ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/NPthiols/Sup_Info.tex
Revision: 4379
Committed: Mon Oct 26 22:05:33 2015 UTC (9 years, 9 months ago) by gezelter
Content type: application/x-tex
File size: 11815 byte(s)
Log Message:
Edits

File Contents

# Content
1 \documentclass[aps,jcp,preprint,showpacs,superscriptaddress,groupedaddress]{revtex4} % for double-spaced preprint
2 \usepackage{graphicx} % needed for figures
3 \usepackage{dcolumn} % needed for some tables
4 \usepackage{bm} % for math
5 \usepackage{amssymb} % for math
6 %\usepackage{booktabs}
7 \usepackage[english]{babel}
8 \usepackage{multirow}
9 \usepackage{tablefootnote}
10 \usepackage{times}
11 \usepackage[version=3]{mhchem}
12 \usepackage{lineno}
13 \usepackage{gensymb}
14 \usepackage{multirow}
15
16 \begin{document}
17
18 \title{Supporting Information for: Interfacial Thermal Conductance of Thiolate-Protected
19 Gold Nanospheres}
20 \author{Kelsey M. Stocker}
21 \author{Suzanne M. Neidhart}
22 \author{J. Daniel Gezelter}
23 \email{gezelter@nd.edu}
24 \affiliation{Department of Chemistry and Biochemistry, University of
25 Notre Dame, Notre Dame, IN 46556}
26
27 \maketitle
28 \vfill
29
30 Gold -- gold interactions were described by the quantum Sutton-Chen
31 (QSC) model.\cite{Qi:1999ph} The hexane solvent is described by the
32 TraPPE united atom model,\cite{TraPPE-UA.alkanes} where sites are
33 located at the carbon centers for alkyl groups. Bonding interactions
34 were used for intra-molecular sites closer than 3 bonds. Effective
35 Lennard-Jones potentials were used for non-bonded interactions.
36
37 The TraPPE-UA force field includes parameters for thiol
38 molecules\cite{TraPPE-UA.thiols} which were used for the
39 alkanethiolate molecules in our simulations. To derive suitable
40 parameters for butanethiolate adsorbed on Au(111) surfaces, we adopted
41 the S parameters from Luedtke and Landman\cite{landman:1998} and
42 modified the parameters for the CTS atom to maintain charge neutrality
43 in the molecule.
44
45 To describe the interactions between metal (Au) and non-metal atoms,
46 potential energy terms were adapted from an adsorption study of alkyl
47 thiols on gold surfaces by Vlugt, \textit{et
48 al.}\cite{vlugt:cpc2007154} They fit an effective pair-wise
49 Lennard-Jones form of potential parameters for the interaction between
50 Au and pseudo-atoms CH$_x$ and S based on a well-established and
51 widely-used effective potential of Hautman and Klein for the Au(111)
52 surface.\cite{hautman:4994}
53
54 \begin{table}[h]
55 \centering
56 \caption{Properties of the United atom sites. \label{tab:atypes}}
57 \begin{tabular}{ c|cccc }
58 \toprule
59 atom type & mass (amu)& $\epsilon$ (kcal/mol) & $\sigma$ (\AA) & source \\
60 \colrule
61 CH3 & 15.04 & 0.1947 & 3.75 & \\
62 CH2 & 14.03 & 0.09141 & 3.95 & \\
63 CH & 13.02 & 0.01987 & 4.68 & \\
64 CHene & 13.02 & 0.09340 & 3.73 & \\
65 CH2ene & 14.03 & 0.16891 & 3.675 & \\
66 S & 32.0655 & 0.2504 & 4.45 & Refs. \protect\cite{landman:1998} ($\sigma$) and \protect\cite{vlugt:cpc2007154} ($\epsilon$) \\
67 CHar & 13.02 & 0.1004 & 3.695 & Ref. \protect\cite{TraPPE-UA.alkylbenzenes}\\
68 CH2ar & 14.03 & 0.1004 & 3.695 & Ref. \protect\cite{TraPPE-UA.alkylbenzenes}\\
69 \botrule
70 \end{tabular}
71 \end{table}
72
73 Parameters not found in the TraPPE-UA force field for the
74 intramolecular interactions of the conjugated and the penultimate
75 alkenethiolate ligands were calculated using constrained geometry
76 scans using the B3LYP functional~\cite{Becke:1993kq,Lee:1988qf} and
77 the 6-31G(d,p) basis set. Structures were scanned starting at the
78 minimum energy gas phase structure for small ($C_4$) ligands. Only
79 one degree of freedom was constrained for any given scan -- all other
80 atoms were allowed to minimize subject to that constraint. The
81 resulting potential energy surfaces were fit to a harmonic potential
82 for the bond stretching,
83 \begin{equation}
84 V_\mathrm{bond} = \frac{k_\mathrm{bond}}{2} \left( r - r_0 \right)^2,
85 \end{equation}
86 and angle bending potentials,
87 \begin{equation}
88 V_\mathrm{bend} = \frac{k_\mathrm{bend}}{2} \left(\theta - \theta_0\right)^2.
89 \end{equation}
90 Torsional potentials were fit to the TraPPE torsional function,
91 \begin{equation}
92 V_\mathrm{tor} = c_0 + c_1 \left(1 + \cos\phi \right) + c_2 \left(1 - \cos 2\phi \right) + c_3 \left(1 + \cos 3 \phi \right).
93 \end{equation}
94
95 Say something here about which molecules were used for which scans....
96
97 The fit values for the bond, bend, and torsional parameters were in
98 relatively good agreement with similar parameters already present in
99 TraPPE.
100
101
102 to find an equilibrium bend angles $\theta_0$ and spring constants,
103 $k$. Torsional parameters were fit to the same part of the
104 penultimate ligand (\(S - CH_{2}- CH-CH)\)
105 for the rotation around the \( CH_{2}- CH\)
106 bond. This potential energy surface was then fit to
107
108 \begin{table}[h]
109 \centering
110 \caption{Bond parameters. \label{tab:bond}}
111 \begin{tabular}{ cc|lll }
112 \toprule
113 $i$&$j$ & $r_0$ (\AA) & $k (\mathrm{~kcal/mole/\AA}^2)$ & source\\
114 \colrule
115 CH3 & CH3 & 1.540 & 536 & \\
116 CH3 & CH2 & 1.540 & 536 & \\
117 CH3 & CH & 1.540 & 536 & \\
118 CH2 & CH2 & 1.540 & 536 & \\
119 CH2 & CH & 1.540 & 536 & \\
120 CH & CH & 1.540 & 536 & \\
121 Chene & CHene & 1.330 & 1098 & \\
122 CH2ene & CHene & 1.330 & 1098 & \\
123 CH3 & CHene & 1.540 & 634 & \\
124 CH2 & CHene & 1.540 & 634 & \\
125 S & CH2 & 1.820 & 444 & \\
126 CHar & CHar & 1.40 & 938 & \\
127 CHar & CH2 & 1.540 & 536 & \\
128 CHar & CH3 & 1.540 & 536 & \\
129 CH2ar & CHar & 1.40 & 938 & \\
130 S & CHar & 1.80384 & 527.951 & fit \\
131 \botrule
132 \end{tabular}
133 \end{table}
134
135 \begin{table}[h]
136 \centering
137 \caption{Bend angle parameters. The central atom in the bend is atom $j$.\label{tab:bend}}
138 \begin{tabular}{ ccc|lll }
139 \toprule
140 $i$&$j$&$k$ & $\theta_0 (\degree)$ & $k (\mathrm{kcal/mole/rad}^2)$ & source\\
141 \colrule
142 CH2 & CH2 & S & 114.0 & 124.20& Ref. \protect\cite{TraPPE-UA.thiols}\\
143 CH3 & CH2 & S & 114.0 & 124.20& Ref. \protect\cite{TraPPE-UA.thiols}\\
144 CH3 & CH2 & CH3 & 114.0 & 124.20& Ref. \protect\cite{TraPPE-UA.thiols}\\
145 CH3 & CH2 & CH2 & 114.0 & 124.20& Ref. \protect\cite{TraPPE-UA.thiols}\\
146 CH2 & CH2 & CH2 & 114.0 & 124.20& Ref. \protect\cite{TraPPE-UA.thiols}\\
147 CH3 & CH2 & CH & 114.0 & 124.20& Ref. \protect\cite{TraPPE-UA.thiols}\\
148 CHene & CHene & CH3 & 119.7 & 139.94& Ref. \protect\cite{Maerzke:2009qy}\\
149 CHene & CHene & CHene & 119.7 & 139.94& Ref. \protect\cite{Maerzke:2009qy}\\
150 CH2ene & CHene & CH3 & 119.7 & 139.94& Ref. \protect\cite{Maerzke:2009qy}\\
151 CHene & CHene & CH2 & 119.7 & 139.94& Ref. \protect\cite{Maerzke:2009qy}\\
152 CH2 & CH2 & CHene & 114.0 & 124.20& Ref. \protect\cite{TraPPE-UA.thiols}\\
153 CHar & CHar & CHar & 120.0 & 126.0 & Refs. \protect\cite{Maerzke:2009qy} and \\
154 CHar & CHar & CH2 & 120.0 & 140.0 & Refs. \protect\cite{Maerzke:2009qy} and \\
155 CHar & CHar & CH3 & 120.0 & 140.0 & Refs. \protect\cite{Maerzke:2009qy} and \\
156 CHar & CHar & CH2ar & 120.0 & 126.0 & Refs. \protect\cite{Maerzke:2009qy} and \\
157 S & CH2 & CHene & 109.97 & 127.37 & fit \\
158 S & CH2 & CHar & 109.97 & 127.37 & fit \\
159 S & CHar & CHar & 123.911 & 138.093 & fit \\
160 \botrule
161 \end{tabular}
162 \end{table}
163
164 The conjugated system was fit to a bond, bend, and torsion. The
165 terminal bond for the shortest conjugated ligand \(CH-CH_2\)
166 was fit to a potential energy surface to find an equilibrium bond
167 length of 1.4 \AA and a spring constant of 938 kcal/mol using the
168 Harmonic Model: \(V_{bond} = \frac{k}{2} (b - b_0)^2\).
169 A bend parameter for the beginning the longer conjugated ligands
170 (\(S - CH_2- CH)\),
171 was approximated to be equal to the shortest penultimate ligand
172 parameters found. For the shortest conjugated ligand the first bend
173 (\(S - CH- CH)\)
174 was fit a potential energy surface in the same manor as the
175 penultimate bend. The torsion for the first four atoms of the two
176 longer conjugated systems is equal to the torsion calculated for the
177 penultimate system.
178
179 \begin{table}[h]
180 \centering
181 \caption{Torsion parameters. The central atoms are atoms $j$ and $k$, and wildcard atom types are denoted by ``X''. All $c_n$ parameters have units of kcal/mol. \label{tab:torsion}}
182 \begin{tabular}{ cccc|lllll }
183 \toprule
184 $i$&$j$&$k$&$l$& $c_0$&$c_1$& $c_2$ & $c_3$ & source\\
185 \colrule
186 CH3 & CH2 & CH2 & CH3 & 0.0 & 0.7055 & -0.13551 & 1.5725 & Ref. \protect\cite{TraPPE-UA.alkylbenzenes}\\
187 CH3 & CH2 & CH2 & CH2 & 0.0 & 0.7055 & -0.13551 & 1.5725 & Ref. \protect\cite{TraPPE-UA.alkylbenzenes}\\
188 CH3 & CH2 & CH2 & CH & 0.0 & 0.7055 & -0.13551 & 1.5725 & Ref. \protect\cite{TraPPE-UA.alkylbenzenes}\\
189 CH2 & CH2 & CH2 & CH2 & 0.0 & 0.7055 & -0.13551 & 1.5725 & Ref. \protect\cite{TraPPE-UA.alkylbenzenes}\\
190 CH2 & CH2 & CH2 & S & 0.0 & 0.7055 & -0.13551 & 1.5725 & Ref. \protect\cite{TraPPE-UA.alkylbenzenes}\\
191 CH3 & CH2 & CH2 & S & 0.0 & 0.7055 & -0.13551 & 1.5725 & Ref. \protect\cite{TraPPE-UA.alkylbenzenes}\\ \colrule
192 X & CHene & CHene & X & \multicolumn{4}{c}{\multirow{2}{*}{$V = \frac{0.008112}{2} (\phi - 180.0)^2$}} & \multirow{2}{*}{Ref. \protect\cite{TraPPE-UA.alkylbenzenes}} \\
193 X & CHar & CHar & X & & & & & \\ \colrule
194 CH2 & CH2 & CHene & CHene & 1.368 & 0.1716 & -0.2181 & -0.56081 & Ref. \protect\cite{TraPPE-UA.alkylbenzenes}\\
195 CH2 & CH2 & CH2 & CHene & 0.0 & 0.7055 & -0.13551 & 1.5725 & Ref. \protect\cite{TraPPE-UA.alkylbenzenes}\\
196 CHene & CHene & CH2 & S & 3.20753 & 0.207417& -0.912929& -0.958538 & fit \\
197 CHar & CHar & CH2 & S & 3.20753 & 0.207417& -0.912929& -0.958538 & fit \\
198 \botrule
199 \end{tabular}
200 \end{table}
201
202 The conjugated system was fit to a bond, bend, and torsion. The
203 terminal bond for the shortest conjugated ligand \(CH-CH_2\)
204 was fit to a potential energy surface to find an equilibrium bond
205 length of 1.4 \AA and a spring constant of 938 kcal/mol using the
206 Harmonic Model: \(V_{bond} = \frac{k}{2} (b - b_0)^2\).
207 A bend parameter for the beginning the longer conjugated ligands
208 (\(S - CH_2- CH)\),
209 was approximated to be equal to the shortest penultimate ligand
210 parameters found. For the shortest conjugated ligand the first bend
211 (\(S - CH- CH)\)
212 was fit a potential energy surface in the same manor as the
213 penultimate bend. The torsion for the first four atoms of the two
214 longer conjugated systems is equal to the torsion calculated for the
215 penultimate system.
216
217 \begin{table}[h]
218 \centering
219 \caption{Non-bonded cross interaction parameters between gold atoms and the united atom sites\label{tab:nb}}
220 \begin{tabular}{ cc|ccc }
221 \toprule
222 $i$&$j$ & $\sigma$ (\AA)& $\epsilon$ $(kcal/mol)$ & source \\
223 \colrule
224 Au &CH3 &3.54 &0.2146& Ref. \protect\cite{vlugt:cpc2007154}\\
225 Au &CH2 &3.54 &0.1749& Ref. \protect\cite{vlugt:cpc2007154}\\
226 Au &CHene &3.4625 &0.1680& Ref. \protect\cite{vlugt:cpc2007154}\\
227 Au &CHar &3.4625 &0.1680& Ref. \protect\cite{vlugt:cpc2007154}\\
228 Au &CH2ar &3.4625 &0.1680& Ref. \protect\cite{vlugt:cpc2007154}\\
229 Au &S &2.40 &8.465& Ref. \protect\cite{vlugt:cpc2007154}\\
230 \botrule
231 \end {tabular}
232 \end{table}
233 \newpage
234 \bibliographystyle{aip}
235 \bibliography{NPthiols}
236
237 \end{document}