ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/NPthiols/Sup_Info.tex
Revision: 4378
Committed: Mon Oct 26 20:15:23 2015 UTC (9 years, 9 months ago) by skucera
Content type: application/x-tex
File size: 9798 byte(s)
Log Message:
updat sup_info

File Contents

# Content
1 \documentclass[aps,jcp,preprint,showpacs,superscriptaddress,groupedaddress]{revtex4} % for double-spaced preprint
2 \usepackage{graphicx} % needed for figures
3 \usepackage{dcolumn} % needed for some tables
4 \usepackage{bm} % for math
5 \usepackage{amssymb} % for math
6 %\usepackage{booktabs}
7 \usepackage[english]{babel}
8 \usepackage{multirow}
9 \usepackage{tablefootnote}
10 \usepackage{times}
11 \usepackage[version=3]{mhchem}
12 \usepackage{lineno}
13 \usepackage{gensymb}
14 \usepackage{multirow}
15
16 \begin{document}
17
18 \title{Supporting Information for: Interfacial Thermal Conductance of Thiolate-Protected
19 Gold Nanospheres}
20 \author{Kelsey M. Stocker}
21 \author{Suzanne M. Neidhart}
22 \author{J. Daniel Gezelter}
23 \email{gezelter@nd.edu}
24 \affiliation{Department of Chemistry and Biochemistry, University of
25 Notre Dame, Notre Dame, IN 46556}
26
27 \maketitle
28 \vfill
29 \begin{tabular}{ |c|c|c|c|c| }
30 \hline
31 \multicolumn{2}{|c|}{Atom Properties} \\
32 \hline
33 atom type & mass (amu)& epsilon $(kcal/mol)$ & sigma (\AA)& source \\
34 \hline
35 CH3 & 15.04 & 0.1947 & 3.75 & \\
36 CH2 & 14.03 & 0.09141 & 3.95 & \\
37 CH & 13.02 & 0.01987 & 4.68 & \\
38 CHene & 13.02 & 0.09340 & 3.73 & \\
39 CH2ene & 14.03 & 0.16891 & 3.675 & \\
40 // Sulfur sigma from Luedtke & Landman: J. Phys. Chem. B, 1998, 102 (34), pp 6566–6572
41 // Sulfur epsilon from Schapotschnikow et al.: doi:10.1016/j.cpc.2007.02.028
42 S & 32.0655 & 0.2504 & 4.45\\
43 //From TraPPE-UA JPCB 104, 8008
44 CHar & 13.02 & 0.1004 & 3.695\\
45 CH2ar & 14.03 & 0.1004 & 3.695\\
46 \hline
47 \end{tabular}
48
49 \par Parameters not found in the TraPPE-UA force field for the intramolecular interactions of the conjugated and the penultimate alkenethiolate ligands were calculated using a potential energy surface scan at the B3LYP, 6-31G(d,p) level. Then all potential energy surfaces were fit to a Harmonic potential. A bend parameter for the beginning of the shortest penultimate thiolate ligand (\(S - CH_{2}- CH)\)was calculated by fitting \(V_{bend} = \frac{k}{2} (\theta - \theta_0)^2\) to the potential energy surface. To find an equilibrium bend angle at 109.97\degree and a spring constant of 127.37 \(kcal/mol/rad^2\). A torsional parameter was fit to the same part of the penultimate ligand (\(S - CH_{2}- CH-CH)\) for the rotation around the \( CH_{2}- CH\) bond. This potential energy surface was then fit to \(V_{tor} = c0 + c1 * [1 + \cos(\phi)] + c2 * [1 - \cos(2\phi)] + c3 * [1 + \cos(3\phi)]\).
50
51 \begin{tabular}{ |cc|cc|l| }
52 \hline
53 \multicolumn{5}{|c|}{Bond Parameters} \\
54 \hline
55 $i$&$j$ & $\theta_0 (\degree)$ & $k (\mathrm{kcal/mole/rad}^2)$ & source\\
56 \hline
57 CH3 & CH3 & 1.540 & 536 & \\
58 CH3 & CH2 & 1.540 & 536 & \\
59 CH3 & CH & 1.540 & 536 & \\
60 CH2 & CH2 & 1.540 & 536 & \\
61 CH2 & CH & 1.540 & 536 & \\
62 CH & CH & 1.540 & 536 & \\
63 Chene & CHene & 1.330 & 1098 & \\
64 CH2ene & CHene & 1.330 & 1098 & \\
65 CH3 & CHene & 1.540 & 634 & \\
66 CH2 & CHene & 1.540 & 634 & \\
67 S & CH2 & 1.820 & 444 & \\
68 CHar & CHar & 1.40 & 938 & \\
69 CHar & CH2 & 1.540 & 536 & \\
70 CHar & CH3 & 1.540 & 536 & \\
71 CH2ar & CHar & 1.40 & 938 & \\
72 S & CHar & 1.80384 & 527.951 & fit \\
73 \hline
74 \end{tabular}
75
76 Most
77 parameters are taken from references \bibpunct{}{}{,}{n}{}{,}
78 \protect\cite{TraPPE-UA.alkanes} and
79 \protect\cite{TraPPE-UA.thiols}. Cross-interactions with the Au
80 atoms were adapted from references
81 \protect\cite{landman:1998},~\protect\cite{vlugt:cpc2007154},~and
82 \protect\cite{hautman:4994}.
83
84
85 \begin{tabular}{ |ccc|cc|l| }
86 \hline
87 \multicolumn{6}{|c|}{Bend Parameters (central atom is atom $j$)} \\
88 \hline
89 $i$&$j$&$k$ & $\theta_0 (\degree)$ & $k (\mathrm{kcal/mole/rad}^2)$ & source\\
90 \hline
91 CH2 & CH2 & S & 114.0 & 124.20& Ref. \protect\cite{TraPPE-UA.thiols}\\
92 CH3 & CH2 & S & 114.0 & 124.20& Ref. \protect\cite{TraPPE-UA.thiols}\\
93 CH3 & CH2 & CH3 & 114.0 & 124.20& Ref. \protect\cite{TraPPE-UA.thiols}\\
94 CH3 & CH2 & CH2 & 114.0 & 124.20& Ref. \protect\cite{TraPPE-UA.thiols}\\
95 CH2 & CH2 & CH2 & 114.0 & 124.20& Ref. \protect\cite{TraPPE-UA.thiols}\\
96 CH3 & CH2 & CH & 114.0 & 124.20& Ref. \protect\cite{TraPPE-UA.thiols}\\
97 CHene & CHene & CH3 & 119.7 & 139.94& Ref. \protect\cite{Maerzke:2009qy}\\
98 CHene & CHene & CHene & 119.7 & 139.94& Ref. \protect\cite{Maerzke:2009qy}\\
99 CH2ene & CHene & CH3 & 119.7 & 139.94& Ref. \protect\cite{Maerzke:2009qy}\\
100 CHene & CHene & CH2 & 119.7 & 139.94& Ref. \protect\cite{Maerzke:2009qy}\\
101 CH2 & CH2 & CHene & 114.0 & 124.20& Ref. \protect\cite{TraPPE-UA.thiols}\\
102 CHar & CHar & CHar & 120.0 & 126.0 & Refs. \protect\cite{Maerzke:2009qy} and \\
103 CHar & CHar & CH2 & 120.0 & 140.0 & Refs. \protect\cite{Maerzke:2009qy} and \\
104 CHar & CHar & CH3 & 120.0 & 140.0 & Refs. \protect\cite{Maerzke:2009qy} and \\
105 CHar & CHar & CH2ar & 120.0 & 126.0 & Refs. \protect\cite{Maerzke:2009qy} and \\
106 S & CH2 & CHene & 109.97 & 127.37 & fit \\
107 S & CH2 & CHar & 109.97 & 127.37 & fit \\
108 S & CHar & CHar & 123.911 & 138.093 & fit \\
109 \hline
110 \end{tabular}
111 \par The conjugated system was fit to a bond, bend, and torsion. The terminal bond for the shortest conjugated ligand \(CH-CH_2\) was fit to a potential energy surface to find an equilibrium bond length of 1.4 \AA and a spring constant of 938 kcal/mol using the Harmonic Model: \(V_{bond} = \frac{k}{2} (b - b_0)^2\). A bend parameter for the beginning the longer conjugated ligands (\(S - CH_2- CH)\), was approximated to be equal to the shortest penultimate ligand parameters found. For the shortest conjugated ligand the first bend (\(S - CH- CH)\) was fit a potential energy surface in the same manor as the penultimate bend. The torsion for the first four atoms of the two longer conjugated systems is equal to the torsion calculated for the penultimate system.
112 \begin{tabular}{ |cccc|cccc|l| }
113 \hline
114 \multicolumn{9}{|c|}{Torsion Parameters (central atoms are atoms $j$ and $k$)} \\
115 \hline
116 $i$&$j$&$k$&$l$& c0&c1& c2 & c3 & source\\
117 \hline
118 CH3 & CH2 & CH2 & CH3 & 0.0 & 0.7055 & -0.13551 & 1.5725 & Ref. \protect\cite{TraPPE-UA.alkylbenzenes}\\
119 CH3 & CH2 & CH2 & CH2 & 0.0 & 0.7055 & -0.13551 & 1.5725 & Ref. \protect\cite{TraPPE-UA.alkylbenzenes}\\
120 CH3 & CH2 & CH2 & CH & 0.0 & 0.7055 & -0.13551 & 1.5725 & Ref. \protect\cite{TraPPE-UA.alkylbenzenes}\\
121 CH2 & CH2 & CH2 & CH2 & 0.0 & 0.7055 & -0.13551 & 1.5725 & Ref. \protect\cite{TraPPE-UA.alkylbenzenes}\\
122 CH2 & CH2 & CH2 & S & 0.0 & 0.7055 & -0.13551 & 1.5725 & Ref. \protect\cite{TraPPE-UA.alkylbenzenes}\\
123 CH3 & CH2 & CH2 & S & 0.0 & 0.7055 & -0.13551 & 1.5725 & Ref. \protect\cite{TraPPE-UA.alkylbenzenes}\\ \hline
124 X & CHene & CHene & X & \multicolumn{4}{|c|}{\multirow{2}{*}{$V = \frac{0.008112}{2} (\phi - 180.0)^2$}} & \multirow{2}{*}{Ref. \protect\cite{TraPPE-UA.alkylbenzenes}} \\
125 X & CHar & CHar & X & & & & & \\ \hline
126 CH2 & CH2 & CHene & CHene & 1.368 & 0.1716 & -0.2181 & -0.56081 & Ref. \protect\cite{TraPPE-UA.alkylbenzenes}\\
127 CH2 & CH2 & CH2 & CHene & 0.0 & 0.7055 & -0.13551 & 1.5725 & Ref. \protect\cite{TraPPE-UA.alkylbenzenes}\\
128 CHene & CHene & CH2 & S & 3.20753 & 0.207417& -0.912929& -0.958538 & fit \\
129 CHar & CHar & CH2 & S & 3.20753 & 0.207417& -0.912929& -0.958538 & fit \\
130 \hline
131 \end{tabular}
132 \par The conjugated system was fit to a bond, bend, and torsion. The terminal bond for the shortest conjugated ligand \(CH-CH_2\) was fit to a potential energy surface to find an equilibrium bond length of 1.4 \AA and a spring constant of 938 kcal/mol using the Harmonic Model: \(V_{bond} = \frac{k}{2} (b - b_0)^2\). A bend parameter for the beginning the longer conjugated ligands (\(S - CH_2- CH)\), was approximated to be equal to the shortest penultimate ligand parameters found. For the shortest conjugated ligand the first bend (\(S - CH- CH)\) was fit a potential energy surface in the same manor as the penultimate bend. The torsion for the first four atoms of the two longer conjugated systems is equal to the torsion calculated for the penultimate system.
133
134 \begin{tabular}{ |cc|c|c|c| }
135 \hline
136 \multicolumn{2}{|c|}{Atom Properties} \\
137 \hline
138 $i$&$j$& Interaction type & sigma (\AA)& epsilon $(kcal/mol)$& source \\
139 \hline
140 // From Schapotschnikow et al.: doi:10.1016/j.cpc.2007.02.028
141 Au &CH3 &3.54 &0.2146&\\
142 Au &CH2 &3.54 &0.1749&\\
143 Au &CHene &3.4625 &0.1680&\\
144 Au &CHar &3.4625 &0.1680&\\
145 Au &CH2ar &3.4625 &0.1680&\\
146 Au &S &2.40 &8.465&\\
147 Au2 &CH3 &3.54 &0.2146&\\
148 Au2 &CH2 &3.54 &0.1749&\\
149 Au2 &CHene &3.4625 &0.1680&\\
150 Au2 &CHar &3.4625 &1.1680&\\
151 Au2 &S &2.40 &8.465 &\\
152 \hline
153 \end {tabular}
154 \newpage
155 \bibliographystyle{aip}
156 \bibliography{NPthiols}
157
158 \end{document}