ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/NPthiols/Sup_Info.tex
Revision: 4386
Committed: Wed Oct 28 15:23:23 2015 UTC (9 years, 9 months ago) by skucera
Content type: application/x-tex
File size: 12793 byte(s)
Log Message:
ref add for UA Properties table

File Contents

# Content
1 \documentclass[aps,preprint,showpacs,superscriptaddress,groupedaddress]{revtex4-1}
2 \usepackage{graphicx} % needed for figures
3 \usepackage{dcolumn} % needed for some tables
4 \usepackage{bm} % for math
5 \usepackage{amssymb} % for math
6 \usepackage{booktabs}
7 \usepackage[english]{babel}
8 \usepackage{multirow}
9 \usepackage{times}
10 \usepackage[version=3]{mhchem}
11 \usepackage{lineno}
12 \usepackage{gensymb}
13 \usepackage{multirow}
14
15 \begin{document}
16
17 \title{Supporting Information for: Interfacial Thermal Conductance of Thiolate-Protected
18 Gold Nanospheres}
19 \author{Kelsey M. Stocker}
20 \author{Suzanne M. Neidhart}
21 \author{J. Daniel Gezelter}
22 \email{gezelter@nd.edu}
23 \affiliation{Department of Chemistry and Biochemistry, University of
24 Notre Dame, Notre Dame, IN 46556}
25 \date{\today}
26
27 \begin{abstract}
28 This document supplies force field parameters for the united-atom
29 sites, bond, bend, and torsion parameters, as well as the cross
30 interactions between the united-atom sites and the gold atoms. These
31 parameters were used in the simulations presented in the main text.
32 \end{abstract}
33
34
35 \maketitle
36
37 Gold -- gold interactions were described by the quantum Sutton-Chen
38 (QSC) model.\cite{Qi:1999ph} The hexane solvent is described by the
39 TraPPE united atom model,\cite{TraPPE-UA.alkanes} where sites are
40 located at the carbon centers for alkyl groups. Bonding interactions
41 were used for intra-molecular sites closer than 3 bonds. Effective
42 Lennard-Jones potentials were used for non-bonded interactions.
43
44 \begin{table}[h]
45 \bibpunct{}{}{,}{n}{}{,}
46 \centering
47 \caption{Properties of the United atom sites. \label{tab:atypes}}
48 \begin{tabular}{ c|cccc }
49 \toprule
50 atom type & mass (amu)& $\epsilon$ (kcal/mol) & $\sigma$ (\AA) & source \\
51 \colrule
52 \ce{CH3} & 15.04 & 0.1947 & 3.75 & Refs. \protect\cite{landman:1998}\\
53 \ce{CH2} & 14.03 & 0.09141 & 3.95 & Refs. \protect\cite{landman:1998}\\
54 CH & 13.02 & 0.01987 & 4.68 & Ref. \protect\cite{TraPPE-UA.thiols}\\
55 CHene & 13.02 & 0.09340 & 3.73 & Refs. \protect\cite{landman:1998}\\
56 \ce{CH2ene} & 14.03 & 0.16891 & 3.675 & Refs. \protect\cite{landman:1998}\\
57 S & 32.0655 & 0.2504 & 4.45 & Refs. \protect\cite{landman:1998} ($\sigma$) and \protect\cite{vlugt:cpc2007154} ($\epsilon$) \\
58 CHar & 13.02 & 0.1004 & 3.695 & Ref. \protect\cite{TraPPE-UA.alkylbenzenes}\\
59 \ce{CH2ar} & 14.03 & 0.1004 & 3.695 & Ref. \protect\cite{TraPPE-UA.alkylbenzenes}\\
60 \botrule
61 \end{tabular}
62 \bibpunct{[}{]}{,}{n}{,}{,}
63 \end{table}
64
65 The TraPPE-UA force field includes parameters for thiol
66 molecules\cite{TraPPE-UA.thiols} which were used for the
67 alkanethiolate molecules in our simulations. To derive suitable
68 parameters for butanethiolate adsorbed on Au(111) surfaces, we adopted
69 the S parameters from Luedtke and Landman\cite{landman:1998} and
70 modified the parameters for the CTS atom to maintain charge neutrality
71 in the molecule.
72
73 Bonds are typically rigid in TraPPE-UA, so although we used
74 equilibrium bond distances from TraPPE-UA, for flexible bonds, we
75 adapted bond stretching spring constants from the OPLS-AA force
76 field.\cite{Jorgensen:1996sf}
77
78 \begin{table}[h]
79 \bibpunct{}{}{,}{n}{}{,}
80 \centering
81 \caption{Bond parameters. \label{tab:bond}}
82 \begin{tabular}{ cc|lll }
83 \toprule
84 $i$&$j$ & $r_0$ (\AA) & $k (\mathrm{~kcal/mole/\AA}^2)$ & source\\
85 \colrule
86 \ce{CH3} & \ce{CH3} & 1.540 & 536 & Refs. \protect\cite{TraPPE-UA.alkanes} and \protect\cite{Jorgensen:1996sf}\\
87 \ce{CH3} & \ce{CH2} & 1.540 & 536 & Refs. \protect\cite{TraPPE-UA.alkanes} and \protect\cite{Jorgensen:1996sf} \\
88 \ce{CH3} & CH & 1.540 & 536 & \\
89 \ce{CH2} & \ce{CH2} & 1.540 & 536 & Refs. \protect\cite{TraPPE-UA.alkanes} and \protect\cite{Jorgensen:1996sf} \\
90 \ce{CH2} & CH & 1.540 & 536 & \\
91 CH & CH & 1.540 & 536 & \\
92 CHene & CHene & 1.330 & 1098 & \\
93 \ce{CH2ene} & CHene & 1.330 & 1098 & \\
94 \ce{CH3} & CHene & 1.540 & 634 & \\
95 \ce{CH2} & CHene & 1.540 & 634 & \\
96 S & \ce{CH2} & 1.820 & 444 & \\
97 CHar & CHar & 1.40 & 938 & Refs. \protect\cite{TraPPE-UA.alkylbenzenes} and \protect\cite{Jorgensen:1996sf} \\
98 CHar & \ce{CH2} & 1.540 & 536 & Refs. \protect\cite{TraPPE-UA.alkylbenzenes} and \protect\cite{Jorgensen:1996sf}\\
99 CHar & \ce{CH3} & 1.540 & 536 & Refs. \protect\cite{TraPPE-UA.alkylbenzenes} and \protect\cite{Jorgensen:1996sf}\\
100 \ce{CH2ar} & CHar & 1.40 & 938 & Refs. and \protect\cite{Jorgensen:1996sf} \\
101 S & CHar & 1.80384 & 527.951 & This Work \\
102 \botrule
103 \end{tabular}
104 \bibpunct{[}{]}{,}{n}{,}{,}
105 \end{table}
106
107 To describe the interactions between metal (Au) and non-metal atoms,
108 potential energy terms were adapted from an adsorption study of alkyl
109 thiols on gold surfaces by Vlugt, \textit{et
110 al.}\cite{vlugt:cpc2007154} They fit an effective pair-wise
111 Lennard-Jones form of potential parameters for the interaction between
112 Au and pseudo-atoms CH$_x$ and S based on a well-established and
113 widely-used effective potential of Hautman and Klein for the Au(111)
114 surface.\cite{hautman:4994}
115
116 Parameters not found in the TraPPE-UA force field for the
117 intramolecular interactions of the conjugated and the penultimate
118 alkenethiolate ligands were calculated using constrained geometry
119 scans using the B3LYP functional~\cite{Becke:1993kq,Lee:1988qf} and
120 the 6-31G(d,p) basis set. Structures were scanned starting at the
121 minimum energy gas phase structure for small ($C_4$) ligands. Only
122 one degree of freedom was constrained for any given scan -- all other
123 atoms were allowed to minimize subject to that constraint. The
124 resulting potential energy surfaces were fit to a harmonic potential
125 for the bond stretching,
126 \begin{equation}
127 V_\mathrm{bond} = \frac{k_\mathrm{bond}}{2} \left( r - r_0 \right)^2,
128 \end{equation}
129 and angle bending potentials,
130 \begin{equation}
131 V_\mathrm{bend} = \frac{k_\mathrm{bend}}{2} \left(\theta - \theta_0\right)^2.
132 \end{equation}
133 Torsional potentials were fit to the TraPPE torsional function,
134 \begin{equation}
135 V_\mathrm{tor} = c_0 + c_1 \left(1 + \cos\phi \right) + c_2 \left(1 - \cos 2\phi \right) + c_3 \left(1 + \cos 3 \phi \right).
136 \end{equation}
137
138 For the penultimate thiolate ligands, the model molecule used was
139 2-Butene-1-thiol, for which one bend angle (\ce{S-CH2-CHene}) was
140 scanned to fit an equilibrium angle and force constant, as well as one
141 torsion (\ce{S-CH2-CHene-CHene}). The parameters for these two
142 potentials also served as model for the longer conjugated thiolate
143 ligands which require bend angle parameters for (\ce{S-CH2-CHar}) and
144 torsion parameters for (\ce{S-CH2-CHar-CHar}).
145
146 For the $C_4$ conjugated thiolate ligands, the model molecule for the
147 quantum mechanical calculations was 1,3-Butadiene-1-thiol. This
148 ligand required fitting one bond (\ce{S-CHar}), and one bend angle
149 (\ce{S-CHar-CHar}).
150
151 The geometries of the model molecules were optimized prior to
152 performing the constrained angle scans, and the fit values for the
153 bond, bend, and torsional parameters were in relatively good agreement
154 with similar parameters already present in TraPPE.
155
156
157 \begin{table}[h]
158 \bibpunct{}{}{,}{n}{,}{,}
159 \centering
160 \caption{Bend angle parameters. The central atom in the bend is atom $j$.\label{tab:bend}}
161 \begin{tabular}{ ccc|lll }
162 \toprule
163 $i$&$j$&$k$ & $\theta_0 (\degree)$ & $k (\mathrm{kcal/mole/rad}^2)$ & source\\
164 \colrule
165 \ce{CH2} & \ce{CH2} & S & 114.0 & 124.20& Ref. \protect\cite{TraPPE-UA.thiols}\\
166 \ce{CH3} & \ce{CH2} & S & 114.0 & 124.20& Ref. \protect\cite{TraPPE-UA.thiols}\\
167 \ce{CH3} & \ce{CH2} & \ce{CH3} & 114.0 & 124.20& Ref. \protect\cite{TraPPE-UA.thiols}\\
168 \ce{CH3} & \ce{CH2} & \ce{CH2} & 114.0 & 124.20& Ref. \protect\cite{TraPPE-UA.thiols}\\
169 \ce{CH2} & \ce{CH2} & \ce{CH2} & 114.0 & 124.20& Ref. \protect\cite{TraPPE-UA.thiols}\\
170 \ce{CH3} & \ce{CH2} & CH & 114.0 & 124.20& Ref. \protect\cite{TraPPE-UA.thiols}\\
171 CHene & CHene & \ce{CH3} & 119.7 & 139.94& Ref. \protect\cite{Maerzke:2009qy}\\
172 CHene & CHene & CHene & 119.7 & 139.94& Ref. \protect\cite{Maerzke:2009qy}\\
173 \ce{CH2ene} & CHene & \ce{CH3} & 119.7 & 139.94& Ref. \protect\cite{Maerzke:2009qy}\\
174 CHene & CHene & \ce{CH2} & 119.7 & 139.94& Ref. \protect\cite{Maerzke:2009qy}\\
175 \ce{CH2} & \ce{CH2} & CHene & 114.0 & 124.20& Ref. \protect\cite{TraPPE-UA.thiols}\\
176 CHar & CHar & CHar & 120.0 & 126.0 & Refs. \protect\cite{Maerzke:2009qy} and \\
177 CHar & CHar & \ce{CH2} & 120.0 & 140.0 & Refs. \protect\cite{Maerzke:2009qy} and \\
178 CHar & CHar & \ce{CH3} & 120.0 & 140.0 & Refs. \protect\cite{Maerzke:2009qy} and \\
179 CHar & CHar & \ce{CH2ar} & 120.0 & 126.0 & Refs. \protect\cite{Maerzke:2009qy} and \\
180 S & \ce{CH2} & CHene & 109.97 & 127.37 & This work \\
181 S & \ce{CH2} & CHar & 109.97 & 127.37 & This work \\
182 S & CHar & CHar & 123.911 & 138.093 & This work \\
183 \botrule
184 \end{tabular}
185 \bibpunct{[}{]}{,}{n}{,}{,}
186 \end{table}
187
188 \begin{table}[h]
189 \bibpunct{}{}{,}{n}{,}{,}
190 \centering
191 \caption{Torsion parameters. The central atoms for each torsion are atoms $j$ and $k$,
192 and wildcard atom types are denoted by ``X''. All $c_n$ parameters
193 have units of kcal/mol. The torsions around carbon-carbon double bonds
194 are harmonic and assume a trans (180$\degree$) geometry. The force
195 constant for this torsion is given in $\mathrm{kcal~mol~}^{-1}\mathrm{degrees}^{-2}$. \label{tab:torsion}}
196 \begin{tabular}{ cccc|lllll }
197 \toprule
198 $i$&$j$&$k$&$l$& $c_0$&$c_1$& $c_2$ & $c_3$ & source\\
199 \colrule
200 \ce{CH3} & \ce{CH2} & \ce{CH2} & \ce{CH3} & 0.0 & 0.7055 & -0.13551 & 1.5725 & Ref. \protect\cite{TraPPE-UA.alkylbenzenes}\\
201 \ce{CH3} & \ce{CH2} & \ce{CH2} & \ce{CH2} & 0.0 & 0.7055 & -0.13551 & 1.5725 & Ref. \protect\cite{TraPPE-UA.alkylbenzenes}\\
202 \ce{CH3} & \ce{CH2} & \ce{CH2} & CH & 0.0 & 0.7055 & -0.13551 & 1.5725 & Ref. \protect\cite{TraPPE-UA.alkylbenzenes}\\
203 \ce{CH2} & \ce{CH2} & \ce{CH2} & \ce{CH2} & 0.0 & 0.7055 & -0.13551 & 1.5725 & Ref. \protect\cite{TraPPE-UA.alkylbenzenes}\\
204 \ce{CH2} & \ce{CH2} & \ce{CH2} & S & 0.0 & 0.7055 & -0.13551 & 1.5725 & Ref. \protect\cite{TraPPE-UA.alkylbenzenes}\\
205 \ce{CH3} & \ce{CH2} & \ce{CH2} & S & 0.0 & 0.7055 & -0.13551 & 1.5725 & Ref. \protect\cite{TraPPE-UA.alkylbenzenes}\\ \colrule
206 X & CHene & CHene & X & \multicolumn{4}{c}{\multirow{2}{*}{$V = \frac{0.008112}{2} (\phi - 180.0)^2$}} & \multirow{2}{*}{Ref. \protect\cite{TraPPE-UA.alkylbenzenes}} \\
207 X & CHar & CHar & X & & & & & \\ \colrule
208 \ce{CH2} & \ce{CH2} & CHene & CHene & 1.368 & 0.1716 & -0.2181 & -0.56081 & Ref. \protect\cite{TraPPE-UA.alkylbenzenes}\\
209 \ce{CH2} & \ce{CH2} & \ce{CH2} & CHene & 0.0 & 0.7055 & -0.13551 & 1.5725 & Ref. \protect\cite{TraPPE-UA.alkylbenzenes}\\
210 CHene & CHene & \ce{CH2} & S & 3.20753 & 0.207417& -0.912929& -0.958538 & This work \\
211 CHar & CHar & \ce{CH2} & S & 3.20753 & 0.207417& -0.912929& -0.958538 & This work \\
212 \botrule
213 \end{tabular}
214 \bibpunct{[}{]}{,}{n}{,}{,}
215 \end{table}
216
217 \begin{table}[h]
218 \bibpunct{}{}{,}{n}{,}{,}
219 \centering
220 \caption{Non-bonded cross interaction parameters between gold atoms and the united atom sites\label{tab:nb}}
221 \begin{tabular}{ cc|ccc }
222 \toprule
223 $i$&$j$ & $\sigma$ (\AA)& $\epsilon$ $(kcal/mol)$ & source \\
224 \colrule
225 Au &\ce{CH3} &3.54 &0.2146& Ref. \protect\cite{vlugt:cpc2007154}\\
226 Au &\ce{CH2} &3.54 &0.1749& Ref. \protect\cite{vlugt:cpc2007154}\\
227 Au &CHene &3.4625 &0.1680& Ref. \protect\cite{vlugt:cpc2007154}\\
228 Au &CHar &3.4625 &0.1680& Ref. \protect\cite{vlugt:cpc2007154}\\
229 Au &\ce{CH2ar} &3.4625 &0.1680& Ref. \protect\cite{vlugt:cpc2007154}\\
230 Au &S &2.40 &8.465& Ref. \protect\cite{vlugt:cpc2007154}\\
231 \botrule
232 \end {tabular}
233 \bibpunct{[}{]}{,}{n}{,}{,}
234 \end{table}
235
236 \newpage
237 \bibliographystyle{aip}
238 \bibliography{NPthiols}
239 \end{document}