1 |
\documentclass[aps,jcp,preprint,showpacs,superscriptaddress,groupedaddress]{revtex4} % for double-spaced preprint |
2 |
\usepackage{graphicx} % needed for figures |
3 |
\usepackage{dcolumn} % needed for some tables |
4 |
\usepackage{bm} % for math |
5 |
\usepackage{amssymb} % for math |
6 |
%\usepackage{booktabs} |
7 |
\usepackage[english]{babel} |
8 |
\usepackage{multirow} |
9 |
\usepackage{tablefootnote} |
10 |
\usepackage{times} |
11 |
\usepackage[version=3]{mhchem} |
12 |
\usepackage{lineno} |
13 |
\usepackage{gensymb} |
14 |
\usepackage{multirow} |
15 |
|
16 |
\begin{document} |
17 |
|
18 |
\title{Supporting Information for: Interfacial Thermal Conductance of Thiolate-Protected |
19 |
Gold Nanospheres} |
20 |
\author{Kelsey M. Stocker} |
21 |
\author{Suzanne M. Neidhart} |
22 |
\author{J. Daniel Gezelter} |
23 |
\email{gezelter@nd.edu} |
24 |
\affiliation{Department of Chemistry and Biochemistry, University of |
25 |
Notre Dame, Notre Dame, IN 46556} |
26 |
|
27 |
\maketitle |
28 |
Gold -- gold interactions were described by the quantum Sutton-Chen |
29 |
(QSC) model.\cite{Qi:1999ph} The hexane solvent is described by the |
30 |
TraPPE united atom model,\cite{TraPPE-UA.alkanes} where sites are |
31 |
located at the carbon centers for alkyl groups. Bonding interactions |
32 |
were used for intra-molecular sites closer than 3 bonds. Effective |
33 |
Lennard-Jones potentials were used for non-bonded interactions. |
34 |
|
35 |
\begin{table}[h] |
36 |
\centering |
37 |
\caption{Properties of the United atom sites. \label{tab:atypes}} |
38 |
\begin{tabular}{ c|cccc } |
39 |
\toprule |
40 |
atom type & mass (amu)& $\epsilon$ (kcal/mol) & $\sigma$ (\AA) & source \\ |
41 |
\colrule |
42 |
\ce{CH3} & 15.04 & 0.1947 & 3.75 & \\ |
43 |
\ce{CH2} & 14.03 & 0.09141 & 3.95 & \\ |
44 |
\ce{CH} & 13.02 & 0.01987 & 4.68 & \\ |
45 |
\ce{CHene} & 13.02 & 0.09340 & 3.73 & \\ |
46 |
\ce{CH2ene} & 14.03 & 0.16891 & 3.675 & \\ |
47 |
S & 32.0655 & 0.2504 & 4.45 & Refs. \protect\cite{landman:1998} ($\sigma$) and \protect\cite{vlugt:cpc2007154} ($\epsilon$) \\ |
48 |
\ce{CHar} & 13.02 & 0.1004 & 3.695 & Ref. \protect\cite{TraPPE-UA.alkylbenzenes}\\ |
49 |
\ce{CH2ar} & 14.03 & 0.1004 & 3.695 & Ref. \protect\cite{TraPPE-UA.alkylbenzenes}\\ |
50 |
\botrule |
51 |
\end{tabular} |
52 |
\end{table} |
53 |
|
54 |
The TraPPE-UA force field includes parameters for thiol |
55 |
molecules\cite{TraPPE-UA.thiols} which were used for the |
56 |
alkanethiolate molecules in our simulations. To derive suitable |
57 |
parameters for butanethiolate adsorbed on Au(111) surfaces, we adopted |
58 |
the S parameters from Luedtke and Landman\cite{landman:1998} and |
59 |
modified the parameters for the CTS atom to maintain charge neutrality |
60 |
in the molecule. |
61 |
|
62 |
Bonds are typically rigid in TraPPE-UA, so although we used |
63 |
equilibrium bond distances from TraPPE-UA, for flexible bonds, we |
64 |
adapted bond stretching spring constants from the OPLS-AA force |
65 |
field.\cite{Jorgensen:1996sf} |
66 |
|
67 |
\begin{table}[h] |
68 |
\centering |
69 |
\caption{Bond parameters. \label{tab:bond}} |
70 |
\begin{tabular}{ cc|lll } |
71 |
\toprule |
72 |
$i$&$j$ & $r_0$ (\AA) & $k (\mathrm{~kcal/mole/\AA}^2)$ & source\\ |
73 |
\colrule |
74 |
\ce{CH3} & \ce{CH3} & 1.540 & 536 & Refs. \protect\cite{TraPPE-UA.alkanes} and \protect\cite{Jorgensen:1996sf}\\ |
75 |
\ce{CH3} & \ce{CH2} & 1.540 & 536 & Refs. \protect\cite{TraPPE-UA.alkanes} and \protect\cite{Jorgensen:1996sf} \\ |
76 |
\ce{CH3} & \ce{CH} & 1.540 & 536 & \\ |
77 |
\ce{CH2} & \ce{CH2} & 1.540 & 536 & Refs. \protect\cite{TraPPE-UA.alkanes} and \protect\cite{Jorgensen:1996sf} \\ |
78 |
\ce{CH2} & \ce{CH} & 1.540 & 536 & \\ |
79 |
\ce{CH} & \ce{CH} & 1.540 & 536 & \\ |
80 |
\ce{CHene} & \ce{CHene} & 1.330 & 1098 & \\ |
81 |
\ce{CH2ene} & \ce{CHene} & 1.330 & 1098 & \\ |
82 |
\ce{CH3} & \ce{CHene} & 1.540 & 634 & \\ |
83 |
\ce{CH2} & \ce{CHene} & 1.540 & 634 & \\ |
84 |
S & \ce{CH2} & 1.820 & 444 & \\ |
85 |
\ce{CHar} & \ce{CHar} & 1.40 & 938 & Refs. \protect\cite{TraPPE-UA.alkylbenzenes} and \protect\cite{Jorgensen:1996sf} \\ |
86 |
\ce{CHar} & \ce{CH2} & 1.540 & 536 & Refs. \protect\cite{TraPPE-UA.alkylbenzenes} and \protect\cite{Jorgensen:1996sf}\\ |
87 |
\ce{CHar} & \ce{CH3} & 1.540 & 536 & Refs. \protect\cite{TraPPE-UA.alkylbenzenes} and \protect\cite{Jorgensen:1996sf}\\ |
88 |
\ce{CH2ar} & \ce{CHar} & 1.40 & 938 & |
89 |
Refs. and |
90 |
\protect\cite{Jorgensen:1996sf} \\ |
91 |
S & \ce{CHar} & 1.80384 & 527.951 & fit \\ |
92 |
\botrule |
93 |
\end{tabular} |
94 |
\end{table} |
95 |
|
96 |
To describe the interactions between metal (Au) and non-metal atoms, |
97 |
potential energy terms were adapted from an adsorption study of alkyl |
98 |
thiols on gold surfaces by Vlugt, \textit{et |
99 |
al.}\cite{vlugt:cpc2007154} They fit an effective pair-wise |
100 |
Lennard-Jones form of potential parameters for the interaction between |
101 |
Au and pseudo-atoms CH$_x$ and S based on a well-established and |
102 |
widely-used effective potential of Hautman and Klein for the Au(111) |
103 |
surface.\cite{hautman:4994} |
104 |
|
105 |
Parameters not found in the TraPPE-UA force field for the |
106 |
intramolecular interactions of the conjugated and the penultimate |
107 |
alkenethiolate ligands were calculated using constrained geometry |
108 |
scans using the B3LYP functional~\cite{Becke:1993kq,Lee:1988qf} and |
109 |
the 6-31G(d,p) basis set. Structures were scanned starting at the |
110 |
minimum energy gas phase structure for small ($C_4$) ligands. Only |
111 |
one degree of freedom was constrained for any given scan -- all other |
112 |
atoms were allowed to minimize subject to that constraint. The |
113 |
resulting potential energy surfaces were fit to a harmonic potential |
114 |
for the bond stretching, |
115 |
\begin{equation} |
116 |
V_\mathrm{bond} = \frac{k_\mathrm{bond}}{2} \left( r - r_0 \right)^2, |
117 |
\end{equation} |
118 |
and angle bending potentials, |
119 |
\begin{equation} |
120 |
V_\mathrm{bend} = \frac{k_\mathrm{bend}}{2} \left(\theta - \theta_0\right)^2. |
121 |
\end{equation} |
122 |
Torsional potentials were fit to the TraPPE torsional function, |
123 |
\begin{equation} |
124 |
V_\mathrm{tor} = c_0 + c_1 \left(1 + \cos\phi \right) + c_2 \left(1 - \cos 2\phi \right) + c_3 \left(1 + \cos 3 \phi \right). |
125 |
\end{equation} |
126 |
|
127 |
For the penultimate thiolate ligands, the model molecule used was |
128 |
2-Butene-1-thiol, for which one bend angle (\ce{S-CH2-CHene}) was |
129 |
scanned to fit an equilibrium angle and force constant, as well as one |
130 |
torsion (\ce{S-CH2-CHene-CHene}). The parameters for these two |
131 |
potentials also served as model for the longer conjugated thiolate |
132 |
ligands which require bend angle parameters for (\ce{S-CH2-CHar}) and |
133 |
torsion parameters for (\ce{S-CH2-CHar-CHar}). |
134 |
|
135 |
For the $C_4$ conjugated thiolate ligands, the model molecule for the |
136 |
quantum mechanical calculations was 1,3-Butadiene-1-thiol. This |
137 |
ligand required fitting one bond (\ce{S-CHar}), and one bend angle |
138 |
(\ce{S-CHar-CHar}). |
139 |
|
140 |
The geometries of the model molecules were optimized prior to |
141 |
performing the constrained angle scans, and the fit values for the |
142 |
bond, bend, and torsional parameters were in relatively good agreement |
143 |
with similar parameters already present in TraPPE. |
144 |
|
145 |
|
146 |
\begin{table}[h] |
147 |
\centering |
148 |
\caption{Bend angle parameters. The central atom in the bend is atom $j$.\label{tab:bend}} |
149 |
\begin{tabular}{ ccc|lll } |
150 |
\toprule |
151 |
$i$&$j$&$k$ & $\theta_0 (\degree)$ & $k (\mathrm{kcal/mole/rad}^2)$ & source\\ |
152 |
\colrule |
153 |
\ce{CH2} & \ce{CH2} & S & 114.0 & 124.20& Ref. \protect\cite{TraPPE-UA.thiols}\\ |
154 |
\ce{CH3} & \ce{CH2} & S & 114.0 & 124.20& Ref. \protect\cite{TraPPE-UA.thiols}\\ |
155 |
\ce{CH3} & \ce{CH2} & \ce{CH3} & 114.0 & 124.20& Ref. \protect\cite{TraPPE-UA.thiols}\\ |
156 |
\ce{CH3} & \ce{CH2} & \ce{CH2} & 114.0 & 124.20& Ref. \protect\cite{TraPPE-UA.thiols}\\ |
157 |
\ce{CH2} & \ce{CH2} & \ce{CH2} & 114.0 & 124.20& Ref. \protect\cite{TraPPE-UA.thiols}\\ |
158 |
\ce{CH3} & \ce{CH2} & \ce{CH} & 114.0 & 124.20& Ref. \protect\cite{TraPPE-UA.thiols}\\ |
159 |
\ce{CHene} & \ce{CHene} & \ce{CH3} & 119.7 & 139.94& Ref. \protect\cite{Maerzke:2009qy}\\ |
160 |
\ce{CHene} & \ce{CHene} & \ce{CHene} & 119.7 & 139.94& Ref. \protect\cite{Maerzke:2009qy}\\ |
161 |
\ce{CH2ene} & \ce{CHene} & \ce{CH3} & 119.7 & 139.94& Ref. \protect\cite{Maerzke:2009qy}\\ |
162 |
\ce{CHene} & \ce{CHene} & \ce{CH2} & 119.7 & 139.94& Ref. \protect\cite{Maerzke:2009qy}\\ |
163 |
\ce{CH2} & \ce{CH2} & \ce{CHene} & 114.0 & 124.20& Ref. \protect\cite{TraPPE-UA.thiols}\\ |
164 |
\ce{CHar} & \ce{CHar} & \ce{CHar} & 120.0 & 126.0 & Refs. \protect\cite{Maerzke:2009qy} and \\ |
165 |
\ce{CHar} & \ce{CHar} & \ce{CH2} & 120.0 & 140.0 & Refs. \protect\cite{Maerzke:2009qy} and \\ |
166 |
\ce{CHar} & \ce{CHar} & \ce{CH3} & 120.0 & 140.0 & Refs. \protect\cite{Maerzke:2009qy} and \\ |
167 |
\ce{CHar} & \ce{CHar} & \ce{CH2ar} & 120.0 & 126.0 & Refs. \protect\cite{Maerzke:2009qy} and \\ |
168 |
S & \ce{CH2} & \ce{CHene} & 109.97 & 127.37 & fit \\ |
169 |
S & \ce{CH2} & \ce{CHar} & 109.97 & 127.37 & fit \\ |
170 |
S & \ce{CHar} & \ce{CHar} & 123.911 & 138.093 & fit \\ |
171 |
\botrule |
172 |
\end{tabular} |
173 |
\end{table} |
174 |
|
175 |
\begin{table}[h] |
176 |
\centering |
177 |
\caption{Torsion parameters. The central atoms for each torsion are atoms $j$ and $k$, |
178 |
and wildcard atom types are denoted by ``X''. All $c_n$ parameters |
179 |
have units of kcal/mol. The torsions around carbon-carbon double bonds |
180 |
are harmonic and assume a trans (180$\degree$) geometry. The force |
181 |
constant for this torsion is given in $\mathrm{kcal~mol~}^{-1}\mathrm{degrees}^{-2}$. \label{tab:torsion}} |
182 |
\begin{tabular}{ cccc|lllll } |
183 |
\toprule |
184 |
$i$&$j$&$k$&$l$& $c_0$&$c_1$& $c_2$ & $c_3$ & source\\ |
185 |
\colrule |
186 |
\ce{CH3} & \ce{CH2} & \ce{CH2} & \ce{CH3} & 0.0 & 0.7055 & -0.13551 & 1.5725 & Ref. \protect\cite{TraPPE-UA.alkylbenzenes}\\ |
187 |
\ce{CH3} & \ce{CH2} & \ce{CH2} & \ce{CH2} & 0.0 & 0.7055 & -0.13551 & 1.5725 & Ref. \protect\cite{TraPPE-UA.alkylbenzenes}\\ |
188 |
\ce{CH3} & \ce{CH2} & \ce{CH2} & \ce{CH} & 0.0 & 0.7055 & -0.13551 & 1.5725 & Ref. \protect\cite{TraPPE-UA.alkylbenzenes}\\ |
189 |
\ce{CH2} & \ce{CH2} & \ce{CH2} & \ce{CH2} & 0.0 & 0.7055 & -0.13551 & 1.5725 & Ref. \protect\cite{TraPPE-UA.alkylbenzenes}\\ |
190 |
\ce{CH2} & \ce{CH2} & \ce{CH2} & S & 0.0 & 0.7055 & -0.13551 & 1.5725 & Ref. \protect\cite{TraPPE-UA.alkylbenzenes}\\ |
191 |
\ce{CH3} & \ce{CH2} & \ce{CH2} & S & 0.0 & 0.7055 & -0.13551 & 1.5725 & Ref. \protect\cite{TraPPE-UA.alkylbenzenes}\\ \colrule |
192 |
X & \ce{CHene} & \ce{CHene} & X & \multicolumn{4}{c}{\multirow{2}{*}{$V = \frac{0.008112}{2} (\phi - 180.0)^2$}} & \multirow{2}{*}{Ref. \protect\cite{TraPPE-UA.alkylbenzenes}} \\ |
193 |
X & \ce{CHar} & \ce{CHar} & X & & & & & \\ \colrule |
194 |
\ce{CH2} & \ce{CH2} & \ce{CHene} & \ce{CHene} & 1.368 & 0.1716 & -0.2181 & -0.56081 & Ref. \protect\cite{TraPPE-UA.alkylbenzenes}\\ |
195 |
\ce{CH2} & \ce{CH2} & \ce{CH2} & \ce{CHene} & 0.0 & 0.7055 & -0.13551 & 1.5725 & Ref. \protect\cite{TraPPE-UA.alkylbenzenes}\\ |
196 |
\ce{CHene} & \ce{CHene} & \ce{CH2} & S & 3.20753 & 0.207417& -0.912929& -0.958538 & fit \\ |
197 |
\ce{CHar} & \ce{CHar} & \ce{CH2} & S & 3.20753 & 0.207417& -0.912929& -0.958538 & fit \\ |
198 |
\botrule |
199 |
\end{tabular} |
200 |
\end{table} |
201 |
|
202 |
\begin{table}[h] |
203 |
\centering |
204 |
\caption{Non-bonded cross interaction parameters between gold atoms and the united atom sites\label{tab:nb}} |
205 |
\begin{tabular}{ cc|ccc } |
206 |
\toprule |
207 |
$i$&$j$ & $\sigma$ (\AA)& $\epsilon$ $(kcal/mol)$ & source \\ |
208 |
\colrule |
209 |
Au &\ce{CH3} &3.54 &0.2146& Ref. \protect\cite{vlugt:cpc2007154}\\ |
210 |
Au &\ce{CH2} &3.54 &0.1749& Ref. \protect\cite{vlugt:cpc2007154}\\ |
211 |
Au &\ce{CHene} &3.4625 &0.1680& Ref. \protect\cite{vlugt:cpc2007154}\\ |
212 |
Au &\ce{CHar} &3.4625 &0.1680& Ref. \protect\cite{vlugt:cpc2007154}\\ |
213 |
Au &\ce{CH2ar} &3.4625 &0.1680& Ref. \protect\cite{vlugt:cpc2007154}\\ |
214 |
Au &S &2.40 &8.465& Ref. \protect\cite{vlugt:cpc2007154}\\ |
215 |
\botrule |
216 |
\end {tabular} |
217 |
\end{table} |
218 |
\newpage |
219 |
\bibliographystyle{aip} |
220 |
\bibliography{NPthiols} |
221 |
|
222 |
\end{document} |