
193 and wildcard atom types are denoted by ``X''. All $c_n$ parameters
194 have units of kcal/mol. The torsions around carbon-carbon double bonds
195 are harmonic and assume a trans (180$\degree$) geometry. The force
196 constant for this torsion is given in $\mathrm{kcal~mol~}^{-1}\mathrm{degrees}^{-2}$. \label{tab:torsion}}
197 \begin{tabular}{ cccc|lllll }
198 \toprule
199 $i$&$j$&$k$&$l$& $c_0$&$c_1$& $c_2$ & $c_3$ & source\\
200 \colrule
201 \ce{CH3} & \ce{CH2} & \ce{CH2} & \ce{CH3} & 0.0 & 0.7055 & -0.13551 & 1.5725 & Ref. \protect\cite{TraPPE-UA.alkylbenzenes}\\
202 \ce{CH3} & \ce{CH2} & \ce{CH2} & \ce{CH2} & 0.0 & 0.7055 & -0.13551 & 1.5725 & Ref. \protect\cite{TraPPE-UA.alkylbenzenes}\\
203 \ce{CH3} & \ce{CH2} & \ce{CH2} & CH & 0.0 & 0.7055 & -0.13551 & 1.5725 & Ref. \protect\cite{TraPPE-UA.alkylbenzenes}\\
204 \ce{CH2} & \ce{CH2} & \ce{CH2} & \ce{CH2} & 0.0 & 0.7055 & -0.13551 & 1.5725 & Ref. \protect\cite{TraPPE-UA.alkylbenzenes}\\
205 \ce{CH2} & \ce{CH2} & \ce{CH2} & S & 0.0 & 0.7055 & -0.13551 & 1.5725 & Ref. \protect\cite{TraPPE-UA.alkylbenzenes}\\
206 \ce{CH3} & \ce{CH2} & \ce{CH2} & S & 0.0 & 0.7055 & -0.13551 & 1.5725 & Ref. \protect\cite{TraPPE-UA.alkylbenzenes}\\ \colrule
207 X & CHene & CHene & X & \multicolumn{4}{c}{\multirow{2}{*}{$V = \frac{0.008112}{2} (\phi - 180.0)^2$}} & \multirow{2}{*}{Ref. \protect\cite{TraPPE-UA.alkylbenzenes}} \\
208 X & CHar & CHar & X & & & & & \\ \colrule
209 \ce{CH2} & \ce{CH2} & CHene & CHene & 1.368 & 0.1716 & -0.2181 & -0.56081 & Ref. \protect\cite{TraPPE-UA.alkylbenzenes}\\
210 \ce{CH2} & \ce{CH2} & \ce{CH2} & CHene & 0.0 & 0.7055 & -0.13551 & 1.5725 & Ref. \protect\cite{TraPPE-UA.alkylbenzenes}\\
211 CHene & CHene & \ce{CH2} & S & 3.20753 & 0.207417& -0.912929& -0.958538 & This work \\
212 CHar & CHar & \ce{CH2} & S & 3.20753 & 0.207417& -0.912929& -0.958538 & This work \\
213 \botrule
214 \end{tabular}
215 \bibpunct{[}{]}{,}{n}{,}{,}
216 \end{table}
217
218
219 \newpage
220 \bibliographystyle{aip}
221 \bibliography{NPthiols}
222 \end{document}