1 |
\documentclass[aps,jcp,preprint,showpacs,superscriptaddress,groupedaddress]{revtex4} % for double-spaced preprint |
2 |
\usepackage{graphicx} % needed for figures |
3 |
\usepackage{dcolumn} % needed for some tables |
4 |
\usepackage{bm} % for math |
5 |
\usepackage{amssymb} % for math |
6 |
%\usepackage{booktabs} |
7 |
\usepackage[english]{babel} |
8 |
\usepackage{multirow} |
9 |
\usepackage{tablefootnote} |
10 |
\usepackage{times} |
11 |
\usepackage[version=3]{mhchem} |
12 |
\usepackage{lineno} |
13 |
\usepackage{gensymb} |
14 |
\usepackage{multirow} |
15 |
|
16 |
\begin{document} |
17 |
|
18 |
\title{Supporting Information for: Interfacial Thermal Conductance of Thiolate-Protected |
19 |
Gold Nanospheres} |
20 |
\author{Kelsey M. Stocker} |
21 |
\author{Suzanne M. Neidhart} |
22 |
\author{J. Daniel Gezelter} |
23 |
\email{gezelter@nd.edu} |
24 |
\affiliation{Department of Chemistry and Biochemistry, University of |
25 |
Notre Dame, Notre Dame, IN 46556} |
26 |
|
27 |
\maketitle |
28 |
\vfill |
29 |
|
30 |
Gold -- gold interactions were described by the quantum Sutton-Chen |
31 |
(QSC) model.\cite{Qi:1999ph} The hexane solvent is described by the |
32 |
TraPPE united atom model,\cite{TraPPE-UA.alkanes} where sites are |
33 |
located at the carbon centers for alkyl groups. Bonding interactions |
34 |
were used for intra-molecular sites closer than 3 bonds. Effective |
35 |
Lennard-Jones potentials were used for non-bonded interactions. |
36 |
|
37 |
The TraPPE-UA force field includes parameters for thiol |
38 |
molecules\cite{TraPPE-UA.thiols} which were used for the |
39 |
alkanethiolate molecules in our simulations. To derive suitable |
40 |
parameters for butanethiolate adsorbed on Au(111) surfaces, we adopted |
41 |
the S parameters from Luedtke and Landman\cite{landman:1998} and |
42 |
modified the parameters for the CTS atom to maintain charge neutrality |
43 |
in the molecule. |
44 |
|
45 |
To describe the interactions between metal (Au) and non-metal atoms, |
46 |
potential energy terms were adapted from an adsorption study of alkyl |
47 |
thiols on gold surfaces by Vlugt, \textit{et |
48 |
al.}\cite{vlugt:cpc2007154} They fit an effective pair-wise |
49 |
Lennard-Jones form of potential parameters for the interaction between |
50 |
Au and pseudo-atoms CH$_x$ and S based on a well-established and |
51 |
widely-used effective potential of Hautman and Klein for the Au(111) |
52 |
surface.\cite{hautman:4994} |
53 |
|
54 |
\begin{table}[h] |
55 |
\centering |
56 |
\caption{Properties of the United atom sites. \label{tab:atypes}} |
57 |
\begin{tabular}{ c|cccc } |
58 |
\toprule |
59 |
atom type & mass (amu)& $\epsilon$ (kcal/mol) & $\sigma$ (\AA) & source \\ |
60 |
\colrule |
61 |
CH3 & 15.04 & 0.1947 & 3.75 & \\ |
62 |
CH2 & 14.03 & 0.09141 & 3.95 & \\ |
63 |
CH & 13.02 & 0.01987 & 4.68 & \\ |
64 |
CHene & 13.02 & 0.09340 & 3.73 & \\ |
65 |
CH2ene & 14.03 & 0.16891 & 3.675 & \\ |
66 |
S & 32.0655 & 0.2504 & 4.45 & Refs. \protect\cite{landman:1998} ($\sigma$) and \protect\cite{vlugt:cpc2007154} ($\epsilon$) \\ |
67 |
CHar & 13.02 & 0.1004 & 3.695 & Ref. \protect\cite{TraPPE-UA.alkylbenzenes}\\ |
68 |
CH2ar & 14.03 & 0.1004 & 3.695 & Ref. \protect\cite{TraPPE-UA.alkylbenzenes}\\ |
69 |
\botrule |
70 |
\end{tabular} |
71 |
\end{table} |
72 |
|
73 |
Parameters not found in the TraPPE-UA force field for the |
74 |
intramolecular interactions of the conjugated and the penultimate |
75 |
alkenethiolate ligands were calculated using constrained geometry |
76 |
scans using the B3LYP functional~\cite{Becke:1993kq,Lee:1988qf} and |
77 |
the 6-31G(d,p) basis set. Structures were scanned starting at the |
78 |
minimum energy gas phase structure for small ($C_4$) ligands. Only |
79 |
one degree of freedom was constrained for any given scan -- all other |
80 |
atoms were allowed to minimize subject to that constraint. The |
81 |
resulting potential energy surfaces were fit to a harmonic potential |
82 |
for the bond stretching, |
83 |
\begin{equation} |
84 |
V_\mathrm{bond} = \frac{k_\mathrm{bond}}{2} \left( r - r_0 \right)^2, |
85 |
\end{equation} |
86 |
and angle bending potentials, |
87 |
\begin{equation} |
88 |
V_\mathrm{bend} = \frac{k_\mathrm{bend}}{2} \left(\theta - \theta_0\right)^2. |
89 |
\end{equation} |
90 |
Torsional potentials were fit to the TraPPE torsional function, |
91 |
\begin{equation} |
92 |
V_\mathrm{tor} = c_0 + c_1 \left(1 + \cos\phi \right) + c_2 \left(1 - \cos 2\phi \right) + c_3 \left(1 + \cos 3 \phi \right). |
93 |
\end{equation} |
94 |
|
95 |
Say something here about which molecules were used for which scans.... |
96 |
|
97 |
The fit values for the bond, bend, and torsional parameters were in |
98 |
relatively good agreement with similar parameters already present in |
99 |
TraPPE. |
100 |
|
101 |
|
102 |
to find an equilibrium bend angles $\theta_0$ and spring constants, |
103 |
$k$. Torsional parameters were fit to the same part of the |
104 |
penultimate ligand (\(S - CH_{2}- CH-CH)\) |
105 |
for the rotation around the \( CH_{2}- CH\) |
106 |
bond. This potential energy surface was then fit to |
107 |
|
108 |
\begin{table}[h] |
109 |
\centering |
110 |
\caption{Bond parameters. \label{tab:bond}} |
111 |
\begin{tabular}{ cc|lll } |
112 |
\toprule |
113 |
$i$&$j$ & $r_0$ (\AA) & $k (\mathrm{~kcal/mole/\AA}^2)$ & source\\ |
114 |
\colrule |
115 |
CH3 & CH3 & 1.540 & 536 & \\ |
116 |
CH3 & CH2 & 1.540 & 536 & \\ |
117 |
CH3 & CH & 1.540 & 536 & \\ |
118 |
CH2 & CH2 & 1.540 & 536 & \\ |
119 |
CH2 & CH & 1.540 & 536 & \\ |
120 |
CH & CH & 1.540 & 536 & \\ |
121 |
Chene & CHene & 1.330 & 1098 & \\ |
122 |
CH2ene & CHene & 1.330 & 1098 & \\ |
123 |
CH3 & CHene & 1.540 & 634 & \\ |
124 |
CH2 & CHene & 1.540 & 634 & \\ |
125 |
S & CH2 & 1.820 & 444 & \\ |
126 |
CHar & CHar & 1.40 & 938 & \\ |
127 |
CHar & CH2 & 1.540 & 536 & \\ |
128 |
CHar & CH3 & 1.540 & 536 & \\ |
129 |
CH2ar & CHar & 1.40 & 938 & \\ |
130 |
S & CHar & 1.80384 & 527.951 & fit \\ |
131 |
\botrule |
132 |
\end{tabular} |
133 |
\end{table} |
134 |
|
135 |
\begin{table}[h] |
136 |
\centering |
137 |
\caption{Bend angle parameters. The central atom in the bend is atom $j$.\label{tab:bend}} |
138 |
\begin{tabular}{ ccc|lll } |
139 |
\toprule |
140 |
$i$&$j$&$k$ & $\theta_0 (\degree)$ & $k (\mathrm{kcal/mole/rad}^2)$ & source\\ |
141 |
\colrule |
142 |
CH2 & CH2 & S & 114.0 & 124.20& Ref. \protect\cite{TraPPE-UA.thiols}\\ |
143 |
CH3 & CH2 & S & 114.0 & 124.20& Ref. \protect\cite{TraPPE-UA.thiols}\\ |
144 |
CH3 & CH2 & CH3 & 114.0 & 124.20& Ref. \protect\cite{TraPPE-UA.thiols}\\ |
145 |
CH3 & CH2 & CH2 & 114.0 & 124.20& Ref. \protect\cite{TraPPE-UA.thiols}\\ |
146 |
CH2 & CH2 & CH2 & 114.0 & 124.20& Ref. \protect\cite{TraPPE-UA.thiols}\\ |
147 |
CH3 & CH2 & CH & 114.0 & 124.20& Ref. \protect\cite{TraPPE-UA.thiols}\\ |
148 |
CHene & CHene & CH3 & 119.7 & 139.94& Ref. \protect\cite{Maerzke:2009qy}\\ |
149 |
CHene & CHene & CHene & 119.7 & 139.94& Ref. \protect\cite{Maerzke:2009qy}\\ |
150 |
CH2ene & CHene & CH3 & 119.7 & 139.94& Ref. \protect\cite{Maerzke:2009qy}\\ |
151 |
CHene & CHene & CH2 & 119.7 & 139.94& Ref. \protect\cite{Maerzke:2009qy}\\ |
152 |
CH2 & CH2 & CHene & 114.0 & 124.20& Ref. \protect\cite{TraPPE-UA.thiols}\\ |
153 |
CHar & CHar & CHar & 120.0 & 126.0 & Refs. \protect\cite{Maerzke:2009qy} and \\ |
154 |
CHar & CHar & CH2 & 120.0 & 140.0 & Refs. \protect\cite{Maerzke:2009qy} and \\ |
155 |
CHar & CHar & CH3 & 120.0 & 140.0 & Refs. \protect\cite{Maerzke:2009qy} and \\ |
156 |
CHar & CHar & CH2ar & 120.0 & 126.0 & Refs. \protect\cite{Maerzke:2009qy} and \\ |
157 |
S & CH2 & CHene & 109.97 & 127.37 & fit \\ |
158 |
S & CH2 & CHar & 109.97 & 127.37 & fit \\ |
159 |
S & CHar & CHar & 123.911 & 138.093 & fit \\ |
160 |
\botrule |
161 |
\end{tabular} |
162 |
\end{table} |
163 |
|
164 |
The conjugated system was fit to a bond, bend, and torsion. The |
165 |
terminal bond for the shortest conjugated ligand \(CH-CH_2\) |
166 |
was fit to a potential energy surface to find an equilibrium bond |
167 |
length of 1.4 \AA and a spring constant of 938 kcal/mol using the |
168 |
Harmonic Model: \(V_{bond} = \frac{k}{2} (b - b_0)^2\). |
169 |
A bend parameter for the beginning the longer conjugated ligands |
170 |
(\(S - CH_2- CH)\), |
171 |
was approximated to be equal to the shortest penultimate ligand |
172 |
parameters found. For the shortest conjugated ligand the first bend |
173 |
(\(S - CH- CH)\) |
174 |
was fit a potential energy surface in the same manor as the |
175 |
penultimate bend. The torsion for the first four atoms of the two |
176 |
longer conjugated systems is equal to the torsion calculated for the |
177 |
penultimate system. |
178 |
|
179 |
\begin{table}[h] |
180 |
\centering |
181 |
\caption{Torsion parameters. The central atoms are atoms $j$ and $k$, and wildcard atom types are denoted by ``X''. All $c_n$ parameters have units of kcal/mol. \label{tab:torsion}} |
182 |
\begin{tabular}{ cccc|lllll } |
183 |
\toprule |
184 |
$i$&$j$&$k$&$l$& $c_0$&$c_1$& $c_2$ & $c_3$ & source\\ |
185 |
\colrule |
186 |
CH3 & CH2 & CH2 & CH3 & 0.0 & 0.7055 & -0.13551 & 1.5725 & Ref. \protect\cite{TraPPE-UA.alkylbenzenes}\\ |
187 |
CH3 & CH2 & CH2 & CH2 & 0.0 & 0.7055 & -0.13551 & 1.5725 & Ref. \protect\cite{TraPPE-UA.alkylbenzenes}\\ |
188 |
CH3 & CH2 & CH2 & CH & 0.0 & 0.7055 & -0.13551 & 1.5725 & Ref. \protect\cite{TraPPE-UA.alkylbenzenes}\\ |
189 |
CH2 & CH2 & CH2 & CH2 & 0.0 & 0.7055 & -0.13551 & 1.5725 & Ref. \protect\cite{TraPPE-UA.alkylbenzenes}\\ |
190 |
CH2 & CH2 & CH2 & S & 0.0 & 0.7055 & -0.13551 & 1.5725 & Ref. \protect\cite{TraPPE-UA.alkylbenzenes}\\ |
191 |
CH3 & CH2 & CH2 & S & 0.0 & 0.7055 & -0.13551 & 1.5725 & Ref. \protect\cite{TraPPE-UA.alkylbenzenes}\\ \colrule |
192 |
X & CHene & CHene & X & \multicolumn{4}{c}{\multirow{2}{*}{$V = \frac{0.008112}{2} (\phi - 180.0)^2$}} & \multirow{2}{*}{Ref. \protect\cite{TraPPE-UA.alkylbenzenes}} \\ |
193 |
X & CHar & CHar & X & & & & & \\ \colrule |
194 |
CH2 & CH2 & CHene & CHene & 1.368 & 0.1716 & -0.2181 & -0.56081 & Ref. \protect\cite{TraPPE-UA.alkylbenzenes}\\ |
195 |
CH2 & CH2 & CH2 & CHene & 0.0 & 0.7055 & -0.13551 & 1.5725 & Ref. \protect\cite{TraPPE-UA.alkylbenzenes}\\ |
196 |
CHene & CHene & CH2 & S & 3.20753 & 0.207417& -0.912929& -0.958538 & fit \\ |
197 |
CHar & CHar & CH2 & S & 3.20753 & 0.207417& -0.912929& -0.958538 & fit \\ |
198 |
\botrule |
199 |
\end{tabular} |
200 |
\end{table} |
201 |
|
202 |
The conjugated system was fit to a bond, bend, and torsion. The |
203 |
terminal bond for the shortest conjugated ligand \(CH-CH_2\) |
204 |
was fit to a potential energy surface to find an equilibrium bond |
205 |
length of 1.4 \AA and a spring constant of 938 kcal/mol using the |
206 |
Harmonic Model: \(V_{bond} = \frac{k}{2} (b - b_0)^2\). |
207 |
A bend parameter for the beginning the longer conjugated ligands |
208 |
(\(S - CH_2- CH)\), |
209 |
was approximated to be equal to the shortest penultimate ligand |
210 |
parameters found. For the shortest conjugated ligand the first bend |
211 |
(\(S - CH- CH)\) |
212 |
was fit a potential energy surface in the same manor as the |
213 |
penultimate bend. The torsion for the first four atoms of the two |
214 |
longer conjugated systems is equal to the torsion calculated for the |
215 |
penultimate system. |
216 |
|
217 |
\begin{table}[h] |
218 |
\centering |
219 |
\caption{Non-bonded cross interaction parameters between gold atoms and the united atom sites\label{tab:nb}} |
220 |
\begin{tabular}{ cc|ccc } |
221 |
\toprule |
222 |
$i$&$j$ & $\sigma$ (\AA)& $\epsilon$ $(kcal/mol)$ & source \\ |
223 |
\colrule |
224 |
Au &CH3 &3.54 &0.2146& Ref. \protect\cite{vlugt:cpc2007154}\\ |
225 |
Au &CH2 &3.54 &0.1749& Ref. \protect\cite{vlugt:cpc2007154}\\ |
226 |
Au &CHene &3.4625 &0.1680& Ref. \protect\cite{vlugt:cpc2007154}\\ |
227 |
Au &CHar &3.4625 &0.1680& Ref. \protect\cite{vlugt:cpc2007154}\\ |
228 |
Au &CH2ar &3.4625 &0.1680& Ref. \protect\cite{vlugt:cpc2007154}\\ |
229 |
Au &S &2.40 &8.465& Ref. \protect\cite{vlugt:cpc2007154}\\ |
230 |
\botrule |
231 |
\end {tabular} |
232 |
\end{table} |
233 |
\newpage |
234 |
\bibliographystyle{aip} |
235 |
\bibliography{NPthiols} |
236 |
|
237 |
\end{document} |