ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/NPthiols/Sup_Info.tex
Revision: 4383
Committed: Tue Oct 27 21:28:05 2015 UTC (9 years, 9 months ago) by gezelter
Content type: application/x-tex
File size: 12470 byte(s)
Log Message:
Edits

File Contents

# Content
1 \documentclass[aps,jcp,preprint,showpacs,superscriptaddress,groupedaddress]{revtex4} % for double-spaced preprint
2 \usepackage{graphicx} % needed for figures
3 \usepackage{dcolumn} % needed for some tables
4 \usepackage{bm} % for math
5 \usepackage{amssymb} % for math
6 %\usepackage{booktabs}
7 \usepackage[english]{babel}
8 \usepackage{multirow}
9 \usepackage{tablefootnote}
10 \usepackage{times}
11 \usepackage[version=3]{mhchem}
12 \usepackage{lineno}
13 \usepackage{gensymb}
14 \usepackage{multirow}
15
16 \begin{document}
17
18 \title{Supporting Information for: Interfacial Thermal Conductance of Thiolate-Protected
19 Gold Nanospheres}
20 \author{Kelsey M. Stocker}
21 \author{Suzanne M. Neidhart}
22 \author{J. Daniel Gezelter}
23 \email{gezelter@nd.edu}
24 \affiliation{Department of Chemistry and Biochemistry, University of
25 Notre Dame, Notre Dame, IN 46556}
26
27 \maketitle
28 Gold -- gold interactions were described by the quantum Sutton-Chen
29 (QSC) model.\cite{Qi:1999ph} The hexane solvent is described by the
30 TraPPE united atom model,\cite{TraPPE-UA.alkanes} where sites are
31 located at the carbon centers for alkyl groups. Bonding interactions
32 were used for intra-molecular sites closer than 3 bonds. Effective
33 Lennard-Jones potentials were used for non-bonded interactions.
34
35 \begin{table}[h]
36 \centering
37 \caption{Properties of the United atom sites. \label{tab:atypes}}
38 \begin{tabular}{ c|cccc }
39 \toprule
40 atom type & mass (amu)& $\epsilon$ (kcal/mol) & $\sigma$ (\AA) & source \\
41 \colrule
42 \ce{CH3} & 15.04 & 0.1947 & 3.75 & \\
43 \ce{CH2} & 14.03 & 0.09141 & 3.95 & \\
44 \ce{CH} & 13.02 & 0.01987 & 4.68 & \\
45 \ce{CHene} & 13.02 & 0.09340 & 3.73 & \\
46 \ce{CH2ene} & 14.03 & 0.16891 & 3.675 & \\
47 S & 32.0655 & 0.2504 & 4.45 & Refs. \protect\cite{landman:1998} ($\sigma$) and \protect\cite{vlugt:cpc2007154} ($\epsilon$) \\
48 \ce{CHar} & 13.02 & 0.1004 & 3.695 & Ref. \protect\cite{TraPPE-UA.alkylbenzenes}\\
49 \ce{CH2ar} & 14.03 & 0.1004 & 3.695 & Ref. \protect\cite{TraPPE-UA.alkylbenzenes}\\
50 \botrule
51 \end{tabular}
52 \end{table}
53
54 The TraPPE-UA force field includes parameters for thiol
55 molecules\cite{TraPPE-UA.thiols} which were used for the
56 alkanethiolate molecules in our simulations. To derive suitable
57 parameters for butanethiolate adsorbed on Au(111) surfaces, we adopted
58 the S parameters from Luedtke and Landman\cite{landman:1998} and
59 modified the parameters for the CTS atom to maintain charge neutrality
60 in the molecule.
61
62 Bonds are typically rigid in TraPPE-UA, so although we used
63 equilibrium bond distances from TraPPE-UA, for flexible bonds, we
64 adapted bond stretching spring constants from the OPLS-AA force
65 field.\cite{Jorgensen:1996sf}
66
67 \begin{table}[h]
68 \centering
69 \caption{Bond parameters. \label{tab:bond}}
70 \begin{tabular}{ cc|lll }
71 \toprule
72 $i$&$j$ & $r_0$ (\AA) & $k (\mathrm{~kcal/mole/\AA}^2)$ & source\\
73 \colrule
74 \ce{CH3} & \ce{CH3} & 1.540 & 536 & Refs. \protect\cite{TraPPE-UA.alkanes} and \protect\cite{Jorgensen:1996sf}\\
75 \ce{CH3} & \ce{CH2} & 1.540 & 536 & Refs. \protect\cite{TraPPE-UA.alkanes} and \protect\cite{Jorgensen:1996sf} \\
76 \ce{CH3} & \ce{CH} & 1.540 & 536 & \\
77 \ce{CH2} & \ce{CH2} & 1.540 & 536 & Refs. \protect\cite{TraPPE-UA.alkanes} and \protect\cite{Jorgensen:1996sf} \\
78 \ce{CH2} & \ce{CH} & 1.540 & 536 & \\
79 \ce{CH} & \ce{CH} & 1.540 & 536 & \\
80 \ce{CHene} & \ce{CHene} & 1.330 & 1098 & \\
81 \ce{CH2ene} & \ce{CHene} & 1.330 & 1098 & \\
82 \ce{CH3} & \ce{CHene} & 1.540 & 634 & \\
83 \ce{CH2} & \ce{CHene} & 1.540 & 634 & \\
84 S & \ce{CH2} & 1.820 & 444 & \\
85 \ce{CHar} & \ce{CHar} & 1.40 & 938 & Refs. \protect\cite{TraPPE-UA.alkylbenzenes} and \protect\cite{Jorgensen:1996sf} \\
86 \ce{CHar} & \ce{CH2} & 1.540 & 536 & Refs. \protect\cite{TraPPE-UA.alkylbenzenes} and \protect\cite{Jorgensen:1996sf}\\
87 \ce{CHar} & \ce{CH3} & 1.540 & 536 & Refs. \protect\cite{TraPPE-UA.alkylbenzenes} and \protect\cite{Jorgensen:1996sf}\\
88 \ce{CH2ar} & \ce{CHar} & 1.40 & 938 &
89 Refs. and
90 \protect\cite{Jorgensen:1996sf} \\
91 S & \ce{CHar} & 1.80384 & 527.951 & fit \\
92 \botrule
93 \end{tabular}
94 \end{table}
95
96 To describe the interactions between metal (Au) and non-metal atoms,
97 potential energy terms were adapted from an adsorption study of alkyl
98 thiols on gold surfaces by Vlugt, \textit{et
99 al.}\cite{vlugt:cpc2007154} They fit an effective pair-wise
100 Lennard-Jones form of potential parameters for the interaction between
101 Au and pseudo-atoms CH$_x$ and S based on a well-established and
102 widely-used effective potential of Hautman and Klein for the Au(111)
103 surface.\cite{hautman:4994}
104
105 Parameters not found in the TraPPE-UA force field for the
106 intramolecular interactions of the conjugated and the penultimate
107 alkenethiolate ligands were calculated using constrained geometry
108 scans using the B3LYP functional~\cite{Becke:1993kq,Lee:1988qf} and
109 the 6-31G(d,p) basis set. Structures were scanned starting at the
110 minimum energy gas phase structure for small ($C_4$) ligands. Only
111 one degree of freedom was constrained for any given scan -- all other
112 atoms were allowed to minimize subject to that constraint. The
113 resulting potential energy surfaces were fit to a harmonic potential
114 for the bond stretching,
115 \begin{equation}
116 V_\mathrm{bond} = \frac{k_\mathrm{bond}}{2} \left( r - r_0 \right)^2,
117 \end{equation}
118 and angle bending potentials,
119 \begin{equation}
120 V_\mathrm{bend} = \frac{k_\mathrm{bend}}{2} \left(\theta - \theta_0\right)^2.
121 \end{equation}
122 Torsional potentials were fit to the TraPPE torsional function,
123 \begin{equation}
124 V_\mathrm{tor} = c_0 + c_1 \left(1 + \cos\phi \right) + c_2 \left(1 - \cos 2\phi \right) + c_3 \left(1 + \cos 3 \phi \right).
125 \end{equation}
126
127 For the penultimate thiolate ligands, the model molecule used was
128 2-Butene-1-thiol, for which one bend angle (\ce{S-CH2-CHene}) was
129 scanned to fit an equilibrium angle and force constant, as well as one
130 torsion (\ce{S-CH2-CHene-CHene}). The parameters for these two
131 potentials also served as model for the longer conjugated thiolate
132 ligands which require bend angle parameters for (\ce{S-CH2-CHar}) and
133 torsion parameters for (\ce{S-CH2-CHar-CHar}).
134
135 For the $C_4$ conjugated thiolate ligands, the model molecule for the
136 quantum mechanical calculations was 1,3-Butadiene-1-thiol. This
137 ligand required fitting one bond (\ce{S-CHar}), and one bend angle
138 (\ce{S-CHar-CHar}).
139
140 The geometries of the model molecules were optimized prior to
141 performing the constrained angle scans, and the fit values for the
142 bond, bend, and torsional parameters were in relatively good agreement
143 with similar parameters already present in TraPPE.
144
145
146 \begin{table}[h]
147 \centering
148 \caption{Bend angle parameters. The central atom in the bend is atom $j$.\label{tab:bend}}
149 \begin{tabular}{ ccc|lll }
150 \toprule
151 $i$&$j$&$k$ & $\theta_0 (\degree)$ & $k (\mathrm{kcal/mole/rad}^2)$ & source\\
152 \colrule
153 \ce{CH2} & \ce{CH2} & S & 114.0 & 124.20& Ref. \protect\cite{TraPPE-UA.thiols}\\
154 \ce{CH3} & \ce{CH2} & S & 114.0 & 124.20& Ref. \protect\cite{TraPPE-UA.thiols}\\
155 \ce{CH3} & \ce{CH2} & \ce{CH3} & 114.0 & 124.20& Ref. \protect\cite{TraPPE-UA.thiols}\\
156 \ce{CH3} & \ce{CH2} & \ce{CH2} & 114.0 & 124.20& Ref. \protect\cite{TraPPE-UA.thiols}\\
157 \ce{CH2} & \ce{CH2} & \ce{CH2} & 114.0 & 124.20& Ref. \protect\cite{TraPPE-UA.thiols}\\
158 \ce{CH3} & \ce{CH2} & \ce{CH} & 114.0 & 124.20& Ref. \protect\cite{TraPPE-UA.thiols}\\
159 \ce{CHene} & \ce{CHene} & \ce{CH3} & 119.7 & 139.94& Ref. \protect\cite{Maerzke:2009qy}\\
160 \ce{CHene} & \ce{CHene} & \ce{CHene} & 119.7 & 139.94& Ref. \protect\cite{Maerzke:2009qy}\\
161 \ce{CH2ene} & \ce{CHene} & \ce{CH3} & 119.7 & 139.94& Ref. \protect\cite{Maerzke:2009qy}\\
162 \ce{CHene} & \ce{CHene} & \ce{CH2} & 119.7 & 139.94& Ref. \protect\cite{Maerzke:2009qy}\\
163 \ce{CH2} & \ce{CH2} & \ce{CHene} & 114.0 & 124.20& Ref. \protect\cite{TraPPE-UA.thiols}\\
164 \ce{CHar} & \ce{CHar} & \ce{CHar} & 120.0 & 126.0 & Refs. \protect\cite{Maerzke:2009qy} and \\
165 \ce{CHar} & \ce{CHar} & \ce{CH2} & 120.0 & 140.0 & Refs. \protect\cite{Maerzke:2009qy} and \\
166 \ce{CHar} & \ce{CHar} & \ce{CH3} & 120.0 & 140.0 & Refs. \protect\cite{Maerzke:2009qy} and \\
167 \ce{CHar} & \ce{CHar} & \ce{CH2ar} & 120.0 & 126.0 & Refs. \protect\cite{Maerzke:2009qy} and \\
168 S & \ce{CH2} & \ce{CHene} & 109.97 & 127.37 & fit \\
169 S & \ce{CH2} & \ce{CHar} & 109.97 & 127.37 & fit \\
170 S & \ce{CHar} & \ce{CHar} & 123.911 & 138.093 & fit \\
171 \botrule
172 \end{tabular}
173 \end{table}
174
175 \begin{table}[h]
176 \centering
177 \caption{Torsion parameters. The central atoms for each torsion are atoms $j$ and $k$,
178 and wildcard atom types are denoted by ``X''. All $c_n$ parameters
179 have units of kcal/mol. The torsions around carbon-carbon double bonds
180 are harmonic and assume a trans (180$\degree$) geometry. The force
181 constant for this torsion is given in $\mathrm{kcal~mol~}^{-1}\mathrm{degrees}^{-2}$. \label{tab:torsion}}
182 \begin{tabular}{ cccc|lllll }
183 \toprule
184 $i$&$j$&$k$&$l$& $c_0$&$c_1$& $c_2$ & $c_3$ & source\\
185 \colrule
186 \ce{CH3} & \ce{CH2} & \ce{CH2} & \ce{CH3} & 0.0 & 0.7055 & -0.13551 & 1.5725 & Ref. \protect\cite{TraPPE-UA.alkylbenzenes}\\
187 \ce{CH3} & \ce{CH2} & \ce{CH2} & \ce{CH2} & 0.0 & 0.7055 & -0.13551 & 1.5725 & Ref. \protect\cite{TraPPE-UA.alkylbenzenes}\\
188 \ce{CH3} & \ce{CH2} & \ce{CH2} & \ce{CH} & 0.0 & 0.7055 & -0.13551 & 1.5725 & Ref. \protect\cite{TraPPE-UA.alkylbenzenes}\\
189 \ce{CH2} & \ce{CH2} & \ce{CH2} & \ce{CH2} & 0.0 & 0.7055 & -0.13551 & 1.5725 & Ref. \protect\cite{TraPPE-UA.alkylbenzenes}\\
190 \ce{CH2} & \ce{CH2} & \ce{CH2} & S & 0.0 & 0.7055 & -0.13551 & 1.5725 & Ref. \protect\cite{TraPPE-UA.alkylbenzenes}\\
191 \ce{CH3} & \ce{CH2} & \ce{CH2} & S & 0.0 & 0.7055 & -0.13551 & 1.5725 & Ref. \protect\cite{TraPPE-UA.alkylbenzenes}\\ \colrule
192 X & \ce{CHene} & \ce{CHene} & X & \multicolumn{4}{c}{\multirow{2}{*}{$V = \frac{0.008112}{2} (\phi - 180.0)^2$}} & \multirow{2}{*}{Ref. \protect\cite{TraPPE-UA.alkylbenzenes}} \\
193 X & \ce{CHar} & \ce{CHar} & X & & & & & \\ \colrule
194 \ce{CH2} & \ce{CH2} & \ce{CHene} & \ce{CHene} & 1.368 & 0.1716 & -0.2181 & -0.56081 & Ref. \protect\cite{TraPPE-UA.alkylbenzenes}\\
195 \ce{CH2} & \ce{CH2} & \ce{CH2} & \ce{CHene} & 0.0 & 0.7055 & -0.13551 & 1.5725 & Ref. \protect\cite{TraPPE-UA.alkylbenzenes}\\
196 \ce{CHene} & \ce{CHene} & \ce{CH2} & S & 3.20753 & 0.207417& -0.912929& -0.958538 & fit \\
197 \ce{CHar} & \ce{CHar} & \ce{CH2} & S & 3.20753 & 0.207417& -0.912929& -0.958538 & fit \\
198 \botrule
199 \end{tabular}
200 \end{table}
201
202 \begin{table}[h]
203 \centering
204 \caption{Non-bonded cross interaction parameters between gold atoms and the united atom sites\label{tab:nb}}
205 \begin{tabular}{ cc|ccc }
206 \toprule
207 $i$&$j$ & $\sigma$ (\AA)& $\epsilon$ $(kcal/mol)$ & source \\
208 \colrule
209 Au &\ce{CH3} &3.54 &0.2146& Ref. \protect\cite{vlugt:cpc2007154}\\
210 Au &\ce{CH2} &3.54 &0.1749& Ref. \protect\cite{vlugt:cpc2007154}\\
211 Au &\ce{CHene} &3.4625 &0.1680& Ref. \protect\cite{vlugt:cpc2007154}\\
212 Au &\ce{CHar} &3.4625 &0.1680& Ref. \protect\cite{vlugt:cpc2007154}\\
213 Au &\ce{CH2ar} &3.4625 &0.1680& Ref. \protect\cite{vlugt:cpc2007154}\\
214 Au &S &2.40 &8.465& Ref. \protect\cite{vlugt:cpc2007154}\\
215 \botrule
216 \end {tabular}
217 \end{table}
218 \newpage
219 \bibliographystyle{aip}
220 \bibliography{NPthiols}
221
222 \end{document}